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Abstract

The use of Unmanned Aerial Vehicles (UAVs) is a re-

cent trend in field based plant phenotyping data collection.

However, UAVs often provide low spatial resolution images

when flying at high altitudes. This can be an issue when ex-

tracting individual leaves from these images. Leaf segmen-

tation is even more challenging because of densely over-

lapping leaves. Segmentation of leaf instances in the UAV

images can be used to measure various phenotypic traits

such as leaf length, maximum leaf width, and leaf area in-

dex. Successful leaf segmentation accurately detects leaf

edges. Popular deep neural network approaches have loss

functions that do not consider the spatial accuracy of the

segmentation near an object’s edge. This paper proposes a

shape-based leaf segmentation method that segments leaves

using continuous functions and produces precise contours

for the leaf edges. Experimental results prove the feasibility

of the method and demonstrate better performance than the

Mask R-CNN.

1. Introduction and Related Work

Plant phenotyping is a set of methodologies used to ob-

serve, measure, and analyze the relationship and impact of

genetic and environmental factors on the growth, yield, and

physical traits of the plant. Phenotyping is used by plant

scientists to select plant breeds based on desired traits and

environments. Phenotypic traits include, but are not lim-

ited to, leaf count, leaf angle, maximum leaf width, leaf

area index [1], canopy closure, plant and leaf morphology,

plant and leaf color, leaf appearance rate, ear heights, and

plant dry weight. Traditional phenotyping is labor inten-

sive and destructive. Measuring and collecting phenotypic

traits involves extracting plants from the field, laying them

on a table and recording measurements using various de-

vices [2]. In contrast, modern phenotyping systems using

various sensors, including imaging sensors, provide the ca-

pability of high-throughput phenotyping [3, 4, 5, 6], which
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Figure 1: a) An image of a single row plot of crops ac-

quired from an altitude of 50 meters. b) Leaf segmentation

result generated by our method, where leaves are colored

randomly.

drastically reduces labor cost.

Among the different types of modern phenotyping sys-

tems, the use of Unmanned Aerial Vehicles (UAVs) carry-

ing various sensors is attractive because they are portable,

cost-effective, non-invasive, and relatively easy to use [4].

One issue with collecting images using UAVs is that to be

able to measure properties of the plants on the ground one

must geometrically rectify the images and form them into

mosaics [7]. Another issue is that due to the camera’s field

of view, the higher the UAV flies, the more ground area is

covered per image and hence, the images have low spatial

resolution. Lower altitude flights provide higher resolution

images. Flying at a higher altitude reduces the number of

flights needed because more of the crop field can be “seen”

by the UAV.

Leaves serve as the main site for photosynthesis within

a plant. They contribute to many phenotypic traits, such as

leaf area, leaf length, maximum leaf width, and leaf area

index. In commercial or research fields, plants are grown

densely, which causes frequent leaf overlaps. As a result,

the profile or edge of each leaf may not be completely visi-

ble. Being able to segment each leaf instance is essential to

the estimation of leaf traits.



In summary, the problem we are addressing in this paper

is instance segmentation for densely overlapped leaves in

low resolution UAV images.

Recent work using Deep Neural Networks (DNN) has

produced very promising results for image segmentation [8,

9]. In Faster R-CNN [10], Ren et al. use a Region Pro-

posal Network (RPN) to propose Regions of Interest (RoI)

on DNN generated feature maps. They then use Fully Con-

nected (FC) layers to generate object bounding boxes and

corresponding classes. In Mask R-CNN [8], He et al. intro-

duce additional convolution layers parallel to the FC layers

of Faster R-CNN. These additional layers generate object

masks based on the feature maps and RoIs from the Faster

R-CNN. In [9], Chen et al. modify Faster R-CNN to use

semantic and direction features for instance segmentation,

where direction features are the orientation of a pixel to-

wards the center of its object. For leaf segmentation in [11],

Chen et al. use plant centers to transform each plant im-

age into a polar coordinate system and to segment each leaf

with the assumption of triangular leaf shapes. In [12], Ward

et al. generate synthetic leaves of rosette plants with differ-

ent shapes, sizes and textures. The authors train a Mask

R-CNN on both the real and synthetic data, and use the

trained model to segment real leaves. In [13], Morris uses

a Fully-Convolutional Pyramid Network to estimate tree

leaf boundaries. Connected Components[14] and Water-

shed [15] are then applied to the output edge map to group

leaf boundaries and obtain leaf segments.

