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Abstract

The automated classification of histopathology images

relives pathologists workload and, hence utilizing the re-

sources to focus more on the most suspicious cases. More

recently, inspired by the success of deep learning methods

in computer vision application, such frameworks have also

been applied in various medical image analysis applica-

tions. However, existing approaches showed less interest

in exploring multi-layer features for improving the clas-

sification. We propose the integration of multi-layer fea-

tures from a ResNet model for breast cancer histopathol-

ogy image classification. Specifically, this work focuses on

making a framework which considers both independent na-

ture of layers as well as some partial dependency among

them. Knowing that, not all the layers learn discrimina-

tive features, consideration of layers which learn to nega-

tive features will deteriorate the accuracy. Hence, we select

the optimal subset of the layers based on an information-

theoretic measure (ITS). Various experiments are performed

on publicly available BreaKHis dataset, and demonstrate

that the proposed multi-layer feature fusion yields better

performance than the traditional way of using the highest

layer features. This indicates that mid- and low-level fea-

tures also carry useful discriminative information when ex-

plicitly considered. We also demonstrate improved perfor-

mance, in most cases, over various state-of-the-art methods.

1. Introduction

Breast cancer (BC) has been the most common type of

cancer detected in women and one of the most prevalent

causes of women’s death. Out of all diagnoses, 23% are

identified to be breast cancer, making it one of the biggest

cancer threats after lung cancer, with breast cancer account-

ing for 14% of all cancer deaths. Thus it’s evident the

amount of human population impacted by breast cancer is

huge. Hence developing better diagnosing tools will, there-

fore, bring a positive change in lives of millions of people.

A silver lining is that an early detection of breast cancer

increases the range of available treatment options and en-

hances the probability of survival for patients. As in most

cancers, and many other diseases, early detection can be a

big advantage in treatment of breast cancer, helping reduce

the mortality rate.

A number of tests are used in detection and diagnosis

of breast cancer. Currently, the most common procedure is

mammography followed by a biopsy. A biopsy is the most

preferred examination, and a very certain way to know if it’s

cancer. While conducting a biopsy, the doctor uses a spe-

cialized needle device guided by X-ray or another imaging

test to extract a sample of tissue from the tumorous area.

Normally, a small metal marker is left at the site within the

breast to facilitate identification during future imaging tests.

While, different types of imaging technologies have been

employed for diagnosis of BC, histopathology biopsy imag-

ing has been a ‘gold standard’ in diagnosing breast cancer

because it captures a comprehensive view of the effect of the

disease on the tissues [1]. Examples of microscopy images

of some breast samples (biopsies) are shown in Figure 1.

Image examination by pathologists can be tedious and

can also be affected by observer variability. Computerized

methods significantly improve the efficiency and objectiv-

ity, and have thereby attracted considerable attention in re-

cent research. Computer-aided diagnosis (CADx) which is

a concept established by taking into account equally the

roles of physicians and computers, can relieve the pathol-

ogists workload such that attention can be focused on the

most suspicious cases. Researchers face various chal-

lenges while designing CADx systems for histopathology

images [2] such as: (1) Insufficient labeled images, (2) In-

homogeneous textured images, (3) Different magnification

levels, and (4) Color variation.

The CADx system typically consists of steps such as pre-

processing, feature extraction and classification framework.

To develop the CADx system for the classification of breast

histopathology images, the literature reported various fea-

ture definitions that include different color-texture represen-

tations along with appropriate classification frameworks.

An important consideration in such classical approaches is

the feature learning aspect that requires expertise in intro-

specting the target domain, thus, in turn, determining the

effectiveness of target classification tasks. The deep learn-

ing (DL) techniques enable features to be learned directly

from the training data, optimized for high discrimination.

Thus, the DL paradigm absorbs the feature engineering step

into a learning step [3]. More recently, inspired by the suc-

cess of DL methods in computer vision applications, these

frameworks have also been applied in various applications

for medical image analysis.

