
 

 

Abstract 

 

Tuberculosis (TB) is a serious infectious disease that 

remains a global health problem with an enormous burden 

of disease. TB spreads widely in low and middle income 

countries, which depend primarily on ZN-stained sputum 

smear test using conventional light microscopy in disease 

diagnosis. In this paper we propose a new deep-learning 

approach for bacilli localization and classification in 

conventional ZN-stained microscopic images. The new 

approach is based on the state of the art Faster 

Region-based Convolutional Neural Network (RCNN) 

framework, followed by a CNN to reduce false positive rate. 

This is the first time to apply this framework to this problem. 

Our experimental results show significant improvement by 

the proposed approach compared to existing methods, 

which will help in accurate disease diagnosis. 

 

1. Introduction 

Tuberculosis (TB) is one of the leading causes of death in 

the world [1] that has millions of victims and patients. Over 

95% of TB deaths occur in low- and middle-income 

countries. However TB can be treated successfully if it is 

diagnosed correctly at the appropriate time. There are 

several methods for TB diagnosis, such as chest X-ray test, 

culture test, interferon-γ release assay (IGRA), GeneXpert, 

skin test, and microscopy test. Yet diagnosis remains a 

challenging task especially in low and middle-income 

countries that depend primarily on manual diagnosis of TB 

with visually screening stained smears prepared from 

sputum.  

While sputum smear test is a simple, inexpensive test and 

results can be available within hours, manual TB screening 

is a tedious work and prone to error due to work load and a 

dearth of properly trained technicians. Technicians view the 

smears slides with microscopes, looking for rod-shaped 

objects that may be Mycobacterium tuberculosis, the 

bacteria responsible for TB disease. However they may 

diagnose a positive TB slide as smear negative because of 

sparseness of acid-fast bacilli, or because too few fields 

have been examined. This often leads to low recall rates. 

Automatic methods are the best solution to improve low 

sensitivity of TB diagnosis, reduce human variability in 

slide analysis and speed up the screening process. 

While fluorescence microscopy is more sensitive and 

faster to diagnose [2, 3] (see Fig. 1), conventional 

microscopy is mostly used in low and middle-income 

countries where TB prevalence rate is high because it is less 

expensive, easier to use and maintain [2]. As such, we will 

focus in this work on this kind of microscopy. 

In this work we are interested in using state-of-the-art 

object detection methods to identify TB bacillus in 

bright-field microscopy images. This faces special 

challenges due to variations in illumination, artifacts, 

overstaining and lack of clear separation of bacilli from 

background. 

Previous attempts to automate the task of identifying and 

quantifying TB (bacilli) in the images acquired with 

conventional light microscopy have been reported. Costa et 

al. [4] were the first to propose such an automatic TB bacilli 

identification method based on red minus green (R-G) 

images. To segment the bacilli, a threshold value was 

computed using the histogram of the R-G image. 

Afterwards several filtering operations were applied to 

separate the bacilli from artifacts. Sadaphal et al. [5] applied 

a Bayesian segmentation method to segment possible TB 

objects, and then the segmented objects were classified 

based on shape and color descriptors. Osman et al. [6] 

presented a study on contrast enhancement using linear 

                 (a)                                                 (b) 

Figure 1. (a) Image from bright field microscope (b) image from 

fluorescence microscope. 
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stretching for bacilli detection on both RGB and HSV color 

spaces. The same authors [7] proposed an automatic 

segmentation method using hybrid multilayered neural 

network. Khutlang [8] proposed a combination of several 

pixel classifiers to segment the candidate bacillus objects, 

and then shape and color features were extracted for the 

identification of the hopefully-true bacilli. Rulaningtyas et 

al. [9] employed a naive Bayesian-based color segmentation 

for detecting TB bacilli after performing image 

pre-processing. CostaFilho et al. [10] classified images into 

low density and high density background, then a set of color 

features were used for segmentation and classification. 

Kusworo et al. [11] employed a color segmentation method 

on TB images, then eccentricity and compactness shape 

features were extracted for final classification with a 

support vector machine.  