From the overview of instance segmentation methods

above DNNs play an important role in image segmentation.

All DNN segmentation approaches are based on convolu-

tional filters which extract features from images. Feature

responses are propagated through the network to produce

the final results. This design allows the spatial relation be-

tween features to be captured by the filters in a discrete man-

ner. It requires a significant amount of labeled data as well

as a large network to examine all the combinations of leaf

size, shape, orientation, and curvatures. Synthetic data gen-

eration such as in [12, 16] overcomes the lack of labeled

data, but well defined object models are necessary to cre-

ate realistic images. In our case, the interaction between

leaves causes them to bend, shift, and deform. Such inter-

actions are difficult to model, especially with the growing

patterns of plants. In addition, popular DNN loss functions

for segmentation including binary loss [8], cross entropy

loss [17], and dice loss [18] do not consider the spatial

accuracy of the segmented object’s edges. In our applica-

tion where leaf shapes are crucial for measuring phenotypic

traits (such as maximum width), DNNs are likely to produce

segmented leaves with inaccurate and noisy edges because

they do not have a spatial objective. Unlike convolutional

filtering, modeling the leaf edges using a continuous func-

tion and then estimating parameters of the function from a

(a)

(b)

(c)

Figure 2: a) Block diagram of proposed approach. b)

Graphical block diagram. c) Piece-wise edge function fe1
and fe2 . Each color represents an estimated polynomial.

set of leaf feature points will provide a better spatial repre-

sentation of the leaf. The estimated functions can be used to

search for pixels with weak feature responses and to predict

missing feature points.

In this paper, we present a new approach to instance leaf

segmentation by modeling leaf edges with continuous func-

tions. Our method detects leaf segments by using semi-

parallel features of leaf edges. It generates a leaf shape for

each segment and uses the shape model to search for edges

with weak responses and predict missing leaf parts. Each

leaf is described by two edge functions, which can also be

used to measure various phenotypic traits such as leaf area,

leaf length, maximum leaf width, and leaf area index. Our

method is compared to Mask R-CNN and achieves better

results. Figure 1 shows an example result of our method.

The plant used in this study is sorghum [Sorghum bicolor

(L.) Moench] [19, 20].

2. Processing Structure and Assumptions

Our proposed method uses edge features and the semi-

parallel relationship between the two leaf edges to detect,

model, and predict leaf parts. Figure 2 shows the block dia-

grams of our proposed approach.

The following definitions and assumptions are used

throughout the paper.

Each leaf has a tip and a tail. The tail is where

the leaf meets the stem. The tip is where the two leaf



Figure 3: Block diagram for edge processing

edges/boundaries converge. A leaf can be represented by

two piece-wise functions that describe the two leaf edges.

The edge functions are estimated from edge pixels and are

used for detecting leaf segments and extending leaf segment

edges.

In computer graphics, a curve in 2D space can be repre-

sented by many functions and forms [21]. Among the rep-

resentations, a polynomial is easy to estimate and model.

In this paper, we use second-order polynomials for the leaf

edge functions. Second-order polynomials in 2D are either

convex or concave, but leaf edges have different orienta-

tions. Hence, we rotate the edge pixels before estimating

the function. The rotation can be done in various ways. We

use Principal Component Analysis (PCA) [22] due to ease

of implementation.

A leaf edge can have different local curvatures along the

edge. Describing an edge with only one polynomial func-

tion is sub-optimal. Therefore, each edge function is mod-

eled as a piece-wise function (as shown in Figure 2c). The

estimated function is the fundamental structure we use to

represent a leaf edge. We shall define a “2D discrete func-

tion” as a set of pixels that describes (or estimates) a 2D

function with errors caused only by spatial quantization of

the pixels where the pixels in the set belong to the same leaf

edge. We assume any location in an image is quantized to

the center of a pixel. Thus, the maximum quantization error

for each pixel is the distance from the pixel center to a pixel

corner which is
√
2
2 .

3. Leaf Edge Processing

The goal of this section is to process an image to extract

2D discrete functions. Figure 3 shows a block diagram of

edge processing.

