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Abstract

Digital neuron morphology reconstruction from three-

dimensional (3D) volumetric optical microscope images

is an important procedure to rebuild the connections and

structures of neural circuits. Even though many approaches

have been proposed to achieve precise tracing, it is still a

challenging task especially when images are polluted by

noise or have discontinuity in their neuron structures. In

this paper, we propose a new framework to overcome these

issues by performing neuron segmentation prior to tracing.

Our proposed framework adopts a novel 3D U-shaped con-

volutional neural network (CNN) with multiscale kernel fu-

sion and spatial fusion to perform the image segmentation.

We then perform the iterative back-tracking tracing algo-

rithm on the output of the network. Evaluated on the Janelia

dataset from the BigNeuron project, our proposed frame-

work achieves competitive tracing performance.

1. Introduction

Neuron morphology leads a critical role in the analysis of

neural circuits. 3D neuron reconstruction, also known as 3D

neuron tracing, is a systematic procedure that rebuilds the

tree-shaped model from optical microscopic images. In the

field of computational neuroscience, acquiring the recon-

structed neuronal structures such as curvilinear arbours and

blob-shaped soma [38] is essential to determining a neu-

ron’s identity as well as its connectivity and its functional-

ity within the nervous system. Most of the 3D neuron mor-

phology models generated in the past were collected man-

ually or semi-automatically by biologists. Some of these

traditional manual labeling techniques are genetic label-

ing [20], immunolabeling [22], and bulk dye loading [11].

This is highly time-consuming and labor-intensive for large

datasets with varying neuron types. Making the rebuild-

ing procedure automatic and efficient has become one of

the major motivations in this field. Hackathon events such

as the DIADEM challenge [4] and the BigNeuron chal-

lenge [25] were hosted to develop fast and accurate algo-

rithms by offering open-access datasets and complementary

software tools.

Over the past few decades, many methods have been pro-

posed to automatically perform 3D reconstruction of neuron

morphology. A shape analysis method, Rayburst sampling

algorithm [35], was proposed to represent the anisotropic

and irregularly shaped structures such as dendritic spine

heads with greater accuracy and was adopted by [27] to im-

prove the automatic 3D neuron tracing. MOST [24] then

extended it in a marching fashion to better obtain the global

tree-like neuronal shape. APP [26], APP2 [36], MOST [24],

and Snake [34] are traditional algorithms that start the trac-

ing from the seeds (i.e. the soma) to neuronal branch ter-

mini while the recent Rivulet [37, 17], Rivulet2 [19], and

the exhaustive tracing algorithm [30] trace from the furthest

neuronal points backwards iteratively.

However, most of these automatic algorithms still tend

to be error-prone when the images have low quality. Due

to the limits of optical microscope imaging, the 3D neuron

light microscopic image stacks always contain inevitable

background noise and small gaps along neural branches.

Affected by the unevenly distributed fluorescent markers,

there is often discontinuity within the structures of neu-

rons. The examples for these two challenges are shown in

Fig. 1 and Fig. 2 respectively. As indicated by Fig. 1(b)



(a) 3D optical raw im-

age

(b) Gold standard (c) Gold standard in

line-mode

Figure 1. A highly disconnected fly neuron image and its anno-

tated ground truth. Gold standard is ground truth labelled by a

neuroscientist and verified by at least three experts.

and Fig. 2(b), the radius for each neural voxel has been pro-

vided in the ground truth annotation files. To make the vi-

sualization clearer, we also put gold standard ground truth

without radius (line-mode) to emphasize the tree structures.

In Fig. 1, the fluorescent markers on the curvilinear neuron

fibres are too narrow to be captured by the confocal mi-

croscopes, which is likely to result in under-segmentation

during tracing. The 3D fly neuron structures in Fig. 2 are

immensely contaminated by background noise thus making

it difficult to distinguish the neural structures especially the

curvilinear arbours.

(a) 3D optical raw im-

age

(b) Gold standard (c) Gold standard in

line-mode

Figure 2. An overly noisy fly neuron image and its annotated

ground truth. Gold standard is ground truth labelled by a neu-

roscientist and verified by at least three experts.

