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Abstract

We address the problem of segmenting cell contours
from microscopy images of human induced pluripotent Reti-
nal Pigment Epithelial stem cells (iRPE) using Convolu-
tional Neural Networks (CNN). Our goal is to compare the
accuracy gains of CNN-based segmentation by using (1)
un-annotated images via Generative Adversarial Networks
(GAN), (2) annotated out-of-bio-domain images via trans-
fer learning, and (3) a priori knowledge about microscope
imaging mapped into geometric augmentations of a small
collection of annotated images.

First, the GAN learns an abstract representation of cell
objects. Next, this unsupervised learned representation is
transferred to the CNN segmentation models which are fur-
ther fine-tuned on a small number of manually segmented
iRPE cell images. Second, transfer learning is applied by
pre-training a part of the CNN segmentation model with the
COCO dataset containing semantic segmentation labels.
The CNN model is then adapted to the iRPE cell domain
using a small set of annotated iRPE cell images. Third,
augmentations based on geometrical transformations are
applied to a small collection of annotated images. All these
approaches to training CNN-based segmentation model are
compared to a baseline CNN model trained on a small col-
lection of annotated images.

For very small annotation counts, the results show ac-
curacy improvements up to 20% by the best approach in

comparison to the accuracy achieved using a baseline U-
Net model. For larger annotation counts these approaches
asymptotically approach the same accuracy.

1. Introduction

Dry macular degeneration is a loss of rod and cone cells
caused by the death of Retinal Pigment Epithelial (RPE)
cells. Age related Macular Degeneration (AMD') affects
1 in 50 people by the age of 50. Recently, a novel ex-
perimental therapy was developed with induced Pluripotent
Stem Cells (iPSCs) [5]. However, evaluating the functions
of living iPSCs is challenging. Traditional evaluation ap-
proaches include assays testing DNA/RNA expression, im-
munolabeling, running gels, assessment of secreted proteins
or other factors, and physiological tests. Many of these tests
are invasive (require lysing or fixing the cells), labor inten-
sive (hours to days to perform the assay), expensive (ELISA
kits and gene arrays), and/or increase the likelihood of con-
taminating the cell population (placing tools into the culture
area to measure physiological function).

Nevertheless, a correlation between cell function and
the visual structure of RPE monolayers has been reported
[3, 24]. Based on visual inspections, healthy iRPE mono-
layers consist of cells that are tightly packed together and
their maturation over time correlates with the amount of
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cell pigment. Thus, one can determine whether an iRPE
cell implant is healthy or not based on image analyses of
live cells imaged by a bright-field microscope and trans-
formed to absorbance images. By segmenting cell bound-
aries from absorbance images, estimates of pigment con-
centration and shape features per cell and per population can
be related to implant functional test measurements. The ac-
curacy of the segmentation could have a significant impact
on feature-driven modeling and the derived biological con-
clusions [17]. While fluorescently stained images of iRPE
monolayers have been segmented using classical segmenta-
tion techniques involving edge detections and morpholog-
ical operations [19, 23], brightfield absorbance images of
living cells have not been segmented since the membranes
of the cells are not easily discernible.

In order to automatically segment cells from absorbance
images with high accuracy, we use a Convolutional Neu-
ral Network (CNN) based segmentation method. The main
challenge of this supervised approach is that one must de-
cide how to overcome the gap between millions of coeffi-
cients in a CNN model to be optimized and the labor re-
quired to sufficiently optimize model coefficients. In this
paper, we compare three basic approaches that are less labor
demanding than manual annotations of cell images, such as
(1) building a Generative Adversarial Network (GAN) from
un-annotated images, (2) performing transfer learning from
already annotated Common Objects in Context (COCO)
[16] dataset for Semantic Segmentation with out-of-cell mi-
croscopy domain, and (3) image data augmentation driven
by a-priori knowledge about invariances in imaging. Other
approaches not explored in this work include weakly and
semi-supervised methods [20, 15, 29].

