
Deep Metric Learning for Identification of Mitotic Patterns of HEp-2 Cell Images

Krati Gupta, Daksh Thapar, Arnav Bhavsar and Anil K. Sao

School of Computing & Electrical Engineering, Indian Institute of Technology Mandi, HP, India

{krati gupta,d18033}@students.iitmandi.ac.in, {arnav,anil}@iitmandi.ac.in

Abstract

Automatic identification of mitotic type staining patterns

in microscopy images is an important and challenging task,

in computer-aided diagnosis (CAD) of autoimmune dis-

eases. Such patterns are manifested on a HEp-2 based cell

substrate and captured via Indirect immunoflourescence

(IIF) based microscopy imaging technique. The present

study proposes a deep metric learning methodology, in or-

der to identify the mitotic staining patterns which are rather

rare, among several other interphase patterns present in

majority. Hence, the problem is framed as a mitotic v/s non-

mitotic/interphase pattern classification problem. Here, the

implemented network maps the input images into a latent

space, in order to compare the distances between the sam-

ples, for class declaration, via a triplet-loss based frame-

work. The framework yields good classification perfor-

mance as max. 0.85 Matthews correlation coefficient in one

case, with less false positive cases, when validated over a

public dataset.

1. Introduction & Motivation

Autoimmune disorders are characterized by the presence

of Anti-Nuclear Antibodies (ANA) in the patient’s blood

serum, wherein ANA affect healthy blood cells and tis-

sues [8]. To confirm their presence in blood, a gold standard

test [8], i.e., Indirect ImmunoFluorescence (IIF) imaging is

followed, in which the patient’s blood is added to a standard

Human Epithelium Type-2 (HEp-2) based cell substrate (on

a glass slide) and manifest in different intra-nuclear and

extra-nuclear type of staining patterns [14]. Apart from

these nuclear staining patterns, few distinct types of stain-

ing patterns are also visualized, known as the mitotic pat-

terns, present in relatively rare amount. The mitotic pat-

terns are the indicators of the mitotic phase of the cell cycle

(a process for cell-division) [7], exhibiting specific clinical

importance. The patterns other than the mitotic ones are

collectively referred to as interphase patterns. Few types

of mitotic and non-mitotic/interphase patterns are shown in

Fig. 1.

The identification of each pattern type is separately re-

quired to, in turn, identify the relevant diseases. While tra-

ditionally such identification is done manually, it is a te-

dious and time-consuming task, motivating the need for au-

tomated machine learning based methods. In this study,

we propose an approach which can contribute to such a

computer-aided identification framework to triage via ma-

chine learning & pattern recognition based techniques.

Such CAD systems are meant to assist the medical experts

and clinicians, in their decision-making process.

As suggested in the literature, the importance of identi-

fying mitotic over other interphase patterns lies in (a) as-

certaining the presence of at least one mitotic pattern in

specimen, which assures medical experts about the correct

slide preparation [20] and (b) the identification of other in-

terphase via the mitotic patterns, present in the same speci-

men. The above-mentioned aspects make the identification

of mitotic type patterns important. Hence, the present study

is framed as a task to classify mitotic v/s interphase patterns.

The important challenges in identification of mitotic pat-

terns is their rare appearance and high intra-class variations

among the different types of mitotic patterns, defined as:

(a) Due to the rare appearance of mitotic patterns, these pat-

terns always show a sample bias from other interphase class,

by which the traditional classification paradigm get biased

towards the majority class, as the classification model does

not consider the mitotic samples much, due to the scarcity

of training data from mitotic class. Hence, the data skew

issue needs to be addressed in the proposed framework. (b)

Moreover, the high intra-class variations among different

types of mitotic patterns are effectively addressed using ap-

propriate feature representation, that can better discriminate

between mitotic and non-mitotic/interphase patterns.

Till now, there are very few works present, focusing

on the identification of mitotic patterns. In [7, 16, 21],

the authors have proposed a classification framework for

mitotic v/s interphase classes, with a large sample skew

and demonstrated various data skew balancing strategies to

address the same. However, apart from these [7, 16, 21],

other works focus on the identification of interphase

patterns in a single cell and specimen images [8, 13, 14],

and not of the mitotic patterns.
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Figure 1. Few cell images examples (a) to (d) mitotic cells & (e) to (h) non-mitotic cells.

