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Abstract 

 

Phenotyping via Unmanned Aerial Vehicles (UAVs) is of 

increasing interest for many applications because of their 

capability to carry advanced sensors and achieve accurate 

positioning required to collect both high temporal and high 

spatial resolution data required over relatively limited 

areas. This paper focuses development of a data analytics 

based predictive modeling strategy that incorporates 

multi-sensor data acquisition systems and accommodates 

environmental inputs. Unsupervised feature learning based 

on fully connected and convolutional neural networks is 

investigated. Predictive models based on Recurrent Neural 

Networks (RNNs) are designed and implemented to 

accommodate high dimensional, multi-modal, 

multi-temporal data. Remote sensing data, including Light 

Detection and Ranging (LiDAR) and hyperspectral inputs, 

as well as weather data, are incorporated in RNN models. 

Results from multiple experiments focused on high 

throughput phenotyping of sorghum for biomass 

predictions are provided and evaluated for agricultural test 

fields at the Agronomy Center for Research and Education 

(ACRE) at Purdue University. 

1. Introduction 

With the advances in science and technology, it is now 

possible to sequence the genome of plants rapidly and at 

low cost [1]. In order to evaluate the performance of the 

plant varieties with given genetic characteristics, numerous 

physical and agronomic traits are measured in controlled 

facilities or in the field during the growing season 

(phenotyping). Planting the varieties of a crop and 

measuring dozens of phenotypic traits for each is time 

consuming, laborious, and expensive. Recently, researchers 

have begun to explore the use of remotely sensed data to 

augment and even replace some traditional in-field 

phenotyping measurements. 

Biomass is an important plant characteristic for 

sorghum-based biofuels, as it is indicative of both the crop 

condition and the quantity of ethanol that can be produced. 

Many researchers have studied predictive models for 

complex phenotypes such as biomass, based on data derived 

from Remote Sensing (RS) technologies, via empirical 

approaches. For example, the importance of sample size, 

prediction method, and sensor type for biomass predictions 

was investigated in [2] using support vector machines, 

random forests, and Gaussian process models. Although 

traditional empirical methods are powerful tools to model 

the complex relationships between the RS data and biomass, 

they are unable to effectively exploit the temporal aspects of 

the data, incorporate multiple sensing modalities, or include 

environmental inputs. 

In recent years, deep neural networks have been 

investigated by many researchers in the area of pattern 

recognition and machine learning (ML). Deep Learning 

(DL) adds more “depth” (complexity) into the model 

compared to classical ML and represents the data in a 

hierarchical way in different layers using various functions 

to transform the data [3]. If properly trained with adequate 

labeled data, DL can provide very accurate classification 

and prediction outputs because of its ability to use more 

complex models, which also increases flexibility and 

potential adaptability for various problems. 

Extraction of appropriate features, along with using a 

powerful predictive model, is required for accurate 

prediction of complex phenotypes such as biomass. 

Hyperspectral data consist of hundreds of channels that 

provide detailed spectral information from the image data 

from which useful predictive features can be extracted. 

From LiDAR point clouds, multiple features describing the 

geometric characteristics of the canopy including height, 

canopy coverage, and vertical distribution of the plant 

material can be extracted. Although having all these 

features provides more information for predictive models, it 

can degrade the accuracy of prediction as many of these 

features are highly correlated. Generally, this is not a 

concern for DL-based models, as they have the advantage of 

being able to learn the features and automatically extract 

appropriate representations from input data [4] if adequate 

labeled data are available. For biomass prediction however, 

the number of data samples is limited, as destructive 

sampling and processing of biomass is time consuming and 

expensive. In this situation, it is important to separate 

feature learning from prediction by first extracting 
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appropriate features, and then using them in the predictive 

models. 

In this paper, two autoencoder-decoder networks are 

designed and implemented for unsupervised feature 

learning from hyperspectral and LiDAR remotely sensed 

data.  The first network consists of a number of fully 

connected layers, and the second network consists of 

convolutional, pooling, and de-convolutional layers. 

For biomass prediction, having a method that can 

incorporate the data from multi-year experiments and 

different sources is important, both for increasing the 

quantity of data samples and representing the growth 

scenarios under different weather-related growing 

conditions. In this study, a Recurrent Neural Network 

(RNN) is designed to include both hyperspectral and 

LiDAR data and weather-related data (e.g. solar radiation, 

temperature, precipitation) to predict crop biomass. The 

results and analysis provide useful insights on feature 

importance for prediction and demonstrate the ability to 

estimate the biomass from remotely sensed data, thereby 

greatly reducing the required human labor. 