Existing state-of-the-art neuron extraction methods typ-

ically consist of pre-processing the optical image, tracing

the neuron branches, and post-processing the traced im-

age [19]. Neuronal structure segmentation from the back-

ground voxels is one of the key for pre-processing a neu-

ron image with the aim of eliminating noise and bridging

the small gaps along neurite branches. In existing methods,

segmentation is normally conducted by applying adaptive

or manual thresholding. It is less effective when datasets

lack such global threshold annotations. To eliminate the

human intervention, we propose a novel 3D convolutional

neural network (CNN) model to perform the image segmen-

tation. We examined the performance of our method using

the Janelia dataset from the BigNeuron project [25]. We

also compared our proposed network to a baseline U-Net

model [6] by performing the same tracing task. The results

indicate that our proposed framework enhanced the tracing

accuracy and also exceeded other threshold-aided state-of-

the-art algorithms.

2. Related Work

Combining different techniques, automatic 3D neuron

morphology reconstruction methods generally involve pre-

processing a raw neuron image, defining starting points,

tracing the global tree-like neuronal structures, and post-

processing the traced image. Traditional algorithms can

be divided according to the tracing direction. Rayburst

sampling algorithm [35, 27] conducts multidirectional ra-

dius sampling to preserve the anisortropic and irregularly

shaped 3D structures. It achieves precise shape represen-

tation by shooting a ray from inside the 3D model to the

surface. Later a continuous radius is estimated to simulate

the tubular neuronal branches. MOST [24] further extends

this algorithm to follow a marching pattern by tracing from

seeds along the curvilinear arbours recursively. Similarly,

APP [26], APP2 [36], and Snake [34] also trace from au-

tomatically detected seed points. Snake generates an open

curve active contour from the 3D image. The mixture of

deforming forces computed by the Gradient Vector Flow

(GVF) and stretching forces calculated by estimating the

fiber orientations is applied as a guidance to the tracing. A

set of additional control criteria are also adopted to moni-

tor the tracing in a more precise way. This tracing method

additionally applies a series of preprocessing techniques to

standardize different image settings from various datasets

to make the tracing phase smoother. Unlike performing

the tracing all at once, APP and APP2 generate an initial

reconstruction to include all the possible neuronal regions

and then prune as much as they can to make the recon-

structed structures precise. The common trait of these two

all-path pruning methods is the way they produce the ini-

tial reconstruction. For each possible neuronal points, they

trace along the geodesic shortest path from the detected seed

points. In APP, the redundant structures are removed adap-

tively following the maximal-covering minimal-redundant

(MCMR) subgraph algorithm. While in APP2, they prune

wrongly traced paths using a long-segment-first hierarchi-

cal procedure. This new pruning technique turns out to pre-

serve the connectivity while enhancing the tracing accuracy.

A new grey-scale weighted distance transform (GWDT)

mapping was also proposed in APP2 for improving the ini-

tial reconstruction. Recently, Rivulet [37, 17] and Rivulet

2 [19] proposed a new tracing concept as they start the trac-

ing from the geodesic furthest points and iteratively go back

to the seed points. This prevents the tracing from stop-

ping early with the presence of small gaps along neurite

branches. Neural network techniques are also considered

to enhance the performance. SmartTracing [5] is a self-

learning-based learning approach. It trains on neuronal re-



Figure 3. Architecture of our proposed segmentation network.

gions with high possibilities generated by existing neuron

tracing algorithms. The trained network is used as a neu-

ronal region detector.

Most of the algorithms stated above focus on improv-

ing the intermediate tracing phase. They usually apply an

adaptive or manual threshold to generate a basic segmented

structures as pre-processing. However, this simple segmen-

tation technique is error-prone especially with the presence

of noise and disconnected segments. One way to reduce

the dependency on human intervention and make the pre-

processing process efficient is to apply deep learning tech-

niques in neuron image segmentation. CNNs like U-Net [6]

and V-Net [23] are popular models for medical image seg-

mentation. They use convolutional layers to represent the

different scales of features which are too abstract to extract

in traditional non-CNN alogirhtms. More advanced mod-

els such as Res3dNet [13] propose a compact and efficient

voxel-based neural network combined residual connections

and dilated convolutions. The shortcut in the residual blocks

allows loss to flow backwards successfully and reserves

more details. Convolution with different dilated rate also

improves the segmentation results by learning features from

different scales of receptive fields. Other variants [10, 8, 16]

of CNNs used for semantic segmentation have also been

adopted in biomedical image segmentation to improve the

general segmentation performance with different purposes

such as membrane segmentation [14], brain tumor segmen-

tation [15], and cell segmentation [39]. Recently, an effi-

cient teacher-student network [33] was proposed to enhance

the inference performance of neuron segmentation. In ad-

dition, the loss used in 3D biomedical image segmentation

tasks to guide the learning is critical, among which there

are dice loss [23], generalised dice loss [29], sensitivity-

specificity loss [3], and wasserstein dice loss [7].

