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Abstract

Data sharing in research is important in order to re-

produce results, develop global models, and benchmark

methods. This paper presents a dataset containing image

and field data from a field plot experiment with oil radish

(Raphanus sativus L. var oleiformis) as catch crop after

spring barley. The field data consists of fresh weight, dry

weight, Carbon content and Nitrogen content from multiple

weekly plant samples collected from the plots. The image

data consists of images collected weekly prior to the plant

samples. A subset of the images corresponding to the plant

sampling areas have been annotated pixelwise. In addition

to the image and field data, weather data from the growing

period is also included in the dataset.

The dataset is accompanied by two challenges: 1) se-

mantic segmentation of crops and 2) oil radish yield esti-

mation. The former challenge focuses on data image, while

the latter focuses on the field data. Baseline methods and

results are provided for both challenges.

1. Introduction

With a world population expecting to reach 10 billion

by 2050 [17], there is a need for an increase in agricultural

production. With an increasingly environmental concern on

especially Nitrogen (N) leaching, it is broadly agreed upon

an increase in production must not cause an concomitant

negative environmental impact. One possible solution could

be to increase production through more knowledge per area

[3] or more precisely through sustainable intensification of

agriculture. To acquire this knowledge, data and knowledge

must be collected from the field, which in turn can be used

to build decision support systems for farmers. More knowl-

edge per area can be collected by various types of sensors,

e.g. as RGB images which has the advantage of resembling

one of the human senses, which make it easier to determine

the ground truth. The collected image data must also be ac-

companied by field measurements, when the initial model

is developed.

The image and in particularly field data collection is very

time- and labour consuming and therefore expensive to col-

lect. Sharing collected data is therefore obvious not only

from the before mentioned reasons, but also due to the fact

that more data from different locations, years and crops

is necessary in order to develop more global models. It,

furthermore, helps reproducing results and benchmarking

methods.

1.1. Related work

In recent years, several datasets containing images of

plants have been made public available. These datasets may

be grouped based on both how plants were grown and how

controlled the data collection was performed.

In the fully controlled setting, the growth of the plants is

controlled closely and the plants are often grown individu-

ally. During image acquisition, the light conditions is also

controlled carefully. Examples of these include the ’Plant

Phenotyping Datasets’ [12] and the ’Plant Seedling Dataset’

[8]. The ’Plant Phenotyping Datasets’ consist of images and

annotations of Arabidopsis and tobacco over several weeks.

The annotations include segmentation masks and bound-

ing boxes of both plants and individual leafs. The ’Plant

Seedling Dataset’ consists of images of 12 crop and weed

species collected every 2 to 3 days for a 3 week period after

germination.

In the semi-controlled setting, the plants are grown out-

side and subject to the weather. During data collection,

however, special attention is paid towards the light condi-

tions through shielding the sun or using a powerful flash.
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Datasets collected in semi-controlled settings include the

’Sugar Beet Dataset’ [4], ’The Crop/Weed Field Image

Dataset’ [9] and the ’Spatial and Temporal Clovergrass

Dataset’ [1]. The ’Sugar Beet Dataset’ consists of RGB im-

ages, NIR images, lidar and laser scans of sugar beets col-

lected 2 to 3 times per week over a 3 month growing period

using a field robot. The annotations consists of 300 images

labelled according to non-vegetation, sugar beet and 9 types

of weed species1. The ’Crop/Weed Field Image Dataset’

consists of images of carrot and weed collected using a field

robot. The images are accompanied by automatically gen-

erated vegetation masks, which were subsequently manu-

ally annotated as weed or crop. The ’Spatial and Temporal

Clovergrass Dataset’ consists of images and botanical mea-

surements collected from clovergrass leys at two locations.

The images are labelled according to clover, grass, weed

and soil, but the labels cannot be used for training, as they

are generated using image analysis [2].

In the uncontrolled setting, the plants are grown outside,

but in contrast to the semi-controlled case, no special atten-

tion is made to the light conditions taken when collecting

the image data. The ’Leaf Counting Dataset’ from [16]

is an example of such a dataset, where the images have

been collected by several people under various conditions

using smartphones, consumer cameras and industrial cam-

eras. The dataset consists cropped images of weeds, which

have been annotated with the number of leafs present con-

nect to each plant.

As an alternative to manually annotate a large dataset,

[6] and [15] have created synthetic images of weeds and

clovergrass, respectively. The synthetic images are created

by cropping plants from real images and placing the ran-

domly on a soil background. This allows them to create

large image datasets with complete pixel-wise annotations

from a small number of samples.

A common trait for the majority of the above mentioned

datasets that they either do not include any field data (e.g.

biomass) or the link between the annotated image data and

field data is weak (e.g. ’Spatial and Temporal Clovergrass

Dataset’). This paper presents the ”Oil Radish Growth

Dataset” consisting of images and field data with a strong

link between the two. The dataset was collected over a two

month period in an uncontrolled outdoor setting. It con-

tains pixelwise annotated images of oil radish and volunteer

seeded barley with corresponding fresh weight, dry weight,

Carbon (C) content and N content of oil radish, barley, weed

and stubble. The dataset is accompanied by two challenges

(including baseline results): 1) semantic segmentation and

2) yield estimation.