Given an RGB image, we first use the Canny Edge oper-

ator [23] to obtain an edge mask Me. This edge mask can

be refined by removing unwanted features from the back-

ground. We create a plant material mask Mp by thresh-

olding the plant image in the Hue channel of the HSV color

space. This exploits the "greenness" of the plant. This mask

is used with the edge mask to form a refined edge mask Mr,

where

Mr = Me ∧Mp . (1)
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Figure 4: a) An example skeleton with branching structure.

b) An example skeleton with edges from different leaves

forming a single line. W is a sliding window for function

estimation. The red dot is the ideal break point between

the two piecewise functions. c) Function estimation cost vs.

window position.

(a) (b)

Figure 5: a) End point cases. b) Shortest path (red: end

points, green: shortest paths, black: unvisited pixels).

We use Connected Components [24] on the refined edge

mask Mr to group the connected edge pixels into sets, and

we call each set an edge component. An edge component

can be viewed as a graph and each pixel can be viewed as

a node. Ideally, each detected edge pixel represents a leaf

edge, but detected edge pixels may come from different leaf

edges. There are two cases we consider. First, detected edge

pixels from different leaves forming a branching structure,

as shown in Figure 4a. Second, detected edge pixels from

different leaves forming a single line (as shown in Figure

4b).

Our approach to these issues is to use Depth First Search

(DFS) [25] on the edge components and to separate the

branches during the search. Edges from different leaves

in each branch are disjoined. This approach requires each

edge component to be a one pixel wide skeleton. Skeletons

wider than one pixel create cycles and ambiguous paths. We

propose a skeletonization method in Section 3.1 to thin the

edge components into one pixel wide.

3.1. Skeletonization

The edge components created by Connected Compo-

nents are usually not one pixel wide. We need to thin the

edge components to form skeleton structures. We use a

shortest path [25] approach between end points of a skeleton

to produce a map of node visiting frequency. We prioritize

selecting a path through frequently visited nodes.

We first define the end points of a skeleton. An end point

is a pixel that has one, two, or three adjacent pixels, where

the adjacent pixels form a clique [25]. Figure 5a shows an



example of an end point’s neighborhood. We use Minimum

Cost Path (MCP) [26] on all the end point pairs. The cost

map Cs for MCP is updated after computing the path for

each pair. This step prioritizes selecting an already explored

route.

Let E = {e1, e2...eNs
} be the set of all end points in a

skeleton, and Ns be the number of end points in the skele-

ton. Let Ms be the skeleton mask. The cost map Cs is

initialized to:

Cs =

{

N2
s + 1 if Ms > 0

inf otherwise.
(2)

The detailed implementation of the steps is shown in

Procedure 1. Figure 5b shows an example of the skele-

tonization. Unvisited pixels are removed from the skeleton

after all end point pairs have been examined.

Procedure 1: Skeletonization

Input : End point set: E = {e1, e2...eNs
} ,

Number of end points: Ns ,

Skeleton mask: Ms

1 Initialize Cs with Ms and Ns

2 Snew ← {}
3 for i = 1 to Ns do

4 for j = i+ 1 to Ns do

5 P ←MCP (ei, ej , Cs) # compute shortest

path P

6 for all location x in P do

7 Cs(x)← Cs(x)− 1
8 Snew ← Snew ∪ {x}

9 end

10 end

11 end

12 Return Snew

3.2. Skeleton Separation

First, we address the case of edges forming a branching

structure, as shown in Figure 4a. We define an intersection

to be a pixel in the skeleton with more than two neighbors.

A two-neighbor pixel is a pixel that has two neighboring

pixels. A branch is a set of connected pixels whose head

and tail are either end points or intersections and the rest of

its pixels are two-neighbor pixels. Branches are extracted

by using a modified DFS on each skeleton (as shown in Pro-

cedure 2). As a result, we obtain a set of connected pixels

organized in the pixel visit order of DFS. Each pixel set can

also be viewed as a set of 2D discrete functions connected

together.