2. Feature Learning 

Unsupervised feature learning has been investigated by 

many researchers in different fields [5-7]. In hyperspectral 

image classification, Chao et al. [8] showed that feature 

learning based on a stacked sparse auto-encoder model 

provides robust results. In [9], a network of fully 

convolutional auto-encoders for image feature learning was 

developed for image clustering. Inspired by these studies, in 

this paper, we designed a fully connected auto-encoder 

network (FAEN) and a convolutional auto-encoders 

network (CAEN) for unsupervised feature learning of 

features from both hyperspectral and LiDAR data. 

The FAEN network consists of three fully connected 

hidden layers as well as input and output layers as shown in 

Figure 1. The first hidden layer consists of more neurons 

than the input layer, allowing the network to expand the 

information of the input features to a higher dimensional 

space. The second layer then has a few neurons (four in this 

paper) that are considered as the learned features. This part 

of the network is referred to as the encoder, which abstracts 

(encodes) the information of the input features into a few 

features. Then the second part of the network (decoder), 

which is symmetric with the first part, reconstructs the input 

features from the learned features. 

The second network, CAEN, is similar to the first, but 

uses convolutional layers instead of fully connected layers, 

as shown in Figure 2. Using convolutional layers for feature 

learning allows the network to take advantage of the 

potential relation between the input features. Also, there are 

fewer parameters to optimize during the training of the 

network.  

Figure 1. Unsupervised feature learning using fully connected 

auto-encoder network (FAEN). 
 

 
 

 

Figure 2. Unsupervised feature learning using convolutional 

auto-encoder network (CAEN). 

 

The size of output layer in both networks is the same as 

the input layer as they reconstruct the input features. The 

cost function is the average sum-of-squared error between 

input and reconstructed features over the entire sample data. 

3. Predictive Models 

In this paper, two models are developed for biomass 

prediction, one based on Support Vector Regression (SVR) 

and the other based on Recurrent Neural Networks (RNN).  

3.1. Support Vector Regression 

SVR is a supervised non-parametric regression 

technique, and therefore, no assumptions regarding the 

underlying data model are required. SVR transforms the 

original feature space into a higher dimensional space [10], 

with the goal of finding a hyperplane to predict the training 

data set. More details for SVR are provided in [11]. The 

optimal values of the kernel function parameters are found 

by a general k-fold cross-validation in a grid search. 

3.2. Recurrent Neural Network 

RNNs are powerful models for representing sequential 

data and are particularly effective in learning long-term 

dependencies. Mou et al. [12] proposed an RNN model to 

classify hyperspectral pixels by considering the 
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sequence-based data structure. In [13], a novel RNN 

network was proposed for online disturbance detection from 

a satellite image time series. RS-based prediction was also 

investigated by You et al. [14] for soybean yield prediction 

using an RNN.  

Long Short Term Memory (LSTM) and Gated recurrent 

units (GRU) have proven to be successful for 

accommodating the difficulty of training simple recurrent 

networks [15]. An LSTM unit is capable of learning 

long-term dependencies due to its structure, which 

incorporates gates that regulate the learning process. The 

operations are accomplished by the input, forget, and output 

gates. Based on the information provided by the input and 

forget gates, the cell state, which represents the memory of 

the unit, is updated. The GRU architecture is similar to 

LSTM, but simpler to compute and implement as it consists 

of two gates: reset and update gates [16].  

In this study, GRU and LSTM models are developed and 

compared for multi-temporal prediction of sorghum 

biomass. The proposed network is shown in Figure 3. 
 

Figure 3. Recurrent neural network developed in this study for 

biomass prediction. 

 

The input vector for the proposed RNN includes 

hyperspectral features, LiDAR features, and weather related 

features as shown in Figure 4. 

 

 

Figure 4. The input vector at time ti for the proposed RNN. 

4. Data and Experimental Setup 

4.1. Field Ground Reference Data  

The field experiments were conducted over 

approximately 2.8 ha sorghum breeding trials in different 

fields of the Purdue Agronomy Center for Research and 

Education (ACRE) at Purdue University in Indiana. The 

field experiments consisted of three distinct trials in four 

panels; the hybrid calibration (HyCal) panel, the inbred 

calibration (InCal) panel, the Sorghum Biodiversity 

(SbDiv) panel, and the Sorghum Biodiversity test cross 

(SbDiv-tc) panel. The HyCal panel consisted of 18 

commercial hybrids from distinct market classes including 

both forage and grain sorghum replicated four times in 

twelve row plots in both the 2017 and 2018 growing 

seasons. The InCal panel included 60 and 54 inbred lines in 

2017 and 2018, respectively, a subset of the SbDiv panel 

that encompasses the genetic diversity of the SbDiv panel, 

which were replicated twice in four row plots in both years. 