However, rare attempts have been made to use CNN-

based image segmentation techniques for 3D neuron recon-

struction. The irregular structures in various neuron types

are difficult to generalize. A triple-crossing 2.5D CNN [18]

utilizes the information along different dimensions to ex-

amine the curvilinear neuronal arbours. An end-to-end im-

age segmentation network [12] was proposed to enhance the

performance of tracing algorithms by learning precise fea-

ture representations through convolutional blocks.

Unlike previous methods, our proposed method uses a

U-shaped multiscale kernel fusion network to aggregate the

information learnt from different scales of convolutional fil-

ters. A large kernel size in the filter leads to a large receptive

field which contains more context information while small

kernel size filters focus on local features only. The informa-

tion fusion among them makes the network robust to various

scales of neuron structures thus reducing the effect of noise

and discontinuity in the 3D neuron images.

3. Methods

3.1. Overview

To enhance the 3D neuron tracing performance, we pro-

pose a novel framework which combines a multiscale ker-

nel fusion network for neuron segmentation with an itera-

tive tracing algorithm. Given a raw 3D optical microscope

image I(x), we put it into the fusion network to gener-

ate the segmentation output B(x). The segmentation net-



work learns different scales of neuronal structure features

from blob-shaped spine head to curvilinear arbour by fus-

ing multiscale convolutional outputs. The details of this

architecture are elaborated in Section 3.2 and Section 3.3.

The ground truths of segmentation network is generated by

the distance-transform of SWC file in Section 3.4. We then

perform an iterative backtracking tracing algorithm on this

segmented neuron image B(x) to get the final reconstruc-

tion output which are discussed in Section 3.5.

3.2. Multiscale Kernel Fusion Network

As shown in Fig. 3, we design a novel 3D image segmen-

tation network, which is a variant of 3D U-Net [6]. Similar

to U-Net, we have 7 convolutional blocks (CBs) and 3 de-

convolutional blocks (DBs). The difference is that for the

first and third CBs, we replace them with a novel spatial

fusion convolution block (SFCB). We aggregate the infor-

mation of different receptive fields by concatenating them

together. The details are discussed in Section 3.3. Except

for those in the SFCB, the size of the convolutional filters

of all CBs is 3 × 3 × 3. We use DBs to perform the up-

sampling process. It has a deconvolutional kernel of size

2× 2× 2. The number of convolutional filters from the first

to the last CB are 16, 32, 64, 128, 64, and 32 respectively

and that of deconvolutional filters from the first to the last

DB are 64, 32, and 16 respectively. In CB, each convolu-

tional layer is followed by a 3D batch normalization [9] and

a ReLU activation function. Similarly, in DB, we follow the

same pattern except that leaky ReLU is applied instead of

ReLU. We adopt a 3D cross entropy loss with the weight

ratio w0 defined as the weight of the background label. We

penalize more on foreground error since the percentage of

foreground voxels is always much less than that of back-

ground voxels.

3.3. Spatial Fusion Convolution Block

We upgrade the traditional convolutional block to a com-

pact and efficient spatial fusion block with three different

receptive fields being deployed. As illustrated by the left

diagram in Fig. 3, the size of the convolution kernels inside

this block is 3 × 3 × 3, 5 × 5 × 5, and 7 × 7 × 7 respec-

tively. We further aggregate the information among the con-

volution parallel by fusing the last two feature maps since

they contain more context-related information. After fusing

all these feature maps together by concatenation, we add a

shortcut from the input to the fusion result to preserve more

detailed information. The number of channels gets doubled

after this block.

3.4. Scale Space Distance Transformed Ground
Truth

To train the segmentation network, we generate the seg-

mentation ground truth from the SWC file provided with the

training images. The SWC format is a standardized neuro-

morphometric format which stores the information of each

neuronal point on a neuron image as well as the connectivity

among them. It has been widely used for neuronal morphol-

ogy analysis and neuron reconstruction sharing. Each line

in the SWC file records a 7-tuple properties of a neuronal

point. Among these properties are the voxel’s identifier

number (usually an integer incrementing from 1), type, x

coordinate, y coordinate, z coordinate, radius, and the iden-

tifier number of its parent. Given a pair of 3D neuron image

and its SWC file, we generate a binary map of the same

volume with the input image. The intensity of the voxel is

1 if it is recorded by the corresponding SWC file or inside

the radius area of any point on the SWC file otherwise it

is 0. To highlight the centralines of the neuron structure,

we assign higher intensity values to neuronal regions near

the centralines by performing a scale space distance trans-

form method on the binary map generated from the SWC

file. This synthetic centerline transform map displays the

distance between each point with the centralines. The in-

tensity map transformed from the distance map is defined

as:

i(p, r) = eα·(1−
DT (p,r)