This paper is structured as follows. Section 2 describes

how the image and field data were collected. Section 3

describes how the data forms the dataset, and Section 4

1The annotations have been expanded upon after publication.

presents two challenges with baseline results. The dataset

is discussed and concluded in section 5.

2. Field experiment and data acquisition

The image and field data included in the dataset is based

on the work of [14]. Besides making the dataset openly

available, the present paper greatly increases the number of

labelled images compated to [14]. The following subsec-

tions describe the field experiment and the data collection.

2.1. Field experiment

The field plot experiment was established in late April

2015 near Foulum, Denmark by sowing spring barley

(Hordeum vulgare L.). On 11th of August, the spring barley

was harvested. On 20th of August, 36 beds (each 15 m ×

3 m) were established in the harvested field. Barley stubble

were left in the field. The beds were established to evalu-

ate the effect of nine different N catch crop strategies with

four repetitions of each strategy. In the scope of this paper,

only the four beds using oil radish (Raphanus sativus L. var

oleiformis) as a catch crop is considered.

To ensure an approximately uniform sampling from the

beds, sampling areas (0.5 m × 0.5 m) were pre-allocated by

dividing each bed into six regions with eight sampling areas

each except for the end regions. The sampling areas were

located at the edge of the beds to reduce the effect on an-

other experiment. A yellow stick was placed at the corner

of each sampling area prior to the first week of data col-

lection. The yellow stick helped locate the sampling areas

when collecting field data in subsequent weeks and subse-

quently in the images.

Each week, one sampling area from each of the regions

was selected for biomass collection. The selected sampling

areas were selected to avoid sampling a neighbouring sam-

pling area in the subsequent week.

From late September till early November, weekly im-

age and plant samples were collected from the beds with

oil radish. The weekly data collection was carried out by

first scanning each bed with an RGB camera and subse-

quently collecting plant samples from the sampling area.

Plant samples were collected for seven weeks, and images

were collected for eight weeks. The images collected in a

given week were used to locate the exact sampling areas in

the images from the previous week. Hence, the image col-

lection continued one more week than the plant sampling.

2.2. Image data acquisition

The beds were scanned using Sony α7 24 Mpx full frame

RGB camera (6000 px × 4000 px) with a 35 mm lens. The

camera was mounted downward facing in front of trac-

tor. The camera height (±20 cm) and angle (±5�) varied

slightly between weeks. The cameras field of view covered



Figure 1. Camera setup used for image acquisition.

approximately 2 m × 1.4 m at ground level and a ground

sampling distance of 0.33 mm px−1. The camera was offset

to the right such that the field of view captured mainly the

right side of the plot, when driving through it (Figure 1).

A real-time kinematic (RTK) GPS was positioned di-

rectly above the camera to log the position of each image.

The camera and GPS were connected to a laptop located in

the cabin of the tractor. Starting and stopping image cap-

turing were performed manually through the laptop before

entering and after exiting each plot, respectively. Captured

images were transferred to the laptop through USB. The

GPS position was stored every 1 s and used to geotag the

images offline.

Each plot was traversed once in each direction each week

in order to cover the entire plot. The plots were traversed

at approximately 0.05 m s−1 to maintain a large overlap be-

tween the images.

2.3. Field data acquisition

Plant samples were collected by placing a 0.5 m × 0.5 m

cutting frame at the sampling area and then collecting all

above-ground plant material including stubble inside the

cutting frame. Plant material originating inside the cutting

frame but ending outside was partitioned where it naturally

crossed the imaginary vertical border of the cutting frame.

The same procedure was applied to plant material originat-

ing outside the cutting frame. This was done to achieve

a better correlation with what was observed in the images.

The plant samples were collected from the sampling areas

on the same day as the images were collected. In total, 136

plant samples were collected during the seven weeks of field

data collection.

The plant samples were stored at 4 �C for 0 to 7 days be-

fore they were analyzed. The storing period was determined

by the availability of the ovens used in the subsequent dry-

ing process. Before weighing the samples, each sample was

divided into four fractions (oil radish, barley/grass, weed

and stubble), which were subsequently analyzed individu-

ally. Each fraction-sample was weighed to determine the

fresh weight, dried and then weighed again to determine the

dry weight. The samples were dried for 48 hours at 60 �C to

ensure all water had evaporated. After the dry matter anal-

ysis, the samples were stored at dry storage until they could

be analyzed for N- and C-content. Each fraction-sample

was ground and a 5 mg sample was extracted to analyze for

N- and C-content. The analysis followed Dumas method

using a Vario El III (Elementar Analysensysteme GmbH,

Langenselbold, Germany).

3. Dataset

The data collected from the field plot experiment have

been organized into the ”Oil radish growth dataset” 2. The

dataset consists of the image and field data described in

the previous section as well as weather data from a local

weather station. The weather data includes daily mean air

temperature at 2 m, daily mean soil temperature at 0.10 m,

daily mean precipitation, and daily total global radiation

from the spring barley harvest date to the last date of data

collection (Figure 2).