The SbDiv panel consisted of 840 inbred lines replicated 

twice in four row plots in the 2017 growing season.  The 

SbDiv-tc included 630 hybrids derived from the SbDiv 

panel with a common maternal parent replicated twice in 

four row plots in the 2018 growing season. Details of the 

experiments are provided in Table 1. 
 

Table 1. Experimental design for the 2017 and 2018 growing 

seasons. 

Trial Year Genotype 
# of 

plots 

# of 

varieties

Sowing 

Date 

Harvest 

Date 

HyCal 
2017 hybrid 72 18 May 15 Sep 31 

2018 hybrid 72 18 May 1 Aug 9 

InCal 
2017 inbred 120 60 May 16 Oct 15 

2018 inbred 108 54 May 1 Aug 9 

SbDiv 2017 inbred 1800 840 May 17 Oct 15 

SbDiv-tc 2018 hybrid 1600 630 May 8 Aug 14

4.2. Remote Sensing Data 

Hyperspectral and LiDAR remote sensing data were 

collected from UAVs. All remote sensing data acquisition 

platforms were flown with Global Navigation Satellite 

System/Inertial Navigation System (GNSS/INS) units for 

direct georeferencing. Visible Near-Infrared (VNIR) 

hyperspectral data were collected with a Headwall 

Photonics Nano-Hyperspec pushbroom scanner, which 

acquires data in 272 spectral bands at 2.2 nm/band from 400 

nm to 1000 nm. LiDAR data were collected with a 

Velodyne VLP-16 3D LiDAR sensor. The dates of the 

remote sensing data sets are listed in Table 2. 

 
Table 2. Remote Sensing Data Sets Details 

Year Data Type Dates 

2017 
LiDAR 7/07, 7/12, 7/25, 8/08, 8/23 

Hyperspectral 7/04, 7/14, 7/25, 8/08, 8/23 

2018 
LiDAR 7/02, 7/18, 7/23, 8/01, 8/06 

Hyperspectral 7/03, 7/18, 7/25, 7/30, 8/09 
 

From each LiDAR point cloud and for each plot, 

21features including 30th, 50th, 75th, 90th, 95th, 99th, and 

100th percentiles of height, canopy cover, and multiple 

statistical features were extracted. From hyperspectral data, 

the average of the respective values associated with the 

vegetation pixels extracted via pixel-based classification 

within a row in a given plot were computed and used as 

input features for further analysis. More information about 

pre-processing of the data is available at [17]. 
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4.3. Experimental Setup 

Results of two experiments are presented: the proposed 

method for feature learning is investigated initially. For 

each experiment, the data from all other experiments are 

used to train the proposed the FAEN and CAEN models, 

then the learned features are evaluated as the input features 

in SVR models to predict end of season biomass for that 

experiment. The robustness of performance of the SVR 

models and the proposed RNN is evaluated by training these 

models on one experiment and using the models to predict 

biomass of all other experiments.  

5. Results 

5.1. Feature Learning Results 

The results of feature learning include both the proposed 

FAEN and CAEN architectures. For training, all the 

features from all the multi-variety plots and all five 

available dates are stacked in an input vector. For example, 

for the HyCal 2017, there are 72 plots (from Table 1) and 

five dates, so 5×72=360 sample data points are available for 

training. Once training is completed, the trained network 

can be used to extract features for other data sets (any 

experiment at any date). 

Figure 5 (a) shows the original, reconstructed, and learned 

features from hyperspectral data for one of the varieties in 

the HyCal 2017 experiment using FAEN trained on the 

same data sets. Figure 5 (b) shows the same features using 

the same network, but training was performed on the SbDiv 

2017 data sets. The Root Mean Square Error (RMSE) of the 

reconstruction is also provided in Figure 5. The 

reconstructed features are very similar to the original 

features in both training scenarios based on the small RMSE 

values observed for each reconstruction. This indicates that 

it is possible to train the network on some experiments, and 

then use the trained network for other experiments. This is 

important for two reasons: 1) if there are experiments where 

the number of samples for training is not adequate, 

pre-trained networks can be used; 2) this provides the 

opportunity to use a trained network to extract features for 

all the experiments in both 2017 and 2018, which represent 

a broader range of environmental conditions. This can 

potentially facilitate transfer learning required for 

multi-year predictions. 