We next address the case of edges from different leaves

forming a single line, as shown in Figure 4b. We slide a

window of size Ww across a branch and estimate a poly-

nomial for the pixels in the window using a Least Square

(LS) approach [27]. The cost for LS estimation is recorded

for each valid window position along the branch. The poly-

nomial’s leading coefficient (which controls the curvature)

is set to be bounded by τc above and −τc below. Positions

where two 2D discrete functions connect will have a higher

cost. Branches with sizes smaller than the window size are

discarded. Figure 4b shows an example of a break point be-

tween two piecewise functions. Figure 4c shows the func-

tion estimation cost vs. window position graph associated

with a skeleton. The position with the maximum cost is a

candidate for the break point. The maximum spatial quan-

tizaton error for a window is
√
2
2 multiplied by the window

size. If the square root of the LS cost of a candidate exceeds

τ1 percent of this error value, we break the branch into two

at the window center. Procedure 3 shows the detailed steps.

At this point, we obtain sets of connected 2D discrete func-

tions that are ready to be combined into leaf segments.

Procedure 2: Depth First Search

Input : Skeleton pixel set: S,

End points: E = {e1, e2...eNs
}, where Ns

is the number of end points,

Intersections: I = {i1, i2...iNi
}, where Ni

is the number of intersections

1 Initialize visited map V

2 Initialize completed branches B ← {}
3 Initialize stack S

4 V (e1)← visited

5 Initialize current branch b← {e1}
6 Push the neighbor of e1 to S

7 while S is not empty do

8 p← pop(S)
9 b← b ∪ {p}

10 V (p)← visited

11 if p is in E or in I then

12 B ← B ∪ {b}
13 b← {}

14 end

15 Push unvisited neighbors of p to S

16 end

17 Return B

4. Leaf Segment Detection

Leaf edges have gradient angles pointing towards the leaf

surface. Leaves are thin and long, and their edges are semi-

parallel. As a result, the two leaf edges have opposite gradi-

ent angles. This characteristic allows us to detect segments

of a leaf. In UAV images, leaves appear symmetric with

respect to their midribs. However, midribs are difficult to



Procedure 3: Divide

Input : Branch: b = {a1, a2, ...},
Window size: W

Threshold: τ

1 Initialize stack S ← {b}
2 Initialize output list O ← {}
3 while S is not empty do

4 X ← pop(S)
5 Initialize cost map C

6 for i = 1 to sizeof(b)−W + 1 do

7 C(i)← cost(bi, bi+1, ..., bi+W−1)
8 end

9 m← max(C)
10 j ← argmax(C)

11 if m >
√
2
2 ∗W ∗

τ
100 then

12 b1 ← {x1, ...xj+W

2

}

13 b2 ← {xj+W

2
+1, ...xsizeof(X)}

14 Push b1 and b2 to S

15 else

16 O ← O ∪ {X}
17 end

18 end

19 Return O

(a) (b)

Figure 6: a) Smearing an edge in the direction of its average

gradient angle to create EIZ. b) Detecting candidate edges

to form a leaf segment.

detect in low resolution images. We estimate a midrib func-

tion for each leaf, where the shortest distances from any

point on the midrib to the two edges are equal. The midrib

function is essentially a medial axis. An orthogonal line to

the midrib function intersects the two leaf edges. The gradi-

ent angles at the two intersection points are opposite to each

other within a margin of τ2. The average gradient angle is

computed for each edge. We assume if two edges have op-

posite average gradient angles, they form some parts of a

leaf and are considered an edge pair.

To find edge pairs, we smear each leaf edge in the di-

rection of its average gradient angle with a maximum leaf

width Wl. We call the area generated by the smearing an

(a) (b) (c)

Figure 7: Example segmentation of a leaf, a) Original im-

age. b) Detected leaf segment. c) Full segmentation of the

leaf.

Edge Influence Zone (EIZ), as shown in Figure 6a. Any

edge inside an EIZ is a candidate for an opposite leaf edge.

Candidate edges are further checked for the opposite gradi-

ent angles. Successfully paired edges create a leaf segment

which is constructed by the overlapping area of two edges’

EIZ. Non-overlapped regions and edges are discarded. We

call the edges in the segment base edges. This procedure

is shown in Figure 6b. Figure 7b shows an example of a

detected leaf segment.

5. Leaf Segment Completion

At this stage, a leaf edge can be categorized into three

types: a base edge in a leaf segment, an edge discovered

by Canny edge detection, and an undetected edge due to its

weak response to the edge operator. We use the edges from

leaf segments to extend and predict leaf edges. Figure 8a

shows the three types of edges.