β
) − 1 (1)

where p is the 3D coordinate, r is the radius, and DT (p, r)
is the distance transform map; α and β are 6 and 5, respec-

tively. We then normalize i(p, r) and binarize it as below:

GT(p, r) =

{

0 if i(p, r)normalized ≤ 0

1 otherwise
(2)

3.5. Iterative Backtracking Based on Fast Marching

The segmented neuronal structures image generated by

the multiscale kernel fusion network in Section 3.2 is then

passed through the tracing algorithm to perform the final re-

construction. Following the pattern of MEIT [32], we adap-

tively trace the neuronal structures. We generate a time-

crossing map T based on the binary map by performing Fast

Marching algorithm [28, 2, 31]. It represents the shortest

time to traverse from the source points to the current po-

sition. We obtain the time-crossing map T by solving the

following Eq. (3):

F =
dx

dT
, |∇T |F = 1, T (Γ0) = 0 (3)

where F is the evolution speed and Γ0 is the initial condi-

tion [1].

Then, T is further simplified as:

T (x) = min
P(s,x)

∫ L

0

(

F (P (t))

maxF

)4

dt (4)

where P(s,x) are possible paths L from the starting point s
to x.



The next point to be included in the reconstructed neu-

ronal structures is decided by manipulating the subvoxel

gradient with Runge-Kutta [17] defined as:



























































k1 = 0.5α/max(‖∇T (pi)‖, 1)

pi,1 = pi − k1

k2 = 0.5α/max(‖∇T (pi,1)‖, 1)

pi,2 = pi,1 − k2

k3 = α/max(‖∇T (pi,2)‖, 1)

pi,3 = pi,2 − k3

k4 = α/max(‖∇T (pi,3)‖, 1)

pi+1 = pi − (k1 + 2k2 + 2k3 + k4)/6

(5)

where k1, k2, k3, k4 are the direction vectors at the corre-

sponding point p, and α is a constant set to 1 in our experi-

ment. A special case is applied to prevent the tracing from

trapping at a local minimal, for which the momentum [19]

update rule is defined as:

pi+1 = 2pi − pi−2 if ‖pi+1 − pi‖
2
2 is small (6)

4. Experiments and Results

4.1. Experiment Setting

We evaluated our proposed framework using the Janelia

dataset, which is part of the BigNeuron project. Produced

by a combinatorial multicolor stochastic labeling method

Brainbow [21], this Janelia dataset holds a variety of neu-

ronal morphologies of adult Drsophila nervous system by

optical microscopy. It has 42 light microscope images in

total. We extracted 38 images for training from which we

took 3 images for validation. We used 4 images for testing.

The average sizes for training, validation, and testing were

196× 197× 176, 206× 219× 41, and 262× 159× 181, re-

spectively. For each of these images, we provide a distance

transformed ground truth label as discussed in Section 3.4.

During each training epoch, a patch with the size of

128 × 128 × 64 is randomly extracted from a sequence of

8 images as the input for training the image segmentation

network. The weight ratio w0 is fixed as 0.45. We applied

data augmentation techniques such as random flipping and

random-angle rotation along different axes to enlarge the

dataset. This network was trained using the Adam opti-

mizer with a learning rate of 1 × 10−3 and a weight decay

of 5 × 10−4. To generate the final prediction from a whole

3D image stacks, we placed a sliding window on the input

testing image adaptively and then combine the patch-level

outputs together.

4.2. Results and Analysis

Our proposed segmentation network was compared to

the baseline 3D U-Net by investigating the similarities be-

Table 1. The quantitative segmentation comparison between 3D

U-Net and our proposed network.

Fly Testing (4) Precision Recall F1 Precision Recall F1

Fly1 0.56 0.79 0.66 0.58 0.74 0.65
Fly2 0.37 0.84 0.52 0.32 0.90 0.47
Fly3 0.25 0.54 0.35 0.26 0.51 0.34
Fly4 0.35 0.33 0.34 0.35 0.25 0.29
average 0.38 0.63 0.47 0.38 0.60 0.44
std 0.13 0.24 0.15 0.14 0.28 0.16
method Proposed UNet3D

Table 2. The quantitative comparison of reconstructed points with

SWC ground truth between our proposed method, Ensemble,

TreMap [40], APP2, Snake, Neutube, MOST, and SmartTracing.