Distance Metric Learning Framework

Considering the issue of the rare appearance of mitotic

patterns, in this work, a distance metric learning based

framework is proposed for detection of mitotic patterns,

which is known to perform better in cases with few data

samples [27]. The important aspects of the framework are

as follows:

(A) Here, the distance metric computation is integrated

with deep convolutional neural networks (D-CNN), which

aims to learn useful embeddings of the data by distance

comparisons of similar and dissimilar samples. The

method learns a function f(x) which maps input data to an

embedding space (Rn), on which a distance is computed to

a measure of similarity between images, i.e., two images

belonging to the same class should have smaller distance

and images belonging to different classes should have larger

distances. Such a learning framework can be modeled with

a well-known Siamese network based framework [3, 23].

(B) The produced embeddings will be treated as a fi-

nal feature representation and can be used in further

aforementioned classification task of mitotic v/s non-

mitotic/interphase single cell images. For classification,

the embedding based features can be modeled using any

traditional classifier.

(C) An important consideration of such a framework is the

avoidance of data skew balancing strategies, that is gener-

ally required in such problem definition. It does not learn

the distribution of a particular class and captures the class-

based similarity. If any class possesses less number of sam-

ples, the triplet or pair-wise loss handles such issue. Each

pair or triplet will essentially have one mitotic sample and

hence addresses the issue of data imbalance.

The conventional data skew balancing strategies such

as undersampling leads to the removal of potential and

good samples from majority class, while the oversampling

involves generation of new samples either in data or feature

space from minority class samples, which do not follow the

expected distribution in data or feature space. Hence, the

framework used in the proposed approach is not intended

to use any data skew balancing strategy and implemented

with original skewed data samples only.

(D) The feature representations conventionally used in other

frameworks generally focused to capture the discriminative

shape and morphology-based descriptors, in order to distin-

guish mitotic cells from non-mitotic ones. To represent such

features accurately, an exact segmentation mask is required,

which is generally acquired using another chemical called

DAPI (4’,6-diamidino-2-phenylindole) [13]. On the basis of

laboratory perspective, the use of a secondary chemical in

entire diagnostic protocol adds on the complexity and seg-

mentation overhead. The proposed framework involves the

direct use of cell images and can also avoid the requirement

of DAPI masks.

To the best of our knowledge, there is no other work,

which employs such a technique for the identification of

mitotic cells. However, the idea has been considered in face

recognition [23] and object tracking tasks [6].

2. Related work

The detection of ANA is an important and challenging

task, to identify the autoimmune disorders in affected hu-

man beings. There are some existing papers, demonstrat-

ing the clinical aspects of the problem statement [12, 18],

including the importance of identifying mitotic patterns in

whole slide or specimen images [7, 8, 20].

Till now, there are many works, explaining the problem

of identifying interphase type patterns in HEp-2 single cell

and specimen images, using traditional hand-crafted as well

as deep neural networks (DNN) based feature representa-

tions and classifiers [4, 10, 11, 17, 19, 22, 26], validated

over publicly available datasets. However, very few au-

thors demonstrated the works, specific to the identification

of mitotic type patterns in single cell images. For exam-

ple, in [7, 16], authors proposed a classification framework

on their own skewed dataset, which is different from the

public dataset that we use in our study. In already existing

works, the authors have addressed the issue of data skew

between mitotic and interphase classes, using standard skew

balancing methodologies, including morphological and tex-

tural feature descriptors [16, 20, 21, 24].

The deep metric learning framework focuses on learning

a non-linear projection function, which transforms an input

image from an input space to an embedding space, where

images from the same class will be grouped together and
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Figure 2. The flow of the model: Input batch layer is connected to Deep CNN architecture.

Figure 3. A triplet Siamese matching network.

images from different classes will be grouped and stretched

apart [29]. Such type of frameworks are well implemented

for face recognition [23], object detection [6] & person re-

identification [28], but to the best of our knowledge, no

works have used the similar kind of strategy for mitotic type

identification problem. In general medical image analysis

context, recently few works have used such metric learn-

ing based models for various tasks, e.g., multi-modal image

registration [5] and multi-labeled radiographs [1].