 

  

 

(a) (b) 
Figure 5. Original, reconstructed, and learned features for one variety of the HyCal 2017 experiment using FAEN trained on the (a) HyCal 

2017 and (b) SbDiv 2017 hyperspectral data sets. 



 

 

5 

To farther investigate these issues, the FAEN and CAEN 

are trained on each experimental data set first, and the 

trained networks are then used to learn the features for all 

the other experiments. The learned features for each 

experiment were then used in an SVR model to predict the 

end-of-season biomass for that experiment using 3-fold 

cross validation. The R2s of the predictions compared to 

ground reference data are provided in Tables 3 and 4. In 

most cases, the highest accuracies were obtained when the 

training and testing were both associated with the same 

experiment (panel). However, for all experiments using the 

networks trained on data sets from other experiments 

provided comparable results. In some cases, training using 

the data from the combined experiments (last column of 

Tables 3 and 4) provided the most accurate prediction. 

These results indicate that it may not be necessary to train 

the proposed networks on the data sets of the same 

experiment for biomass prediction.  It should be noted 

however, that it is critical to use high quality data for 

training and evaluating networks over multiple panels and 

time periods.  

 
 

For most experiments in Tables 3 and 4, the combined set 

of learned features from LiDAR and hyperspectral data 

provided more accurate results than using features from 

only hyperspectral or LiDAR. This indicates the importance 

of using both geometric and spectral related features for 

biomass predictions. For HyCal experiments in both 2017 

and 2018, LiDAR-based features provided more accurate 

results than hyperspectral-based features, while for all other 

experiments, hyperspectral-based features provided more 

accurate results. This can be explained by considering the 

differences in the genotypes planted in different 

experiments. The HyCal experiments consisted of 18 

commercial genotypes with a wide range of structural 

characteristics that can be reflected in LiDAR-based 

geometric features, while the InCal and SvDiv experiments 

had more similar genotypes, and thereby more similar plant 

structure. 

 

 

 

 

 

 

Table 3. R2 values of SVR-based biomass prediction (of field 

based results) using latent features extracted by the proposed

FAEN trained on different experimental data sets and tested on all 

experiments.  
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H
y

C
al

 H 0.63 0.63 0.47 0.56 0.52 0.57 0.53

L 0.65 0.68 0.65 0.67 0.66 0.61 0.68

HL 0.78 0.78 0.78 0.72 0.75 0.70 0.75

In
C

al
 H 0.58 0.63 0.63 0.59 0.64 0.62 0.64

L 0.49 0.56 0.54 0.54 0.56 0.51 0.51

HL 0.64 0.70 0.57 0.56 0.64 0.62 0.60

S
b

D
iv

 H 0.62 0.64 0.65 0.62 0.64 0.65 0.67

L 0.62 0.61 0.62 0.61 0.60 0.60 0.62

HL 0.71 0.72 0.73 0.70 0.72 0.72 0.74

2
0

1
8

 

H
y

C
al

 H 0.71 0.69 0.55 0.56 0.61 0.52 0.60

L 0.76 0.69 0.62 0.73 0.72 0.65 0.70

HL 0.77 0.75 0.60 0.75 0.73 0.69 0.79

In
C

al
 H 0.59 0.53 0.56 0.46 0.50 0.57 0.50

L 0.48 0.51 0.54 0.57 0.58 0.41 0.58

HL 0.69 0.61 0.63 0.59 0.66 0.62 0.66

S
b

D
iv

-t
c H 0.44 0.44 0.43 0.42 0.42 0.43 0.43

L 0.36 0.35 0.35 0.36 0.36 0.34 0.35

HL 0.45 0.45 0.44 0.43 0.43 0.43 0.43

** H refers to hyperspectral, L refers to LiDAR, and HL is combined

hyperspectral and LiDAR data sets 

Table 4.  R2 values of SVR-based biomass prediction (of field

based results) using latent features extracted by the proposed 

CAEN trained on different experimental data sets and tested on all 

experiments. 
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H
y

C
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 H 0.60 0.57 0.52 0.58 0.56 0.59 0.47