A variety of effective CNN architectures have been pro-

posed in the past few years which have different salient as-

pects. Furthermore, in the deep learning frameworks, fea-
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Figure 1. Heterogeneity in histopathological samples(first row: benign tumor, second row: malignant tumor) from BreakHis dataset at

magnification factor of 40X-100X-200X-400X.

ture representations are learned at multiple levels of abstrac-

tion through multiple layers. Considering the appearance of

histopathology images, inference in histopathology images

may be based on low, mid and high level information. Thus,

while important features for natural images can be observed

in fully connected layers, for histopathology images, fea-

tures learned by low, mid and high convolution layers may

also play a role in classification. Noticing the prosperity

of such deep multi-layered features in various domains in-

cluding remote sensing scene classification [4], hyperspec-

tral imagery [5] etc., there is still scope of improvement

when employing them in an ensemble framework where

mistakes made by each individual component can be com-

pensated with the help of others. Thus, we envision that

representations learned by different layers can potentially

be used in an ensemble framework. There are various pos-

sible ways of designing an ensemble framework where such

multi-layered features can be incorporated.

This study attempts to address the few of challenges dis-

cussed above, using ensembling over deep learning fea-

tures. With regard to the first challenge that highlights the

problem of data scarcity, we employ data augmentation to

increase the data size. In addition, existing deep network

with sufficient fine-tuning is exploited instead of learning

the model from scratch. The second point is about the in-

homogeneous textures, in a sense that it shows repetitive

patterns of minimum components (usually cells) [2]. In this

regard, deep textures learned by CNN would lead to the ac-

quisition of invariance regarding cell position. The third

challenge is the most informative magnification consen-

sus [6]. Regarding to magnification related concerns, Span-

hol at el. [7, 8], reported results on magnification-specific

models. However, it would seem that one magnification

model may not be able to handle images with other mag-

nifications, and different frameworks are required at differ-

ent magnifications, both in terms of features and classifiers.

Bayramoglu at el. [9] proposed a magnification independent

model which was trained with images of various magnifi-

cations (40x/100x/200x/400x) and can therefore handle the

diversity of scale in microscopic images. The fourth chal-

lenge addresses the issue of color variation obtained due to

a number of factors such as chemical reactivity from various

manufacturers etc. [10].

In this work, we fine-tuned the ResNet [11] consider-

ing its popularity in recent contests, and utilize it for multi-

layer feature extraction. Figure 3 shows the architecture of

ResNet and residual module. The extracted deep features

are employed in designed partially independent framework

(more will be discussed in methodology). Knowing that,

not all the layers learn discriminative features, we employ

notion of layer selection based on information theory [12].

2. Related work

In this section, we discuss some previous works, includ-

ing state-of-the-art methods, aiming to automate the diag-

nostic procedure in context of breast cancer histopathology.

Zhang et al. [13] proposed two-stage cascade framework

incorporating a rejection option, utilizing multiple image

descriptors along with random subspace ensembles. In an-

other work [14], same authors assessed an ensembles of

one-class classifiers using same dataset. Linder et al. [15]

extracted the local binary pattern combined with a contrast

measure (LBP/C) and performance evaluated using support

vector machine (SVM). However, we note that these meth-

ods use an independent dataset (not public). To take away

the impediment of publicly available data set, Spanhol et

al. [7] released the BreakHis dataset for beast histopathol-

ogy. The detailed description of dataset is given in exper-

imental section. Below, we discuss the methods that have

been developed using BreakHis dataset. Spanhol et al. [7]

performed various experiments that involved the state-of-

art texture descriptors such as Local Binary Pattern (LBP),

Threshold Adjancey Statistics (PFTAS) etc. and four tra-

ditional classifiers and reported accuracy at patient level.

In [8], pre-trained CNN (AlexNet) is utilized for classifica-



Table 1. Related work (using Break-His dataset).