3. Proposed approach

The proposed framework of classification between

mitotic v/s interphase images involves the Siamese CNN &

has following important components (Fig. 2):

3.1. Triplet Loss function

In the feature space, this loss improves the margin be-

tween the distance of images from the same class, and dis-

tance of those from different classes [15, 23]. The triplet

loss minimizes the distance between an anchor image xa
i

and a positive image x
p
i (both from mitotic class), both be-

long to the same class and maximizes the distance between

the anchor image xa
i & a negative xn

i of different classes.

In addition, the generated embeddings are assumed to be on

the d-dimensional hypersphere, i.e., || f(x) ||2= 1. Then,

the loss that has to be minimized, as:

L = max[|| f(xa
i )−f(xp

i ) ||22 − || f(xa
i )−f(xn

i ) ||22 +α, 0]

∀ (f(xa
i ), f(x

p
i , f(x

n
i )) ∈ T )

where α represents the margin between positive and neg-

ative pairs images, and T is the set of possible triplets, from

the training set. A triplet Siamese matching network is

demonstrated in Fig. 3.

3.2. Triplet Selection: Hard Sample Mining

A high number of triplets will be generating from the

data samples and passing all triplets through the network

will lead to slower convergence. Hence, to select the active

triplets, in order to assure the fast convergence, we apply

hard sample mining, in which for any given anchor image

xa
i , the x

p
i and xn

i are chosen for which,

|| f(xa
i )− f(xn

i ) ||22 − || f(xa
i )− f(xp

i ) ||22 <α (1)

|| f(xa
i )− f(xp

i ) ||22 < || f(xa
i )− f(xn

i ) ||22 (2)

Here, Eq. 1 ensures that the triplets selected are violating

the margin but there might be some cases, where the nega-

tive samples could be closer to the positive ones, leading to

very high loss. To prevent it, only those triplets are selected

for which Eq. 2 satisfies.

Hence, we apply an online triplet mining technique to

select the hard positive/negative samples from mini batches

and it should be ensured that a minimum number of samples

of any one class should be present in each mini batch.

3.3. CNN based embeddings

Here, a network architecture has been designed, includ-

ing 11 convolutional layers. The details of the architecture

are provided in Table 1. The Rectified Linear Unit (ReLU)

activation function is used in each convolutional layer and

the convolutional layers are followed by Global Average

Pooling (GAP) layer, which is importantly required in case

of fewer data samples. If the flattening is directly applied

after convolutional layers, then the parameters are very

large in number, which is effectively decreased by GAP

layer. After GAP layer, four dense layers are used. Once,

the model is trained and validated using only training &

validation dataset, the embeddings are extracted for all the

training images, and can be used in any classifier for further
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Layer size-in size-out kernel stride

conv1 128×128×3 128×128×128 5×5 1

conv2 128×128×128 64×64×128 2×1 2

conv3 64×64×128 64×64×128 5×5 1

conv4 64×64×128 32×32×128 2×1 2

conv5 32×32×128 32×32×128 5×5 1

conv6 32×32×128 16×16×128 2×1 2

conv7 16×16×128 16×16×128 5×5 1

conv8 16×16×128 8×8×128 2×1 2

conv9 8×8×128 8×8×128 5×5 1

conv10 8×8×128 4×4×128 2×2 2

conv11 4×4×128 4×4×128 5×5 1

Global average pooling (GAP)

Dense-512 (ReLU)

Dense-256 (ReLU)

Dense-128 (ReLU)

Dense-128 (Linear)

Table 1. The detailed structure of the network used.

classification between mitotic & non-mitotic samples.

3.4. Classification

For the classification task, we use Gaussian kernel based

Support Vector Machine (SVM) classifier for prediction.

It is worth noticing that the framework is not using any

data augmentation & data balancing approaches, even when

there is a large data imbalance between both the classes. For

testing, the test samples are passed to the same network, in

order to get the embeddings. Now the embeddings of both

training and testing samples are used as final feature repre-

sentations for SVM classifier.

4. Experiments & Results

In this section, the details of the dataset used, evaluation

protocol and experimental results are presented, along with

the experimental settings.