L 0.70 0.67 0.61 0.66 0.53 0.72 0.67

HL 0.67 0.71 0.65 0.64 0.56 0.54 0.71

In
C

al
 H 0.65 0.67 0.69 0.64 0.65 0.64 0.69

L 0.55 0.53 0.55 0.53 0.54 0.58 0.55

HL 0.59 0.51 0.58 0.49 0.52 0.55 0.58

S
b

D
iv

 H 0.68 0.71 0.70 0.67 0.69 0.68 0.69

L 0.61 0.58 0.62 0.60 0.58 0.63 0.62

HL 0.74 0.74 0.75 0.74 0.74 0.76 0.75

2
0

1
8

 

H
y

C
al

 H 0.65 0.64 0.63 0.64 0.65 0.64 0.69

L 0.72 0.59 0.50 0.74 0.72 0.63 0.64

HL 0.73 0.68 0.58 0.72 0.72 0.66 0.62

In
C

al
 H 0.58 0.60 0.59 0.59 0.54 0.50 0.58

L 0.59 0.63 0.63 0.60 0.60 0.61 0.53

HL 0.57 0.62 0.64 0.65 0.65 0.60 0.61

S
b

D
iv

-t
c H 0.46 0.47 0.47 0.45 0.47 0.47 0.46

L 0.37 0.36 0.37 0.36 0.37 0.35 0.36

HL 0.48 0.49 0.48 0.48 0.49 0.49 0.48

** H refers to hyperspectral, L refers to LiDAR, and HL is combined 

hyperspectral and LiDAR data sets 
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Figure 6. Pearson correlation coefficient between the biomass data and hyperspectral features learned by FAEN trained on each experiment 

individually and all experiments. The correlations are provided for each feature for each date, as well as the average of the correlation.  
 

Figure 6 shows the Pearson correlation coefficients 

between the end of season biomass and hyperspectral 

features learned by FAEN trained on data from different 

experiments individually and tested on all experiments. The 

figure shows that 1) the correlation between input features 

1-4 from each day of the season and biomass can be very 

different, 2) the features from the first day of the season 

were more correlated with the final biomass than later 

season features, 3) the average of the correlation of all the 

features with biomass shows that when training, using all the 

trials provided the features most related to the biomass 

which is consistent with R2 results provided in Table 3. 

The highest R2 value for each experiment using FAEN 

and CAEN is provided in Table 5, which shows the FAEN 

provided slightly more accurate results for the HyCal and 

InCal in both years while CAEN resulted higher R2 for the 

SbDiv in 2017 and SbDiv-tc in 2018. A possible 

explanation for these differences, although small, could be 

that for the SbDiv experiments, more sample data are 

available than the other experiments (as more plots are 

planted in these experiments as noted on Table 1) implying 

that the CAEN might require more samples to train than 

FAEN. 
 
 

 

Table 5. The highest R2 of the SVR predictions using the features

learned using the proposed FAEN vs. CAEN from Tables 3 and 4.

Experiment FAEN CAEN 

2017 

HyCal 0.78 0.72 

InCal 0.70 0.69 

SbDiv 0.74 0.76 

2018 

HyCal 0.79 0.74 

InCal 0.69 0.65 

SbDiv-tc 0.45 0.49 

5.2. Multi-year Biomass Prediction 

In the previous section, the training and validation of the 

SVR models was performed on sample data of the same 

experiment. In this section, the SVR and RNN models were 

trained for each experiment, and the models are then used 

for biomass prediction of all the experiments. For all 

predictions in this section, the features learned from the 

proposed FAEN (trained on all the data sets of all 

experiments) were used as the input features for the 

predictive models. 

Table 6 shows the results of biomass prediction using 

SVR models training on each experiment and validating on 

all other experiments. The highest R2 for each experiment 

was achieved when the training and validation were 

performed on the same experiment (splitting the sample 

data into training and validation categories and using 3-fold 

cross validation). Figure 7 shows the prediction results of an 

SVR model that was trained with the HyCal 2017 data and 

tested on the InCal 2017 and HyCal 2018 data. In Figure 

7-(b), although the R2 is zero, a relationship between the 

predicted and ground reference biomass data is obvious.  