5.1. Edge Walking

We introduce a method we call Edge Walking as a tech-

nique to extend edges by iteratively adding points to the

base edge using a statistical model. This technique is in-

spired by the Kalman filter [28].

Let fc(x) be an edge function and x0 be the end of the

edge we are considering. We define a slice Sx to be a line

that is orthogonal to the function at a position x. A slice

profile gx(y) is generated by sampling the pixel intensities

at a set of locations along the slice (as shown in Figure 8b).

We take two samples per pixel along the slice. The slice

width is set to be 3 which is the maximum width in an

8-connectivity neighborhood. Bi-linear interpolation [29]

is used to obtain the sample value at each location. The

derivative g′x(y) of the slice profile gx(y) is estimated by

the difference between the pixel values and smoothed by a

1D Gaussian filter with variance 1.

The function fc(x) is used to predict the location next to

x0 as (x0 + 1, fc(x0 + 1)) and we obtain the slice Sx0+1.

The slice profile associated is gx0+1(y), and its derivative

is g′x0+1(y). Our goal is to find the true edge location y in

Sx0+1. We model the probability distribution Pp(y) for the
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Figure 8: a) Leaf parts that are detected at each stage. b) A

slice for a point on the edge. c) Example detected or pre-

dicted edge points (red: detected leaf segment edges, blue:

paired extended edges, yellow: unpaired extended edges,

gray: predicted edges).

prediction y as a zero mean Gaussian with variance 1.

There are two types of observations for the true edge lo-

cation in slice Sx0+1. The first observation is edges ob-

tained by Canny edge detection. Let Le,i be the observed

edge location in the slice Sx0+1, where i = 1, 2...Ne and

Ne is the number of observed edges. We model the prob-

ability distribution Pe(y) for the Canny edge point y as a

Gaussian Mixture Model (GMM) [30]:

Pe(y) =

Ne
∑

i=1

we,iN (Le,i, σ), (3)

where weight we,i =
1
Ne

, andN (Le,i, σ) is a Gaussian with

mean Le,i and variance σ.

The second observation is the slice profile derivatives.

In the slice profile, an edge can be anywhere along a slope.

For a Canny edge, only the peak of absolute derivatives is

selected to be an edge. We consider all derivative locations

where the absolute value is above a threshold τ3 as our ob-

servations. Let Ld,i be the observed derivative location in

a slice profile gx0+1(y), where i = 1, 2...Nd and Nd is

the number of observed derivatives. We denote Pd(y) as

the probability distribution for a derivative observation y.

Pd(y) is also modeled as a GMM:

Pd(y) =

Nd
∑

i=1

wd,iN (Ld,i, σ) , (4)

Figure 9: Leaf width function fw.

where N (Ld,i, σ) is a Gaussian with mean Ld,i and vari-

ance σ, and wd,i is weight, defined as the following:

wd,i =
|g′x0+1(Ld,i)|

∑Nd

i=1 wd,i|g′x0+1(Ld,i)|
. (5)

Canny edges are obtained from image derivatives, which

makes them superior to the derivatives. We use derivative

observations only if no Canny edges are available. In the

case that no Canny edge or derivative is available, we as-

sume the edge has ended. Now, we define the observation

probability Po(y):

Po(y) =











Pe(y) if Ne > 0

Pd(y) if Ne = 0 and Nd > 0

0 otherwise.

(6)

The probability distribution P (y) for edge location y is

the joint probability distribution of observation and predic-

tion (assuming independence):

P (y) = Pp(y)Po(y) . (7)

The Maximum Likelihood Estimate of y is:

ŷ = argmax
y

P (y) . (8)

The new edge location ŷ is added to the edge we are

considering and the edge function is re-evaluated. We keep

iterating the process until there are no more Canny edges or

derivatives.

5.2. Leaf Modeling

After Edge Walking, we have an extended leaf edge

structure that may still contain missing points. Missing edge

points are predicted using a leaf shape model. The shape of

each leaf is modeled as two functions, a midrib function fm
and a width function fw. In Section 4, we obtain a match-

ing base edge pair. Let b1 and b2 denote the two base edges.