4.1. Dataset description & Evaluation protocol

To validate our approach, we have used a public I3A

(also known as UQSNP HEp-2) Task-3 mitotic cell de-

tection dataset ( https://outbox.eait.uq.edu.au/uqawilie/). It

comprises of 100 mitotic cells and 4228 non-mitotic cells.

Though the DAPI based segmentation masks are also pro-

vided with the original images, but the proposed approach

does not require the segmentation masks.

For evaluation, considering mitotic as positive, we cal-

culate the precision, recall and the F-score (harmonic mean

of precision and recall). As the dataset is imbalanced, so

the evaluation using F-score is not appropriate for the task

as precision affects with the number of false positive (FP)

cases, which are proportionately very high with respect

to the true positive (TP) samples, as precision is defined

as TP/(TP+FP). Hence, it would be appropriate to give a

Figure 4. The t-SNE representation of embeddings of both classes

(training set), in reduced virtual dimensions. Here, X & Y are two

reduced virtual dimensions.

balanced class accuracy (BcA) [9], instead of using the

regular accuracies. Here, one more evaluation measure is

also defined, which is considered to be a good way to eval-

uate performance, in case of highly imbalanced classes [2],

known as Matthews correlation coefficient (MCC), which

considers all the four elements of a confusion matrix. Thus,

both the BcA and MCC measures are defined as:

BcA = 1
2 [

TP
TP+FN

+ TN
TN+FP

]

MCC =
(TP.TN)−(FP.FN)√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)

4.2. Experimental Results

The classification results are reported with three different

experimental settings (we will term them as Ex-A, Ex-B

and, Ex-C throughout the paper), in order to maintain the

robustness of the system, i.e.,

• Ex-A: 20% samples as training data, 10% as validation

data & 70% as testing data,

• Ex-B: 40% samples as training data, 10% as validation

data & 50% as testing data and

• Ex-C: 60% samples as training data, 10% as validation

data & 30% as testing data.

Three random sets are generated from the whole data,

with the above experimental settings and an average result

is reported at the end.

To show the discrimination between the embeddings ac-

quired for both the classes, via the proposed framework, a

t-SNE plot (Fig. 4) has been shown with two reduced vir-

tual dimensions for training data, however the classification

has been done on actual 128-dimensional embedding rep-

resentation. t-SNE [25] is a technique to visualize a high-

dimensional feature representation, into two reduced virtual

dimensions. In Fig. 4, it is observed that there is good

discrimination between mitotic and non-mitotic/interphase

samples, for training data. The approach is validated quanti-

tatively using F-score, BcA and MCC are demonstrated for
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Confusion matrix for Ex-A

Predicted Predicted

mitotic interphase

Actual mitotic (70) 69 1

Actual interphase (2960) 36 2924

Confusion matrix for Ex-B

Actual mitotic (50) 49 1

Actual interphase (2114) 21 2093

Confusion matrix for Ex-C

Actual mitotic (30) 29 1

Actual interphase (1268) 9 1259
Table 2. Confusion matrix acquired from the proposed framework

Experiments Precision Recall F-score BaC MCC

Ex-A 0.66 0.99 0.79 0.98 0.80

Ex-B 0.70 0.98 0.82 0.98 0.82

Ex-C 0.76 0.96 0.85 0.97 0.85

Table 3. Results acquired from the proposed framework

the experiments in Table 3, along with the confusion ma-

trix in Table 2. Here, we will compare and analyze all the

results, based on MCC, while to show an elaborated evalu-

ation, all the three evaluation measures are quoted here.

In all the experiments, CNN is trained using Stochas-

tic Gradient Descent (SGD) and AdaGrad optimizer. The

learning rate is .001. The decrease in the loss slows down

after 200th iteration of training. The margin α is 1.5 in all

experimental settings. The used CNN architecture is empir-

ically chosen, after different parameters settings.

It is noted that the F-score is not very high because there

is a high imbalance in test samples from both the classes.

Hence, in spite of acquiring less false negative (FN) samples

(considering interphase as a negative class), the precision is

less and hence leads to less F-score (0.79, 0.82, 0.85). Note

that, in practical triaging settings, the pathologists will only

have to consider 36/21/9 (i.e., 1.23%/0.99%/0.71%) false

positive (FP) samples, for all three cases.