This work presents a segmentation accuracy comparison
of six CNN-based segmentation models created by combin-
ing these three approaches and by applying the models to
absorbance iRPE cell microscopy images. We assume that
a small number of manual annotations are available to com-
plete the domain adaptation of models pre-trained by GAN
or COCO-based transfer learning. The benchmark segmen-
tation accuracy for this comparative study comes from the
most common approach in which the model is trained only
on annotated images.

The rest of the paper is organized into four sections as
follows: Section 2 presents related work on CNN-based mi-
croscopy image segmentation using only a few annotations
and highlights the contributions of our work. Section 3 de-
scribes the comparative methodology in detail and Section
4 shows preliminary evaluation results. Finally, Section 5
discusses the results and Section 6 concludes this work.

2. Related Work

Recent advances in deep learning have led to novel seg-
mentation techniques based on convolutional neural net-

works (CNN) [4, 22]. Among many types of CNN mod-
els, the U-Net model [22] has been successfully applied to
segmenting biological images. To train CNN models, the
challenge lies in obtaining a large number of training seg-
ments (i.e., annotations) that are usually created manually.
This manual effort is costly and as a result, the number of
annotations needed for training CNN models with millions
of estimated coefficients is not always available. Moreover,
when CNN models are applied in the bio-medical domains,
microscopy and medical images can only be annotated by
subject matter experts. Thus, the annotation creation by
experts is limited to a small number of manually prepared
samples for training CNN models. To overcome this lack of
annotated training samples, approaches like data augmen-
tation [9], transfer learning [7], and representation learning
via Generative Adversarial Networks (GAN) [14] have been
proposed in the past years.

Data augmentation techniques are based on geometri-
cal and/or spectral transformations of training images while
preserving their reference labels. Geometrical transforma-
tions rotate, translate, and mirror training images [9]. Spec-
tral transformations alter the intensities of pixel values in
the training set [6]. However, a challenge appears in se-
lecting the suitable augmentation models and the range of
their parameters to capture the variability of the entire im-
age dataset and future image collections (i.e., both training
and test images).

Transfer learning (TL) usually refers to fine-tune mod-
els already trained on different tasks and datasets that have
plenty of annotations, such as the ImageNet dataset [7],
Common Objects in Context (COCO) [16], or the PASCAL
Visual Object Classes (VOC) [10]. This TL approach con-
sists of replacing the last layers of the pre-trained models
with randomly initialized ones that fit the purpose of the
new application. Next, all network weights are optimized
with respect of the biomedical training dataset [6].

Another approach to overcoming the lack of training
annotations is based on Generative Adversarial Networks
(GAN). GANSs are unsupervised learning models that are
able to generate detailed realistic synthetic images [11].
Thus, the GANs can increase the number of annotated train-
ing samples and hence yield improved accuracy of CNN-
based classification or localization tasks [1].

GAN models can be considered as a two-player game
between a generator, which learns how to generate sam-
ples resembling real data, and a discriminator, which learns
how to discriminate between real and generated data. Both
the generator and the discriminator cost functions are min-
imized simultaneously. The iterative minimization of cost
functions eventually leads to a Nash equilibrium where nei-
ther can further unilaterally minimize its cost function. In
the end, the GAN discriminator provides an abstract unsu-
pervised representation of the input images. In a simple



GAN, the generator takes a random noise vector as an input
and outputs an image [21]. Recent works have proposed
encoder-decoder-like generators where the input of the gen-
erator is an image [30]. This approach has been used for
style transfer in natural images.

More recently, GAN-based segmentation methods have
been proposed in the literature. In [26], the authors replace
the traditional discriminator with a fully convolutional mul-
ticlass classifier. The classifier assigns to each input image
pixel one label that corresponds to a semantic class or to
fake/real mark. In this way, they use unlabeled images dur-
ing the training process.