All the previous methods have combined workflows of 

image processing techniques and machine learning for TB 

identification. They relied on hand-crafted sets of color 

shape descriptors for that goal, which resulted in rather low 

detection accuracy. In recent years, researchers [12-15] 

have started applying emerging, powerful deep learning 

methods which allow learning discriminating features for 

bacilli detection and classification. The Convolutional 

Neural Network (CNN) is the main engine for all these 

methods. In [12-13, 15], the authors had to split a 

microscopic image into smaller patches, each containing an 

image object that could potentially be a TB bacillus. The 

CNN operated on patches (not the whole image) of the used 

datasets. The main drawback of these methods is how to 

split the larger microscopic image into such a way. The 

accuracy of the method largely depends on this preliminary 

patching step. Some authors even did not reveal the details 

of how this was done [13, 15], whether it is automated or 

even done manually. The recent work of [14] tried to 

overcome this drawback by using an initial stage of image 

binarization and pixel classification to locate foreground 

objects (bacilli, non-bacilli, artifacts) and then construct the 

required patches. Each patch presumably will contain one 

foreground object and is fed to the CNN stage for final 

classification into bacilli and non-bacilli. While this method 

automates the image patching, its overall accuracy depends 

on the success of the first binarization/pixel-classification 

step, which is often error-prone for the challenging 

conventional bright-field microscopy. It also suffers from 

touching foreground objects and over-stained images. Fig. 2 

shows that the binarization step can cause a microscopic 

image lose real bacilli pixels, thus failing to classify them 

correctly. 

(a) (b) 
Figure 2. (a)  Sputum smear microscopy image with true bacilli 

marked, (b) Corresponding binary image. 

 

In this work we choose to use one of the state-of-the-art 

deep learning-based methods that has the ability for 

localization and classification of TB bacilli with high 

performance. It can avoid all previous work difficulties, 

such as finding proper set of features, and dividing images 

into patches. We propose to use a Faster Region-based 

Convolutional Neural Network (RCNN) framework. This 

framework has achieved the state-of-the-arts results on 

several object detection and classification challenges (e.g., 

Pascal VOC [16] and MS COCO [17]). To the best of our 

knowledge, this framework has not been adopted before to 

the task at hand in this paper. To reduce the rather high 

false positive rate of the Faster R-CNN we add an additional 

stage consisting of a CNN that classifies the bounding boxes 

found by the Faster R-CNN into real or false TB bacilli. 

This increases the detection performance of the overall 

approach. 

Another contribution of this paper is that we assess and 

compare notable existing methods against ours on the same 

dataset. Previous works (e.g, [7-15]) used different datasets 

and thus it is not possible to compare between the reported 

results.   

The paper is organized as follows. Section 2 describes the 

data used in this work. In Section 3 the proposed approach 

along its implementation details is discussed. Experimental 

results are reported in Section 4. Finally, our conclusions 

are drawn in Section 5. 

2. Data 

All images used for training and evaluation are taken 

from ZNSM-iDB [23] public database that consists of 

various categories (autofocused data, overlapping 

objects,single or few bacilli, views without bacilli, occluded 

bacilli, over-stained views with bacilli and artifacts), see 

Fig. 3. The database consists of three divisions, each 

acquired with different microscopes.  Our training and test 

data are taken from first and second divisions, the first using 

Labomed Digi 3 digital microscope with an iVu 5100 digital 

camera 5.0 megapixel (MS-1), and the second using Motic 

BA210 digital microscope with a Siedentopf type binocular  



 

head and Moticam 2500 digital camera module 5.0 

megapixel (MS-2). 80% of data are selected at random 

for training and 20% for testing. 

3. Proposed Method 

In this work we propose TB identification in images 

obtained from conventional light microscopy using a 

deep learning approach. The proposed approach relies 

on the R-CNN framework family. This framework can 

classify and locate objects inside images by combining 

CNNs and region proposal methods [19]. A region 

proposal method is a method that finds a set of regions, 

defined with bounding boxes, which might contain 

objects of interest. Early members of this framework 

used Selective Search [20] or EdgeBoxes [21]. Although 

it exceeded the previous best detection results on Pascal 

VOC 2012 by about 30% [16], it was computationally 

slow since each image is processed many times to detect 

region of interest. 