The number beside the dataset name is the number of 3D images

in each dataset. The number of the successful reconstructions are

shown beside the method name.

Fly Precision Recall F1

Proposed (4/4) 0.79± 0.24 0.95± 0.05 0.85 ± 0.16

Ensemble (4/4) 0.1± 0.04 0.99 ± 0.03 0.684± 0.07
TreMap (4/4) 0.80± 0.16 0.38± 0.19 0.48± 0.14
APP2 (4/4) 0.87± 0.09 0.33± 0.28 0.42± 0.31
Snake (4/4) 0.9 ± 0.05 0.57± 0.22 0.68± 0.17
Neutube (4/4) 0.88± 0.10 0.52± 0.18 0.63± 0.15
MOST (4/4) 0.33± 0.28 0.26± 0.21 0.2± 0.13
SmartTracing (3/4) 0.75± 0.06 0.97± 0.02 0.84± 0.05

tween them and the distance transformed ground truth la-

bel in Section 3.4. The major difference between our pro-

posed segmentation network and the 3D U-Net network is

the multiscale kernels. We trained and tested our baseline

using exactly the same training, validation, and testing set.

We display the results using precision, recall, and F1-score

in Table 1. The precision, recall, and F1-score are defined

as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2× Precision×Recall

Precision+Recall

(7)

where TP, FP, and FN represent the true positive, false pos-

itive and false negative voxels that were segmented by the

compared networks. Tested on 4 images, our proposed net-

work outperforms the baseline 3D U-Net. After using spa-

tial fusion, the proposed network reserves more features

thus improving the recall in most cases. It is also notice-

able that our proposed network is more stable than U-Net.

In addition, we compared our proposed overall frame-

work with 7 other state-of-the-art tracing algorithms on pre-

cision, recall, and F1-score, as shown in Table 2. The pre-

cision, recall, and F1-score are defined similarly in Equa-

tion 7. However, here the TP, FP, and FN are collected

as the nodes from the generated SWC by different algo-



(a) APP2 (b) Snake (c) TreMap (d) NeuTube

(e) Most (f) Ensemble (g) Proposed (h) Ground Truth

Figure 4. Visualization of different tracing algorithms for a Fly1 image.

(a) APP2 (b) Snake (c) TreMap (d) NeuTube

(e) Most (f) Ensemble (g) Proposed (h) Ground Truth

Figure 5. Visualization of different tracing algorithms for a Fly2 image.

rithms instead of voxels from binary segmentations. While

SmartTracing failed to trace all of the images, our proposed

framework successfully reconstructed all the testing images

and achieve the best accuracy among all these algorithms.

Since some algorithms such as APP2, TreMap, and MOST

depend on the choice of a strict threshold, they cannot guar-

antee that neuronal structures would not be removed by ac-

cident. This leads to reduction in the number of correctly

traced points. However, our proposed method produce the

binary result without any threshold needed which results in



(a) APP2 (b) Snake (c) TreMap (d) NeuTube

(e) Most (f) Ensemble (g) Proposed (h) Ground Truth

Figure 6. Visualization of different tracing algorithms for a Fly3 image.

(a) APP2 (b) Snake (c) TreMap (d) NeuTube

(e) Most (f) Ensemble (g) Proposed (h) Ground Truth

Figure 7. Visualization of different tracing algorithms for a Fly4 image.

better recall.

We present the visualization of tracing results using 7

different tracing algorithms. As shown in Fig. 4, while most

methods fail to reconstruct the soma (usually the one with

the largest radius) with the presence of noises, our proposed

method achieves the most similar reconstruction compared

to the ground truth. In Fig. 5, our proposed method achieved

the state-of-the-art result by reconstructing exactly like the

ground truth. Fig. 6 and Fig. 7 show competitive tracing

results. If more data is given, the generalization ability of

the proposed network can be improved and the results could

be better and more stable.



5. Conclusion

We propose a novel framework to perform neuron recon-

struction from 3D optical microscopic images. To eliminate

irrelevant structures such as noise and bridge the small gaps

along neurite branches, we design a 3D multiscale kernel

fusion network to segment the neuronal structure as a pre-

processing step. We then take the segmented image into

the iterative backtracking algorithm to generate the final re-

construction. Our evaluation on the Janelia dataset shows

that our proposed method could improve the performance

of neuron tracing algorithms and outperform other state-of-

the-art neuron reconstruction algorithms.
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