In [2], the discriminator is adapted to distinguish be-
tween manually segmented cell microscopy images and
generated images from CNNs. The generated (estimated)
segmentation images are similar to manually annotated im-
ages and therefore are more accurate than those obtained
from a simple CNN segmentation model. In addition, such
methods have been used as domain adaptation techniques
[30] to transform magnetic resonance images (MRI) into
computed tomography (CT) images [14] or Differential In-
terference Contrast to Phase Contrast microscopy images
[12]. These transformations could allow for the use of man-
ual segmentations in one modality to segment images ac-
quired in another modality.

The main contribution is a comparison of augmentation,
transfer learning, and representation learning for building
segmentation CNN models with minimal data. An initial
representation is learned either using transfer learning or
unsupervised GAN before being transferred to the CNN
network and refined on the small number of manually seg-
mented images. The segmentation accuracy of each CNN
model is evaluated on images of iRPE cells with the con-
tour/region based metrics for a varying number of anno-
tated images. The novelty lies in quantifying the accu-
racy contributions of three approaches to the accuracy of
a CNN model over a varying number of manually anno-
tated images. In addition, we modified the GAN network
to match the traditional encoder-decoder structure of the U-
Net model to enable unsupervised representation learning
and pre-optimization of the U-Net CNN weights.

3. Materials and Methods

This section is organized as follows. Subsection 3.1
presents the three segmentation approaches. Subsection 3.2
describes the dataset and metrics used for performance eval-
uations.

3.1. Three Segmentation Approaches
3.1.1 GAN Transfer Learning (TL-GAN)

GAN transfer learning (TL-GAN): We use GANs to ex-
tract an abstract unsupervised representation from all un-
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Figure 1. GAN-based transfer learning for a U-Net segmentation.
Step-1: All the available data is passed through the GAN. Once
the GAN optimization is finished, the discriminator weights are
transferred to the encoder part of the U-Net. Step-2: The U-Net is
trained on the manually annotated images. All weights in U-Net
are optimized.

annotated images. This representation is then transferred
to the CNN encoder-decoder-based segmentation model be-
fore being further fined-tuned using the small number of
available manually annotated images. We assume that only
a small number of manually segmented images is available
(annotations only).

Figure 1 describes the use of GAN and U-Net CNN-
based segmentation to improve cell boundary detection ac-
curacy. All images of iRPE cells are passed through the
GAN, so that the discriminator learns an unsupervised ab-
stract representation of the data. The discriminator weights
are then transferred to the U-Net encoder. Only the discrim-
inator weights were transferred from the trained GAN to the
segmentation U-Net. This is motivated by the GAN design.
The generator convolutional weights convert the GAN la-
tent space noise vector into a fake image while the U-Net
decoder weights convert the compact segmentation repre-
sentation at the bottom of the U-Net into a full segmenta-
tion map. The U-Net is further trained with manually anno-
tated images by optimizing all weights. The U-Net model
is identical to the original paper except we added batch nor-
malization [22]. U-Net was trained to converge to minimum
cross entropy loss using the Adam optimizer with default
hyperparameters aside from a learning rate of 3 x 10~* and
with early stopping criterion. The GAN model and training
procedure is inspired by DCGAN outlined in [21] except
we did not modify the Adam betal parameter. Instead of
following the DCGAN network architecture, we setup our
GAN architecture using the encoder-decoder structural el-
ements from U-Net. Specifically, the U-Net encoder was
used as the GAN discriminator and the U-Net decoder was



used as the GAN generator. To prevent the discrimina-
tor from going to zero we used one-sided label smoothing
(noisy labels) [25, 28]. This means fake images have a ran-
dom label between 0.9 and 1.0 and real images having a
random label between 0.0 and 0.1.

3.1.2 COCO Transfer Learning (TL-COCO)

We implemented a second transfer learning approach where
all the weights of the network are initialized with pretrained
weights from a U-Net model trained to convergence on the
COCO dataset. Similar to the GAN-based approach, all
encoder-decoder weights are optimized to segment the RPE
cells absorbance images.