Approaches Descriptors Training-Testing Protocol

Traditional Descriptors

Spanhol et al. [7] CLBP,GLCM,LBP,LPQ,ORB,PFTAS 70%-30% (Patient-wise)

Gupta et al. [16] NCSR,GCF,MCCR,OCLBP,CDWT,GCM 70%-30% ( Patient-wise)

Dimitropoulos et al. [17] VLAD encoding 70%-30% (Patient-wise)

CNN Based Descriptors

Spanhol et al. [8] Variant based on AlexNet 70%-30% (Patient-wise)

Song et al. [18] FV encoding of features extracted from CNN 70%-30% ( Patient-wise)

Han et al. [19] Class-structure based Deep Convolution Neural Network 75%-25% ( Patient-wise)

Bardou et al. [20] BOW and CNN 70%-30% ( Not clear)

Nahid et al. [21] Combination of LSTM and CNN Not provided

Bayramolgu et al. [9] Single and Multi-task CNN 70%-30% ( Patient-wise)

tion. In [16] authors used various color-texture features in

ensemble framework which contained different classifiers.

Song et al. [18] proposed a classification model by com-

bining convolution neural network with supervised intra-

embedding of Fisher vectors. In [23], authors computed

feature vector by fisher vector encoding of features ex-

tracted from pre-trained VGG-VD model and used with lin-

ear support vector machine. Han et al. [19], trained a deep

model form scratch with GoogleNet architecture to identify

subordinate classes of breast cancer (8) as well as for main

classes (2). Dimitropoulos et al. [17] proposed a model

for the grading of invasive breast carcinoma through the

encoding of histological images as VLAD (Vector of Lo-

cally Aggregated Descriptors) representations on the Grass-

mann manifold. Nahid et al. [21] proposed CNN, Long-

short-Term-Memory (LSTM) and, combination of CNN

and LSTM for classification of breast cancer histopathol-

ogy images. Bardou et al. [20] compared the performance

of convolution neural network (designed) with handcrafted

features encoded by bag of words and locally constrained

linear coding. Bayramoglu at el. [9] proposed multi-tasking

network utilizing deep learning that predicts magnification

factor and malignancy (benign/malignant) simultaneously.

Table 1 provides a summary of frameworks which have

been proposed in the last five years; utilizing the Break-His

dataset for breast cancer image analysis.

The main contributions are listed as follows: (1) A

framework which uses the multi-layered deep features in

a partially-independent manner for classification of breast

cancer histopathology images. (2) Information-theoretic

layer selection. (3) Various experiments are performed and

related comparisons are provided to gauge importance of

such a proposed study.

3. Proposed approach

Here we will discuss the architecture chosen for the pro-

posed study: the learning of features involving extraction

of features and their dimensionality reduction, layer selec-

tion based on information theortic based measure (ITS), de-

signed multi-layered framework, and classification frame-

work.

3.1. ResNet architecture

In neural network, network depth is of crucial impor-

tance, but deeper networks are more difficult to train. The

residual learning framework eases the training of these net-

works, and, hence enabling them to be substantially deeper,

leading to improved performance in both visual and non-

visual tasks. These residual networks are much deeper than

their ‘plain’ counterparts, yet they require a similar number

of parameters. The main power of deep residual networks

is in residual blocks.

Residual blocks: The layers are copied from the learned

shallower model, and the added layers are identity mapping.

The existence of this constructed solution indicates that a

deeper model should produce no higher training error than

its shallower counterpart. Fig.2 shows the residual block

(right) which makes it different from other deep networks.

Fig.3 shows the overall architecture of ResNet and plain net.

A ResNet is composed of multiple computational blocks,

and each block commonly consists of three layers: 1) a con-

volutional layer; 2) an activation layer; and 3) a pooling

layer.

Convolutional layer. The main building block used to

construct a CNN architecture is the convolutional layer. A

hierarchy of features can be formed by stacking up multiple

layers. Each layer learns some weights, also called as ker-

nels, and represents a set of features which it tries to track



Figure 2. (a)Overall architecture of ResNet [11] and plain net.

down in whole of the input image. Each filter in a CNN

is replicated across the entire visual field, which uses the

same bias and weight parameters, also called as the shared

weights. The weights learned by the initial layers gener-

ally represent low-level features, for example, horizontal or

vertical edges. As the number of hidden layers in an archi-

tecture increases, the network is beginning to learn features

of a high level.