Then new members of the family were proposed to 

solve this drawback. Fast R-CNN [22] introduces a more 

effective method for training the CNN and adopts a 

bounding box regressor. The bounding box regressor is a 

layer that outputs the locations of bounding boxes where 

objects of interest might be located. Faster R-CNN [16] 

combines the Fast R-CNN with a RPN (Region Proposal 

Network). RPN is a network that uses the feature map, to 

generate regions of interest each with score, then fast 

R-CNN classifies the proposed regions and refines their 

locations. The time cost of generating region proposals is 

much smaller in RPN than selective search.   

In order to share convolutional layers between RPN 

and Faster R-CNN model, an algorithm of four steps was 

presented in [16]. In the first step, input image is passed 

to a conventional network which returns feature map for 

that image. Second step, RPN is applied to this feature 

map and returns object proposals with scores. Third step, 

Region Of Interest (ROI) pooling layer is applied to 

these proposals to down sample it to the same size. In the 

fourth step, object proposals are passed to fully 

connected layer to classify and output the bounding 

boxes for objects. Figure 4 illustrates the four steps of the 

Faster R-CNN framework.  

3.1 Second classification stage 

Our earlier experiments have revealed that the Faster 

R-CNN suffers from high false positive rate, which has a 

negative impact on the overall accuracy. As such, we 

propose to detect TB bacilli in two stages; we propose to 

use a CNN as a second stage on top of the Faster R-CNN 

stage, see Fig. 5 and Fig. 6.  

The bounding boxes found by the first stage of the 

Faster R-CNN are fed to the second stage CNN for final 
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Figure 3.  Sample images from the database: (a) image from Autofocus 

category acquired using MS-1, (b) image from single bacilli category 

acquired using MS-2, (c)  image from overlapping bacillus category 

acquired using MS-2, (d)   image from overlapping bacillus category 

acquired using MS-1, (e)  image from overstaining bacillus category 

acquired using MS-2, (f) image from manually segmented category  

acquired using MS-1 circle or oval used to mark single bacilli and 

square used to mark occluded bacillus, (g) image from occluded 

category acquired using MS-2, (h) image from without bacillus 

category acquired using MS-1. 
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classification into TB or non-TB bacillus. Figure 6 

illustrates the complete proposed approach. 

 3.2 Implementation 

In our implementation of this approach, the Faster 

R-CNN is structured as follows. The network input image 

layer has an input size of 400×400×3, middle layers 

containing 3 convolutional layers with 32 (3×3) kernels, 

each followed with a Rectified Linear Units (ReLUs) 

activation layer and  a max pooling layer, and final layers 

consisting of a fully connected layer, a softmax layer and a 

classification layer. We have used 500 images with 2500 

(bacilli) object, selected from all database categories. 80% 

of dataset used for training and 20% for testing. For proper 

Faster R-CNN training and to get more accuracy, multiple 

data augmentation methods have been used, such as image 

rotation, reflection and translation. Several key 

hyper-parameters have been tuned in the Faster R-CNN 

architecture, such as minimum anchor box sizes (we use 3 

box sizes 10
2
, 15

2
, and 20

2
). The batch size is 128. The 

learning rate is 1e-5 for first two stages and 1e-6 for third 

and fourth stages. The network is trained for 40 epochs.  

As shown in Fig. 5, the second stage CNN has an input 

size of 20×20×3, and has five convolutional layers (each 

layer has 7×7 filter size, and Rectified Linear Units 

(ReLUs) activation functions, and is followed by max 

pooling layer). The number of filter for each layer is taken 

as 9, 18, 36, 72, and 72, respectively. The last layer of the 

CNN consists of a fully connected network employing a 

Softmax activation function and a classification layer with 

two outputs. The CNN has been trained with the same 

Faster R-CNN training data. The found boxes of the Faster 

R-CNN are re-sized to 20×20 and used as input. False 

positive boxes are used as training samples for the non-TB 

class, while true positive boxes are used as samples of the 

TB class. Data augmentation on these samples (random 

rotations and reflections) is also employed. The batch size is 

128, and the network is trained for 40 epochs. 