3.1.3 Data Augmentation (Aug)

Our augmentation approach is based on the following image
models: rotation, reflection, translation, and scale. These
models were implemented according to [18]. As docu-
mented in the past work [18] and based on our a pri-
ori knowledge of iRPE cell microscopy imaging, rotation,
translation and reflection are the most accuracy-improving
transformation for cell microscopy imaging applications.
The choice of these augmentation models is motivated by
the fact that a microscope objective and a specimen place-
ment introduce geometrical variability that must be ignored
during the cell segmentation (i.e., segmentation invariance
to geometrical transformations). The choice of augmenta-
tion model parameters is empirical.

We compared baseline U-Net with training U-Net using
these augmentation models parameterized by +10%, e.g.
the scale augmentation is capped at a 10% modification of
size per dimension. Table 1 summarizes the augmentation
configurations.

| Augmentation Model | Parameterization |
Rotation Uniform
Reflection Bernoulii
Translation Uniform £10% Image Size
Scale Uniform +10% Image Size

Table 1. Augmentation models

3.1.4 Six CNN Segmentation Configurations

The transfer learning approaches are compared to the base-
line model which is a U-Net model trained on only anno-
tated images. Since the augmentation approach can be com-
bined with the transfer learning approaches and the base-
line model, we design six CNN segmentation configura-
tions: {TL-COCO, TL-GAN, and baseline} x {with Aug

and without Aug}. Each configuration is trained on dif-
ferent numbers of annotated images (6 randomly selected
subsets) to yield a trained model. Each model is trained 10
times to take into account stochastic nature of model train-

ing.
3.2. Dataset

The dataset for this study consisted of absorbance mi-
croscopy images of human iRPE cells. The red, green,
and blue wavelength filtered images from transmitted white
light bright-field microscope were converted to absorbance
images absorbance = logy(7——7=——). The ab-
sorbance images map to a concentration of pigment ac-
cording to Beer-Lambert law. The images were split
into 1000 tiles of 256 x 256 pixels with 16 bits-per-pixel
(bpp) and the corresponding ground-truth segmentation
tiles. Each tile contains an RPE monolayer measuring ap-
proximately 0.5 mm x 0.5mm. Overall, approximately
185000 RPE individual cells were imaged. Since the ob-
jective of this study was to evaluate accuracy performance
of multiple CNN models trained with a small number of
annotated images, we chose 500 tiles for training the seg-
mentation models and 500 tiles for evaluation (testing). To
assess sensitivity of CNN model accuracy to the number of
annotated images, we varied the number of training exam-
ples from 50 tiles to 500 tiles for training the six models
described in the previous section. All 80403 available ab-
sorbance image tiles of 256 x 256 pixels were used for the
GAN unsupervised training. The absorbance images with
their manually created segmentation masks, as well as all
un-annotated absorbance images, are available for brows-
ing and downloading from this URL 2.

3.3. Evaluation Metrics

The iRPE cells form a tightly packed mono-layer that
becomes the implant. CNN models were trained to segment
cell contours or boundaries. A pixel belongs either to a cell
interior or its boundary. For evaluation we used the follow-
ing metrics:

1. Average Contour Dice [8]: The Dice similarity in-
dex (or F-1 score) is computed according to the equa-
tion below where pixels in A belong to all segmented
boundaries while pixels in B belong to all reference
boundaries. The average of all test tiles is reported.

 2]AN B

Dice = —
|A| + | B

)]

2. Average Adjusted Rand Index [13, 27]: Individual cell
regions are obtained from segmented cell boundaries
by applying skeletonization, inversion, and connected
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components operations. The labeled cell regions are
compared using the ARI metric to determine labeling
agreement. ARI is a more stringent metric because any
disconnect in the cell boundary results in the whole cell
being mislabeled.

4. Experimental Results

The experimental results are divided into four graphs
based on the models {without and with augmentation} and
evaluation metrics {Contour Dice and Region Adjusted
Rand Index}.