Pooling layer Pooling layers are usually used immedi-

ately after convolutional layers. A pooling layer takes each

feature map output from the convolutional layer and pre-

pares a condensed feature map.

ReLU activation function ReLU is the state of the art

non-linearity used in deep neural networks. The rectifier

activation function is defined as, f(x) = max(0, x), where

x is the input to the neuron. Rectified linear units allow

for faster effective training of deep neural architectures as

compared to sigmoid or similar activation functions, with

further advantages of sparsity and reduced likelihood of the

gradient to vanish.

Softmax layer It is a generalization of the logistic func-

tion that squashes a K-dimensional vector of arbitrary real

values to a K-dimensional vector of real values in the range

of 0 to 1 which add upto 1. It highlights the largest values

and suppresses the values which are significantly below the

maximum value.

Dropout Dropout is a regularization technique in which

filters are randomly turned off during training [24]. Hence,

the convolutional network learns to not depend too heavily

only on one filter and reduces the chances of over-fitting,

especially in our case where we have relatively less training

data.

Batch Normalization Batch normalization is a solution

to the covariate shift problem that works by using per

batch statistics to convert the output of each convolutional

network into one that has zero mean and unit variance

[25]. Batch normalization also functions as a regularization

method [26].

For the proposed study, we fine tune the resnet by freez-

ing starting 100 layer and learning remaining layers. We

also add two fully connected layer at last. This fine-tune

ResNet is used as generic feature extractor. We extract fea-

tures from all convolution layers (total of 143).

3.2. Dimensionality reduction using XGBoost [27]

The feature vector at the output of deep network is often

not utilized directly with other frameworks due to their high

dimensionality. Hence, some methods [4] applied principal

component analysis (PCA) for such purpose. In proposed

study, XGboost [27] is utilized due to its various advan-

tages. XGBoost is short form of “Extreme Gradient Boost-

ing”. It is an additive tree classification model where new

tree is added in such a fashion that it compliments the al-

ready built Trees. The final output is the weighted sum of

all decision given by each individual tree. It is very famous

due to its high efficiency and performance. We consider the

scores assigned by XGboost to each feature, to reduce the

dimension. Features correspond to top scores (<3000) are

chosen for next stage of work. Default values of parameters

are used (max depth:2, number of trees: 250). The ranking

of features (based on scores given by XGboost), is utilized

to extract top features.

3.3. Layer selection (Based on ITS measure [12])

knowing that not all layers contribute to decision mak-

ing, as many of them learn similar representation (small

variance). Hence, consideration of layers which learn to

negative features will deteriorate the accuracy. This work

explores an information theoretic measure [12] for selection

of an optimal set of layers. Different from traditional meth-

ods which only consider the diversity measure, it includes

both accuracy and diversity. The summary of ITS measure

is given below. More details can be found in [12].

• Best performing layer is chosen first:

î1 = argmax
i=1,2,...,M

I(Ci, C) (1)

Where M is total number of layers. C and Ci are true

class labels and predicted class labels assigned by layer

i respectively. I refers to mutual information.

• Now, the layer for which ITS score [12] between în
and the previously chosen layer is maximized, is added

to optimal subset.

ˆin+1 = argmax
i=1,2,...,M−n

I(Cîn
, Ci); n = 1.2...M − 1

(2)



Figure 3. (a) plain Net (b) Residual block (ResNet)

• We will iterate step 2 until the improvements are small

enough by adding member. The set of selected layers

is considered to be an optimal subset.