While calculating BaC, which is a more appropriate

measure for imbalanced class datasets, we are getting fairly

good classification performance (0.98, 0.98 & 0.97). As

suggested, the most appropriate evaluation protocol, i.e.,

MCC for different classification setting, acquired as 0.80,

0.82 & 0.85. Here also, it is observed that as the training set

increases, the performance increases proportionally, but due

to the high number of FP samples, the overall performance

is less. Hence, for analysis of the actual number of samples,

the confusion matrix is also presented in Table 2.

It is observed that the true-positive accuracy is quite high

in this case. In spite of having very less (30,50 & 70 images)

positive samples in training data, the framework yields good

true-positive rate. This shows the effectiveness of the triplet

loss based framework, where the framework is optimized to

select the triplets having combinations of samples, includ-

Figure 5. The comparison of proposed approach (MCC) with ex-

isting approaches.

ing mitotic samples in each batch. Hence, we conclude that

the framework yields good performance, even without using

any data balancing or data augmentation methodologies and

such type of deep metric learning based frameworks prove

to be an effective and appropriate way to solve the problem.

5. Comparisons

This section presents a comparative analysis of the pro-

posed framework with already existing approaches, CNN

based baseline classifiers, and other traditional classifiers.

All these comparisons are reported only on one experimen-

tal setting of Ex-B.

5.1. Comparison with prior approaches

To the best of our knowledge, no other authors have used

the same dataset, that we have used in our study and the

other datasets are not publicly available. Hence, the existing

approaches ( [20, 24]) are re-implemented using the same

data, with available information of hyper-parameters. Here

also, the MCC is provided for these works. It is noted that

the proposed framework yields better performance among

the three approaches (Fig. 5).

5.2. Comparison with cross­entropy loss

The implemented CNN model can be directly used as

a feature extractor as well as the classifier, applied on raw

images. For this task, the last dense layer is replaced with

another dense layer, with 2 hidden nodes and softmax acti-

vation function, in order to build an end-to-end solution. To

address the data imbalance between both the classes, mini-

batches are created in such a way that each batch consists

of the balanced number of samples, acquired from both the

classes. If this mini-batch creation approach is not followed,

then the classification paradigm of CNN gets biases towards

the majority class.

It is noted that the F-score and MCC acquired from this

method are less than the proposed framework (Triplet loss

with SVM classifier). The reason might be the involvement

of less mitotic samples during training. Hence, we can con-

clude that mitotic samples (only 30/50/70 images in train-
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Experiments F-score BaC MCC

Cross-entropy loss 0.48 0.69 0.48

Nearest neighbor based classifier 0.61 0.77 0.60

Proposed 0.82 0.98 0.82

Table 4. Comparative analysis of proposed frameworks with other

frameworks.

ing) are not sufficient to build a classification model, that

can identify and classify the mitotic type testing images and

one need to go for any other method, addressing the class

sample skew. Hence, the proposed framework is a good ap-

proach for classification, even with the skewed dataset.

5.3. Nearest neighbor based baseline classifier

To show and analyze the effectiveness of proposed em-

beddings, the SVM based framework has been analyzed and

compared with simple K-nearest neighbor method also. It is

observed that KNN is performing well on produced embed-

dings and it is showing MCC as 0.60, which is good using

this simple, yet effective classifier.

Here, analyzing the good performance of proposed

framework over existing works and other baseline clas-

sifiers, it can be concluded that the proposed framework

proves to be a good solution for mitotic v/s interphase clas-

sification problem, with avoidance of data augmentation &

segmentation overhead.

6. Conclusion & Future aspects

Hence, in this current study, the contribution is the pro-

posal of a framework for mitotic v/s interphase patterns

classification, via deep metric learning. Importantly, the

framework also avoids the requirement of segmentation

masks and data balancing methods, yielding good classi-

fication performance.

The future work is focused on (a) defining a class-wise

classification framework for each mitotic and interphase

class with few shot learning & distance metric based frame-

work, (b) planning to explore more sophisticated and CNN-

based learned feature representation to use in the future

tasks, with effective baseline classifiers and (c) demonstrat-

ing comparative analysis of proposed framework with base-

line & triplet loss based approach. Hence, the overall goal is

to propose a classification pipeline for all types of mitotic &

interphase patterns, to be integrated with CAD- based ANA

detection system.
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