Tables 7 and 8 show the results of similar predictions 

with the proposed RNN in Figure 3 with GRUs 

(RNN-GRU) and LSTMs (RNN-LSTM) as the RNN cells, 

respectively. The number of iterations was set to 100,000, 

but the model with the highest R2 was identified after 

training. Figure 8 shows the training loss, training and test 

accuracies for RNN-GRU when training and testing were 

performed on the InCal 2018 and SbDiv 2017 experiments, 

respectively. 
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Table 6. The R2 value (relative to field based measurements) of

biomass predictions using SVR 

   Train    
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 HyCal 0.69 0.27 -6.89 -3.09 -1.35 0.64 

InCal 0.20 0.64 -14.86 -8.98 -4.90 -0.98

SbDiv 0.52 0.56 0.74 -46.83 -12.73 -13.19

2
0

1
8

 HyCal -0.50 -2.52 -4.90 0.78 -0.01 -1.01

InCal 0.34 0.06 -0.80 -0.67 0.70 -0.86

SbDiv-tc 0.26 -0.15 -0.95 -5.38 -0.58 0.43 

 

(a) 

(b) 

Figure 7. Biomass prediction results of SVR model trained on the

HyCal 2017 experiment and tested on (a) InCal 2017 and (b)

HyCal 2018. 
 

From Tables 6, 7, and 8, when the training and validation 

are performed with different experiments of the same year, 

predictions are more accurate compared to training and 

validation with different experiments of different years. 

Also, training on the 2017 experiments and validating on 

2018 experiments yielded more accurate predictions than 

training on the 2018 experiments and validating on the 2017 

experiments. In general, the R2 of predictions with RNNs 

are higher than those with SVR. The possible explanations 

for this are that RNNs are more powerful than SVRs in 

modeling time series data, and that with RNN, the training 

can be controlled to avoid the overfitting by early 

termination of the training. Comparing Tables 7 and 8 

shows that RNN-GRU provided marginally better results 

than RNN-LSTM which could be because LSTM is more 

complex that GRU and requires learning of more 

parameters.  

From Tables 6 to 8, the predictions for the HyCal 

experiment in both 2017 and 2018 and the SbDiv 

experiment in 2017 are more accurate than other 

experiments. The reason could be that genotypes in the 

HyCal experiments are more varied in terms of physical 

structural characteristics, and using LiDAR-based features 

in the models resulted in more accurate predictions for this 

experiment (similar to the results in Tables 3 and 4). For the 

SbDiv in 2017, although the genotypes are not as varied as 

HyCal in terms of physical structural characteristics, the 

predictions are comparable to those from the HyCal 

experiments which could be attributed to the greater number 

of plots (and therefore number of samples) than other 

experiments, providing a better training for the regression 

models. The reason(s) for poor predictions for SbDiv-tc is 

unclear to the authors. 

 
Table 7. The R2 of biomass predictions using RNN-GRU  

   Train    

 

 

  

Test 

2017 2018 

H
y

C
al

 

In
C

al
 

S
b

D
iv

 

H
y

C
al

 

In
C

al
 

S
b

D
iv

-t
c 

2
0

1
7

 HyCal 0.72 0.46 0.79 0.00 0.25 0.62 

InCal 0.58 0.64 0.60 0.00 0.00 0.35 

SbDiv 0.52 0.55 0.72 0.00 0.55 0.33 

2
0

1
8

 HyCal 0.46 0.00 0.00 0.84 0.11 0.01 

InCal 0.33 0.55 0.00 0.40 0.60 0.41 

SbDiv-tc 0.25 0.35 0.00 0.05 0.33 0.45 

 
Table 8. The R2 of biomass predictions using RNN-LSTM  

   Train    
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 HyCal 0.63 0.29 0.71 0.00 0.26 0.58 

InCal 0.57 0.65 0.59 0.00 0.00 0.42 

SbDiv 0.28 0.60 0.74 0.00 0.50 0.00 

2
0

1
8

 HyCal 0.56 0.00 0.00 0.75 0.00 0.00 

InCal 0.37 0.55 0.00 0.36 0.49 0.33 

SbDiv-tc 0.22 0.34 0.00 0.00 0.25 0.43 

6. Conclusions and Future Work 

Two deep learning based networks were investigated in this 

study for unsupervised feature learning from hyperspectral 

and LiDAR data. A recurrent neural network  
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Figure 8. Training the proposed RNN-GRU on the InCal 2018 and

validating on the SbDiv 2017. 

 

was then developed with hyperspectral, LiDAR, and 

weather data inputs to predict sorghum biomass. The results 

of using the proposed network for training on one 

experiment and predicting biomass for other experiments 

with different types of sorghum varieties illustrate the 

potential of the network for biomass prediction, and the 

challenges relative to small sample sizes, including weather 

and sensitivity to the associated ground reference 

information. In ongoing studies, the feature learning 

networks with other possible variations, such as increasing 

the number of hidden layers and changing the 

hyper-parameters as well as using RNNs for hyperspectral 

data is being tested. Also, RNN architecture is being tested 

on prediction of biomass by simultaneously training on 

multiple years of data.  
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