In Section 5.1, we obtain a left (l) and right (r) extension

for each base edge. We denote l1, r1 and l2, r2 as the ex-

tensions for b1 and b2, respectively. These definitions are

shown in Figure 8c. Consider the left extensions of the two



base edges. The points in l1 and l2 are paired based on their

order moving away from their respective base edge. The

paired extensions are combined with the base edges to form

new segment edges b′1 and b′2, and fb′
1

and fb′
2

are their es-

timated edge functions, respectively. Let b′1 be the longer

edge with N1 edge points in total. We denote the set of un-

paired points on the left as ul and the set of unpaired points

on the right as ur.

To estimate the midrib function fm, we project b′2 onto

the PCA space of b′1. N1 points are sampled from each edge

function. Sampled points from the two functions are paired

according to their orientation and order. For each pair, we

compute its middle point. Since a leaf may twist, model-

ing its midrib function with one polynomial is sub-optimal.

We model the midrib function as a piece-wise function with

three polynomials. The left and right polynomials are es-

timated by Ww amount of points, where Ww is the sliding

window size used in Section 3.2. The middle polynomial

is estimated by the rest of the points. Combining the three

polynomials, we obtain the midrib function fm.

To estimate the width function fw, we take one sample

per pixel on the midrib function fm. At each pixel, we con-

struct an orthogonal line to the midrib function. The line

intersects the two edges at i1 and i2. The distance between

i1 and i2 is the width at the pixel. The process is repeated

for all pixels to obtain a width profile. We model the width

function fw as a concave piece-wise function consisting of

two lines (as shown in Figure 9). The function has only one

peak. Let p be the location of the peak. As shown in Fig-

ure 9, let the leaf front represent widths from p to the leaf

tip, and let the leaf back represent widths from p to the leaf

tail. We estimate one function for the leaf front and one for

the leaf back. Combining the two functions, we obtain the

width function fw.

Finally, we predict matching edge points for the unpaired

point sets ul and ur. For each point z in an unpaired point

set, we predict the local leaf width wz using fw and obtain

its orthogonal line to the edge ej , where j is the edge index.

If the width is zero or less, the point is discarded. A match-

ing edge point is estimated to be wz distance away from the

location of z along its orthogonal line. Figure 8c shows an

example of detected edge points, extended edge points, and

predicted edge points. Figure 7c shows an example of leaf

segmentation after edge extension and prediction.

A missing leaf tip can be predicted using the midrib func-

tion fm and width function fw. However, the appearance of

a leaf tip in a UAV image varies across plant breeds. For

example, a plant breed with thin long leaves often has vis-

ible tips, while a plant breed with wide leaves may have

its tips pointing away from the image sensor plane. This

means leaf tips from wider leaves may not be visible. In

this study, leaf tips are not predicted if no edge is detected

at the tip, because we do not consider prior knowledge of

Table 1: Results reported in Symmetric Best Dice (SBD),

Foreground-Background Dice (FBD) and absolute Differ-

ence in Count (|DiC|)

Metric
Mask

R-CNN

Proposed

Method

SBD (higher is better) 34% 37%

FBD (higher is better) 73% 67%

|DiC| (lower is better) 120 81

plant breeds.

5.3. Postprocessing

We may detect multiple edge pairs from the same leaf.

Our proposed method generates a leaf segmentation mask

for the entire leaf using only one of its detected edge pairs.

Thus, there can be redundant leaf segmentation as similar

masks can be developed from different edge pairs of the

same leaf. As a solution, we reject an individual leaf mask

if it has more than 50% overlap with the leaf foreground

mask generated by collating all previous leaf masks. A leaf

segmentation mask may also be constructed erroneously us-

ing parallel edges from different leaves. We remove con-

tours from a segmentation mask using morphological ero-

sion [31] and a surface mask is obtained. If the surface mask

contains K pixels, the leaf segmentation is discarded. K is

designed to be half the length of the shortest edge in the leaf

segmentation.