3.4. Multilayered deep framework: Partially Inde
pendent

Figure 4 shows the proposed multi-layered model where

some integration among multi-layered features is consid-

ered (for illustration purpose, we have only shown 20 layers

in figure). In figure, each color shows the feature (top 500)

of different layers. At each level features (top 500) from

all previous layers are concatenated to features of current

layer. The top ranked features (based on ranking given by

XGboost) are used in the concatenation. These new feature

vector, is used to learn the classification framework, and

to make decision. The motivation behind considering such

a framework is to see how performance is being effected

when feature integration considered. As we will note in

results section, a comparable performance can be achieved

with the independent system with features from much fewer

layers . We believe that the effectiveness of incorporating

such feature integration stems from the possibility that the

dimensionality reduction that is applied earlier on the fea-

tures, may compromise some dependency inherent in CNN.

This might be improved by such a feature concatenation.

3.5. Baseline ResNet classification framework

We also calculate the baseline accuracy which is pro-

duced by pre-trained ResNet. In baseline network, fea-

tures of last fully connected layers is used on the trained

neural network. We calculable it for the comparison with

the multi-layered framework which comprises the low-mid-

high level features.

Figure 4. Partially independent framework

3.6. Classification framework

Due to ease, for classification with the above features,

we use the popular quadratic SVM classifier with the or-

der two polynomial kernel and consider the output proba-

bility scores for further processing. The definition of SVM

is given below:

Support Vector Machine (SVM) [28]: It learns a hyper-

plane that separates a set of positive examples from a set



of negative examples with maximum margin. The hyper-

planes can be learnt in higher dimensional space using ker-

nels. Based on the kernel and their parameters, a variety of

SVMs can be defined.

4. Results & discussion

In this section we discuss the dataset, training & testing

protocol, evaluation metric, designed experimentation and

their discussion along with various comparisons.

4.1. Dataset description

To evaluate the effectiveness of the proposed study, we

utilize break-His [7] dataset. This dataset contains total

7909 images of begin and malignant tumors, taken from

random 82 patients. The images are captured at four differ-

ent magnification to capture more comprehensive view of

disease. Figure 1 shows the samples images of benign and

malignant tumor captured at various magnifications. Ta-

ble 2 illustrates the distribution of data.

Table 2. Detailed description of BreaKHis dataset [7].

Magnifications
Total Patient

40x 100x 200x 400x

Benign 625 644 623 588 2480 24

Malignant 1370 1437 1390 1232 5429 58

Total 1995 2081 2013 1820 7909 82

4.2. Training & Testing Protocol

For the fair comparison with exiting approaches, in our

experimentation, we use images of 58 (70%) patients cho-

sen randomly for training/validation and remaining 25 for

testing (30%). We report the accuracy averaged over three

trails, where each trial provides random training-testing pa-

tients. We also do the data argumentation to remove the

scarcity of labeled data. We adopt rotation, flip, height shift,

sift width and translation to increase. We have six times the

original training data after the augmentation.

4.3. Evaluation metrics

Patient recognition rate (PRR) and Image recognition

rate (IRR) are the two metrics which mainly utilized by the

existing methods to report the performance. PRR is a ratio

of total correctly classified images (Nrec) to total images of

cancer images (NP ). The details of patient recognition rate

is given as follows:

PRR =

∑N

i=1
PSi

N
PS =

Nrec

NP

; (3)

In the equation, N is the available testing patients, and PS

is a patient score. IRR is simply a ratio of total classified

images to total number of images (Nall).

IRR =
Nre

Nall

(4)

4.4. Partially independent framework

Table 3 & 4 represents the results for multi-layered par-

tially independent framework. In Table 3, results are re-

ported for the layers which are chosen randomly. Various

experiments are performed to see the effect on accuracy

with chosen number of layers. In table , TF denotes to-

tal features that each previous layer contributes to current

layer while considering dependency, and TL denotes the to-

tal number of layers considered in the model. In all the

experiments, the value of these parameters are chosen ex-

perimentally. To see the effect of number of layers, we

have experimented with three variations TL=10, 20, 30, and

TF=50.

Table 3. Performance of partially independent framework with

randomly selected layers.

Mag.
Magnification-specific (%)

TF50, TL:10 TF:50, TL:20 TF:50, TL:30

40x 87.88 91.99 93.99

100x 90.79 92.93 95.00

200x 88.90 90.79 91.75

400x 82.72 86.60 87.70

Table 4. Performance comparison with variants of designed frame-

work.