4.1. Models without Augmentation

Figure 2 shows the evaluation results of the three seg-
mentation approaches and 3 x 6 trained models at different
numbers of annotated of images.
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Figure 2. Comparison of segmentation accuracies without aug-
mentation for the baseline U-Net models, U-Net model transfer
learned from the COCO dataset, and U-Net model with the GAN
discriminator.

Each graph in Figure 2 shows the values of one of the
evaluation metrics presented in the previous section as a
function of the number of training images for the multi-
ple U-Net models. Error bars show the standard deviation

across 10 repetitions of training the model to account for the
stochastic nature of the process. No data augmentation was
used in Figure 2 to show the pure effects of transfer learning
from COCO and GAN. The Contour Dice shows significant
improvement regardless of the source of the transfer learn-
ing information.

Transfer learning from COCO and GAN provide sim-
ilar improvements measured by Contour Dice throughout
the range of annotation counts. However, TL-COCO con-
sistently achieves the highest accuracy when measured by
ARI. One possible explanation is that the COCO pretrain
enables the final segmentation model to better detect closed
cell boundaries that do not have small boundary gaps. Small
gaps cause the labeling routine to consider two cells as one
which significantly impacts the ARI metric-based accuracy.
The COCO dataset has been created for a semantic segmen-
tation task and contains closed regions which causes the
network to be sensitive to object edges. GAN pretraining
learns a compact representation of the U-Net encoder, but
the GAN only requires the encoder/discriminator to decide
whether an image is real or fake. TL-GAN does not pro-
vide the pretrained network any indication that closed ob-
ject regions are important. Additionally, the GAN pretrain
only enables transferring the discriminator weights from the
GAN to the encoder portion of the segmentation model.
Thus, one half of the U-Net model is initialized with ran-
dom weights and hence the GAN pretrain is transferring
less useful information into the final segmentation model
than the COCO pretrain.

4.2. Models with Augmentation

Figure 3 shows the evaluation results for baseline, TL-
COCO, and TL-GAN configurations with the addition of
all aforementioned augmentation models in Table 1.

Figure 3 presents much more complicated dependencies
than the ones in Figure 2. The Contour Dice and ARI y-
axes are rescaled for visual clarity but comparable between
Figure 3 and Figure 2. With the randomness added by data
augmentation the metric error bars across the 10 repetitions
show significantly more variability. The data augmenta-
tion models based on our a-priori knowledge alone provide
the most accuracy improvement although that advantage is
within the error bars of TL-COCO with augmentation and
TL-GAN with augmentation. For Contour Dice based eval-
uations, injecting domain knowledge via known data invari-
ances using augmentation appears to be the most effective
method for improving accuracy, edging out both transfer
learning sources. However, for ARI based evaluations, the
data augmentation slightly poisons the model accuracy for
TL-COCO, reducing the average ARI across all repetitions
from 0.24 to 0.19.

Figure 4 shows example segmentation results from each
U-Net model. This figure highlights the importance of cell
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Figure 3. Comparison of segmentation accuracies with augmenta-
tion for the baseline U-Net models, U-Net model transfer learned
from the COCO dataset, and U-Net model with the GAN discrim-
inator.

edges and closed regions, especially for the ARI metric.

Table 2 provides a more detailed quantitative evaluation
of the data presented in Figure 2 and Figure 3. Table 2 sum-
marizes the Contour Dice and ARI measurements for 100
training images, mean =+ standard_deviation of each seg-
mented test image across all 10 repetitions. The numeri-
cal results document the variability of a single models seg-
mentation accuracy per image within the test data. Table
3 shows the same information for 200 annotations. The
variance between individual image segmentation accuracy
per repetition remains similar in magnitude across all anno-
tation counts. Table 2 and Table 3 also highlight that the
within repetition (per image) variation in segmentation ac-
curacy is much higher than the variation in average metric
accuracy between repetitions. This could be explained by a
higher cell heterogeneity across the iRPE cell images than
the heterogeneity of stochastic optimization paths across 10
repetitions of model training.