6. Experimental Results

We typically estimate phenotypic traits using images ac-

quired by a UAV flying at an altitude of 50 meters. The

result of our method on an image from 50 meters altitude is

shown in Figure 1. However, to examine the performance of

our proposed method, we need manual ground truth. UAV

images acquired at 50 meters are difficult to ground truth for

leaf segmentation due to the low spatial resolution. In our

experiments for this paper, we use images taken from 20

meters altitude to generate ground truth manually. Figure

10b shows an example of the ground truth. The images are

then downsampled to the same resolution as images from

50 meters altitude. A 2D Gaussian filter with 0.5 variance

is used to emulate the expected blur in images taken from a

higher altitude. We use this downsampled data to quantita-

tively evaluate our proposed method. Our data was obtained

from a sorghum field on June 20, 2018 and June 27, 2018.

The dataset consists of 88 sorghum images with each im-

age containing about 200 leaves. After downsampling, the

image dimensions become roughly 120x580 pixels with a

spatial resolution of 0.63 cm per pixel.

The thresholds for the Canny edge detection are set dif-
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Figure 10: a) A downsampled sorghum image taken from

20 meters altitude on June 27th, 2018. b) Manual ground

truth, where leaves are colored randomly. c) Result im-

age generated by our method, where leaves are colored ran-

domly. d) Result image generated by Mask R-CNN, where

leaves are colored randomly.

ferently for each date due to the change in illumination. The

images from June 27, 2018 appear much darker than the im-

ages from June 20, 2018. For June 20, 2018 data, the strong

edge threshold is set to 1500 and the weak edge threshold is

set to 500. For June 27, 2018 data, the strong edge threshold

is set to 750 and the weak edge threshold is set to 500. The

maximum percentage τ1 allowed for the function estimation

error is set to be 25%. The gradient angle bias τ2 is set to be
π
4 . The minimum threshold τ3 for derivative observation is

set to be 5 to prevent noise. The curvature coefficient bound

τc is set to be 0.05 empirically. The sliding window size Ww

is set to be 10 empirically. The maximum leaf width Wl is

measured to be 15 pixels. The variance σ for all assumed

Gaussian distributions is set to be 1.

We compared our method to Mask-RCNN. The training

and testing procedure are similar to the work in [8]. Our

dataset is split into three, 72 for training, 8 for validation,

and 8 for testing. We used Resnet-50 Feature Pyramid Net-

work as the backbone instead of Resnet-101 because of our

small dataset. The Region Proposal Network aspect ratios

were set to {1:5, 1:2, 1:1, 2:1, 5:1} to better fit the elon-

gated shapes of the sorghum leaves. Leaf bounding boxes

may significantly intersect because of the densely overlap-

ping leaves. During testing, we raised the Non-Maximum

Suppression (NMS) threshold to 0.8 to account for this. A

higher NMS threshold keeps highly overlapped bounding

boxes.

Mask R-CNN and our proposed method are evaluated

on the 8 test images. We report the results using Symmetric

Best Dice (SBD), Foreground-Background Dice (FBD) and

absolute Difference in Count (|DiC|) [32]. These metrics are

used in the CVPPP segmentation dataset [33].

Both methods under-counted the leaves. Table 1 gives a

detailed comparison of the method. Figure 10 shows exam-

ple results from both methods.

7. Discussion and Conclusion

Compared to Mask R-CNN, our method delivers better

results with respect to SBD, which is a primary metric for

leaf segmentation. We also out-perform Mask R-CNN for

DiC. By visual comparison of the results, our method pro-

vides better leaf contours. The leaf edges in our results

are well defined, whereas Mask R-CNN easily includes

adjacent leaves and ground structures in its segmentation.

Therefore, the larger segmentation contours unintentionally

generate a better foreground mask. This explains the better

results for FBD for Mask R-CNN.

This paper presented a new approach to segment leaf

instances in UAV images by modeling leaf shapes. The

method detects leaf segments by using semi-parallel fea-

tures of leaf edges. It generates shape models for the seg-

ments and uses those shapes to extend and predict leaf

edges. The method is compared to Mask R-CNN with our

approach achieving better results. The midrib function fm
and the width function fw can be used to predict pheno-

typic traits such as leaf area, leaf length, and maximum

leaf width. In addition, the semi parallel edge features are

very common in plant structures, such as leaves, stems, and

branches. This method has the potential to segment these

plant materials. Future work includes adapting the method

to account for different leaf shapes that do not have semi-

parallel features, such as the leaves in the CVPPP leaf seg-

mentation dataset [33]. We will also combine surface fea-

tures into the leaf model.
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