Mag.
Magnification-specific (%)

Partially independent Independent Baseline

40x 97.0 96.81 88.37

100x 96.10 95.26 90.29

200x 94.69 93.78 90.54

400x 90.85 90.76 86.11

We repeat the same experiment with the more number of

layers (depends on ITS measure: 70, 45, 66, 40) which are

chosen based on ITS measure. And to see the effect with

more feature fraction, we consider value of TF is equal to

500. The results corresponding to this experiment is shown

in Table 4. In table, first column shows the results of pro-

posed framework, and remaining two show the results cor-

responding to independent modeling of selected layers, and

baseline accuracy. We observed that as the performance

improves with inclusion of features from more layers, and

the performance while considering feature integration, is in

most cases, higher than when features are considered inde-

pendently. Improving accuracy over baseline signifies the

role of low-mid-level features in multi- layered framework

together with high-level features. Finally, as indicated ear-

lier, when considering independent multi-layered features,

the proposed framework also outperforms the case.



Table 5. Performance Comparison of magnification specific system (in %). For the proposed method, the numbers in bracket provide its

rank based on the performance among all approaches.

Methods
Magnifications (values in percentage (%))

40x 100x 200x 400x

Existing works

Spanhol et al. [7] 83.8±4.1 82.1±4.9 85.1±3.1 82.3±3.8

Spanhol et al. [8] 90.0±6.7 88.4±4.8 84.6±4.2 86.10±6.2

Bayramoglu et al. [9] 83.08±2.08 83.17±3.51 84.63±2.72 82.10±4.42

Gupta et al. [16] 86.74±2.37 88.56±2.73 90.31±3.76 88.31±3.01

Song et al. [18] 90.02±3.2 88.9±5.0 86.9±5.2 86.3±7.0

Song et al. [23] 90.02±3.2 91.2±4.4 87.8±5.3 87.4±7.2

Han et al. [19] 97.1±1.5 95.7±2.8 96.5±2.1 95.7±2.2

Proposed

Baseline-accuracy (ResNet) 88.37 90.29 90.54 86.11

Independent framework 96.81 95.26 93.78 90.76

Partially independent model 97.0±1.18 96.10±1.0 94.69±1.19 90.85±2.12

4.5. Performance comparison with stateofart

In Table 6, we compare the performance of magnifica-

tion specific study with state-of art methods, and depicts

the proposed method outperforms all contemporary meth-

ods except [19], in some cases. With regard to comparison

with [19], we note that this work [19] was designed in

a learning based and data-driven manner. They employed

class structure-based deep convolution neural network (CS-

DCNN) embedded with an additional distance constraint

for multi-classification. Their work, non-trivally extends

upon a baseline existing deep learning network. Our pur-

pose work is mainly to understand the role of deep multi-

layered features from an existing architecture. The pro-

posed framework outperforms the various state-of- the-art

approaches even when fine-tuning an existing model, used

as it is, rather than formulating a new deep architecture. In

comparison to [19], proposed model is fairly simple as it

does not add much to existing network. Thus, expectedly,

the multi-layered partial independent modeling yields bet-

ter results than the others. We don’t compare our work with

[29, 30] as some details about training-testing protocol (im-

agewise or patinetwise) are not clear. In addition to that,

only image level accuracy has been calculated (IRR from

eq. 4) which ignores the patient information.

5. Conclusion

In this paper we focus on better exploring the potential

of fine-tuned pre-trained CNN models for classifying the

images of breast cancer histopathology. In this regard, we

present a model which combine the decision of layers se-

lected through ITS, in partially independent framework. We

conclude that, by integrating dependency in terms of feature

fraction among selected layers, will perform better than all

layer model. Hence, the utility of low-mid-high level fea-

tures have shown through such improved performance over

baseline. The proposed approach is also shown to outper-

form most state-of-the-art classification methods.
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