Configuration Contour Dice | ARI

Baseline 0.510 £0.076 | 0.027 £ 0.068
Baseline with Aug 0.645 +0.086 | 0.193 £0.101
TL-COCO 0.619 +£0.072 | 0.208 + 0.069
TL-COCO with Aug | 0.633 +0.091 | 0.169 +0.110
TL-GAN 0.611 £0.075 | 0.151 +0.105
TL-GAN with Aug 0.622 £0.105 | 0.161 +0.113

Table 2. Average per-image Dice and ARI accuracy metrics given

100 annotations

’ Configuration \ Contour Dice \ ARI
Baseline 0.529 £ 0.081 | 0.042 £ 0.087
Baseline with Aug 0.641 £0.103 | 0.187 +£0.111
TL-COCO 0.629 £ 0.073 | 0.221 £0.076
TL-COCO with Aug | 0.632+0.110 | 0.179 £0.115
TL-GAN 0.616 =0.078 | 0.162 +0.113
TL-GAN with Aug 0.637 £0.095 | 0.181 +£0.112

Table 3. Average per-image Dice and ARI accuracy metrics given
200 annotations

5. Discussion

The work presented in this paper focuses on improv-
ing cell boundary segmentation by using augmentation and
transfer learning from two sources when a small number
of manual segmentations is available. The main objective
is to compare transfer learning from a very large collec-
tion of out-of-domain annotated images (e.g., COCO based
transfer learning) or from a sufficiently large collection of
in-the-domain un-annotated images and a small number of
in-the-domain annotated images (GAN).

The results presented in the previous section indicate that
both the representation learned via transfer learning and
GAN improved the overall segmentation accuracy drasti-
cally when data augmentation is not used. In the TL-GAN
configuration, the U-Net network encoder had already seen
all of the available training and test images prior to the seg-
mentation task while serving as a discriminator in a GAN
setup. As a result, the encoder for the U-Net segmentation
model reuses the representation learned while it was part
of the GAN generator-discriminator tandem. However, be-
cause only the discriminator can be transferred into the U-
Net model encoder, the U-Net decoder starts with the same
random initialization of weights as a vanilla U-Net. This
might explain the gap in accuracy between TL-COCO and
TL-GAN without augmentation, since TL-COCO starts the
entire U-Net network with previously learned weights in-
stead of just one half of the weights.

The difference in ARI metric between the TL-COCO and
TL-GAN results without augmentation might be attributed
to the first few layers of the U-Net model with a COCO



Ground Truth

Absor Ima i
bsorbance ge Segmentation

iy -

W e S 2 e,
Baseline 7 Baseline
No-Augmentation
X - T ‘ [ -3

With-Augmentation
™ ~JI..

TL-COCO
With-Augmentation

TL-COCO
No-Augmentation
- o R P

!

YT R AR T E X A3
BN
ENE AN >
RS S

Figure 4. Example segmentation results from each configuration
(baseline, TL-COCO, TL-GAN) with and without data augmenta-
tion. The images come from the replicate number one of all three
model configurations trained on 100 annotations.

pre-train already having been optimized to find closed re-
gions and edges as low-level features in the natural images.

Even if the RPE images are different from natural images,
the results indicate that this initialization of the convolu-
tion kernels improves model accuracy. In practice, the rel-
ative accuracy improvements due to each transfer learning
approach depends on (1) the generalization of extracted im-
age features from annotated COCO collection to the fea-
tures characterizing RPE cell boundaries, (2) the number of
un-annotated RPE cell images for GAN to learn the under-
lying representation, and (3) the number of annotated RPE
cell images assuming that the CNN model for transfer learn-
ing has been fixed.

To overcome a lack of within domain annotated train-
ing data, our study focused on quantifying the accuracy of
two transfer learning information sources, supervised out
of domain data and unsupervised representation learning
via GAN. In addition, we evaluated these two sources with
and without data augmentation models selected based on
a-priori microscopy imaging knowledge of the invariances
that should be present in the segmentation model.