4. Experimental Results 

In this section we report the results obtained from the 

proposed approach. To determine the efficiency of our 

approach, precision, recall and F-score metrics are 

calculated. To calculate these  metrics, True positive (TP) 

which is total number of TB bacilli that are detected 

correctly by the approach, False Positive (FP) which is total 

number of non-bacilli that are detected as bacilli by the 

approach, and False Negative (FN) which is total number of 

true bacilli that are not detected by the approach are 

calculated. 

 

Figure 4. Faster R-CNN is a network that combines a Convolutional Neural Network, a Region Proposal Network, a Region of Interest,   

Pooling layer, and a classifier. 

 

 
Figure 5. Structure of the second stage classifier. 

 

 



 

For the sake of comparison, we have implemented the 

method proposed in [8]. The reason of selecting this 

reference is that it uses a comprehensive set of features and 

several machine learning classifiers for TB bacilli 

identification. As such, it is considered a plethora of 

methods altogether. It consists of four stages: first stage uses 

a combination of pixel classifiers to segment the candidate 

bacillus objects based on color intensity features. In stage 

two, shape and color features, such as color moment 

features, eccentricity, compactness, Fourier features, were 

extracted. In stage three, feature selection was carried out. 

Classic machine learning classifiers (SVMs, kNNs, linear 

(LDA) and quadratic (QDA) classifiers) have been applied 

for object classification in stage four. 

Table 1 reports the accuracy of the proposed approach 

on the test dataset in comparisons to the other methods. It is 

clear that the proposed Faster R-CNN indeed demonstrates 

a better performance against all other existing methods. 

However it suffers from rather high false positive rate, 

which is rectified by the second stage CNN. This stage has 

succeeded in reducing the false positive rate by 20%. The 

overall 2-stage approach has presented the best overall 

performance in terms of the three metrics. Sample results 

obtained by the complete approach are shown in Fig. 7. 

To probe further in the analysis of the proposed 

approach, we have conducted an experiment to assess the 

performance of the 2
nd

 stage CNN alone. We have 

compared its performance against the CNNs proposed in 

[13] operating on about 2000 patches of the used data, each 

manually-segmented patch may contain one or no bacillus. 

The authors of [13] proposed a model (Model A) consisting 

of 2 convolutional layers and another (Model B) composed 

of 3 convolutional layers. Table 2 reports the accuracy of 

our CNN model in comparison to these two CNN models. 

Clearly it confirms the higher performance of our proposed 

CNN.  

 

5. Conclusions 

      In this paper we have proposed a deep-learning 

approach to the localization and classification of TB bacilli 

 
 

 

 

 

 

 

 

 

   
 

 

 

Table 1. Results of proposed approach vs. other methods 

Classifier Recall Precision F-score 

SVM 94.6% 81.6% 88.0% 

KNN 93.9% 80.7% 86.8% 

QDA 96.3% 79.2% 86.9% 

LDA 94.4% 79.4% 86.2% 

Faster 

R-CNN 

98.3% 82.6% 89.7% 

Faster 

R-CNN 

+CNN 

98.4% 85.1% 91.2% 

Results after stage 1 

Faster R-CNN 

Crop and resize 

boxes 

 

CNN 

TB Non-TB 

Input test image  

Result after stage 2 

 

Figure 6. The complete proposed approach consisting of two 

stages: a Faster R-CNN and then a CNN. In the final result image, 

yellow boxes denote the finally-obtained TB bacilli, while red 

boxes denote boxes found by the Faster R-CNN but rejected by the 

second stage CNN. 



 

in ZN-stained microscopic images. The new approach is 

based on the Faster Region-based Convolutional Neural 

Network (RCNN) framework. To the best of our 

knowledge, this is the first time to apply this framework to 

this problem. To reduce the rather high false positive rate of 

the Faster R-CNN, we have proposed a second stage 

consisting of a CNN that classifies the bounding boxes 

found by the Faster R-CNN into real or false TB bacilli. Our 

experimental results show significant improvement by the 

proposed approach compared to existing methods. 

 Our current focus is directed towards improving the 

performance of the proposed approach. One underway 

direction to do this is to increase the size of the data used for 

the deep network training. Since the ZNSM-iDB database 

[23] was the only one available to us in the public domain, 

we plan to collect our own samples from Assiut University 

Hospital and local centers, and use them along with the 

available ZNSM-iDB data. This is expected to increase the 

performance of the proposed approach. 
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