The trends of the curves in Figure 2 and Figure 3 indicate
that the accuracy gain due to either of the transfer learning
source decreases with an increase of the number of training
examples and the accuracy gains become insignificant with
many annotated images.

We used Contour Dice (or F-1) and ARI metrics to eval-
uate the segmentation outputs of the different models. The
Contour Dice metric provided a measure of the general
pixel-level segmentation quality while the ARI metric eval-
uated the quality and connectedness of the segmented cell
borders. The ARI metric harshly punishes the network
when it fails to completely connect any cell border since
what would have been two cells is now considered one. The
area of one of those whole cells is considered incorrect by
the ARI metric.

GAN-based methods proposed in the literature have fo-
cused on using adversarial losses to modify the output of
the U-Net segmentations so that they look similar to man-
ual segmentations [2]. In contrast, we transfer the abstract
unsupervised representations learned by GAN models to a
segmentation task. Our approach is suitable to the common
scenario of training a multi-million parameter CNN model
with a few annotated example segmentations.

There is, however, a trade-off between the improvement
in accuracy and an increase in the computational cost of
training because our approach requires two independent
training steps: the first consists of training an transfer learn-
ing source model (GAN or COCO) and the second con-
sists of refining a CNN segmentation model using those pre-
trained weights. Table 4 shows the compute time required
to build both pre-trained models and to refine U-Net start-
ing from the pre-trained weights. These times were gen-
erated on a single IBM Witherspoon node containing two
20-core IBM Power9 CPUs and four Nvidia V100 GPUs



Training Configuration \ GPU Time
TL-COCO (pretrain + refine) | 4036 + 78 min
TL-GAN (pretrain + refine) 3120 + 78 min
Baseline (refine) 78 min

Table 4. GPU Wall Time

with NVLink2 interconnection fabric. The table numbers
account for parallel training across the four GPUs. For ex-
ample, the COCO pretrain wall time was 1009 minutes us-
ing all four GPUs. Including augmentation into pretraining
did not affect wall time.

Much more computing time is required during the pre-
training phase for the creation of both the GAN and COCO
models. The COCO pretrain time could have been avoided
if published model weights were available as exist in many
model zoos. However, now that we have the pretrained U-
Net weights on COCO, they can be reused in any additional
segmentation tasks. The U-Net COCO pretrain is a one-
time cost whereas the GAN needs to be recomputed for each
new dataset.

6. Conclusion

This paper presented a comparison of three approaches,
six configurations, and 36 models retrained 10 times in or-
der to understand segmentation accuracy trends. One of the
approaches is based on a new restructuring of an encoder-
decoder segmentation network (U-Net) into an unsuper-
vised GAN model to enable representation learning with
the same network elements which will later be used for
segmentation. Promising results were shown when this ap-
proach was applied to segmenting individual cell contours
from absorbance images of human iRPE monolayer im-
plants. We hypothesize that TL-GAN shows inferior results
to TL-COCO because only one half of the final segmenta-
tion network could be transferred from the GAN representa-
tion. This stands in contrast where the all the weights can be
transferred from the COCO segmentation pretrain. All ap-
proaches described in this paper could be used to improve
any other segmentation task.

Which of the approaches yields higher accuracy im-
provement depends on generalization of pre-trained models
and our a-priori knowledge. One could improve the GAN
representation learning pre-optimization by collecting more
un-annotated RPE cell images. In comparison, the size and
content of the source transfer learning dataset (COCO) is
fixed unless more manual effort is invested into expanding
the COCO dataset.

7. Disclaimer

Commercial products are identified in this document
in order to specify the experimental procedure adequately.

Such identification is not intended to imply recommenda-
tion or endorsement by NIST, nor is it intended to imply
that the products identified are necessarily the best avail-
able for the purpose. Analysis performed [in part] on the
NIST Enki HPC cluster.
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