To create a link between the image data and the field

data, the sampling areas of a given week were identified

in the images by comparing them to the images of a sub-

sequent week. 10 sampling areas could not be located in

the images due missing images due technical issues during

data collection. The issue was not discovered until after the

field data had been collected, thus, it was not possible to ac-

quire new images of the affected sampling areas. For each

sampling area and image pair, a 1600 px × 1600 px patch

around the sampling area was extracted from the image.

The pixel coordinates of the corners of the sampling area

was recorded. Each image of the sampling areas was pixel-

wise annotated as either oil radish, barley/grass, weed, soil,

equipment, (barley) stubble, or unknown. Grass was in-

cluded in the barley category to match the fractions used in

collected field data. Weed accounted for all green plant ma-

terial, which did not fit into the oil radish or barley/grass cat-

egories. The annotation was performed in two steps. First

edges were detected to create blobs. Although, the were

detected automatically, the edges could be corrected by the

annotator, if they were missing or misplaced. In the second

step, the blobs were labelled as one of the previously men-

tioned classes. In practice, the annotation was performed

as an iterative process between the two steps. The annota-

tion was performed by an external company with expertise

in image annotation, but not in crops.

Figure 4 illustrates the labelled data (image, field and

weather data) from plot 3 in week 5.

2The dataset is available through a competition on https://

competitions.codalab.org/. Search for ”Oil radish”.



Figure 2. Weather data included in the dataset ranging from spring

barley harvest date to the last date of data collection. Top: Daily

average air and soil temperature at 2 m height and 10 cm depth,

respectively. Middle: Daily total precipitation. Bottom: Global

radiation.

Training set Test set

Sampling areas 101 35

Labelled images 95 34

Unlabelled images 5287 –
Table 1. Summary of sampling areas and image data in the training

set and test set.

A large set of images was collected during the field plot

experiment, but only a small portion of the images was la-

belled. The images, which was not associated with a sam-

pling area, have been included as unlabelled images to fa-

cilitate unsupervised approaches.

The dataset was split into a training set and a test set

(Table 1) based on which plots, the data was collected from.

Plot 4 was selected for the test set, while plot 1 to 3 was

selected for training set.

The image and field data from the training set is summa-

rized in Figure 3.

4. Challenges

The presented dataset is accompanied by two challenges:

1) Semantic segmentation and 2) Oil radish yield estima-

tion. The challenges are available as a permanent competi-

tion online3.

4.1. Semantic segmentation

The end goal of this dataset is to estimate the yield. In

order to include the image data, information regarding the

yield must be extracted from the image data. To do so, a

3The permanent competition is available at https://

competitions.codalab.org/. Search for ”Oil radish”.

Figure 3. Summary of oil radish field data and image data from

the training set grouped by date of collection. From top to bot-

tom: 1) Barplot of number of sampling areas. 2-5) Boxplot of oil

radish fresh weight, dry weight, C-content and N-content. Hor-

izontal lines indicate median. Edges of boxes indicate 25th and

75th percentile values. End of vertical lines indicate most extreme

non-outlier data points. · indicate outliers. 6) Barplot of number

of annotated images. 7) Boxplot of number of unlabelled images.

Note the two extra dates with unlabelled images.

first potential step is to determine which pixels belongs to

which species.

As such, in the semantic segmentation challenge, the

task is to classify each pixel in the labelled images from

the training set. Each pixel must be classified as either oil

radish, barley/grass, weed, soil, equipment or (barley) stub-

ble. Pixels labelled as unknown in manual annotations are

ignored during evaluation and can thus be ignored during

training. Pixels classified as unknown are however not ig-

nored and will potentially count negatively towards the final

score.

4.1.1 Evaluation metrics

The semantic segmentation challenge is evaluated using

the intersection over union (or Jaccard index [10]), which

is commonly used when evaluating semantic segmentation

tasks [7, 11].

Let C = [co,p] be a confusion matrix, where co,p is the



Image data

Sampling areas

Annotations

Unknown
Oil radish
Barley
Weed
Stubble
Soil
Equipment

Field data

Fresh weight:
Radish

Barley

Weed

Stubble

72.5 g

19.6 g

0.6 g

17.2 g

95.7 g

16.3 g

1.5 g

13.2 g

41.6 g

33.6 g

2.9 g

13.9 g

91.9 g

9.4 g

6.0 g

9.1 g

29.5 g

23.0 g

9.6 g

17.0 g

Dry weight
Radish

Barley

Weed

Stubble

10.2 g

2.8 g

0.3 g

13.7 g

12.9 g

3.8 g

0.3 g

10.9 g

5.9 g

8.9 g

0.8 g

10.8 g

12.3 g

2.5 g

1.6 g

7.9 g

4.4 g

7.0 g

2.0 g

13.5 g

C-content
Radish

Barley

Weed

Stubble

3.66 g

0.97 g

0.10 g

4.44 g

4.59 g

1.40 g

0.11 g

3.63 g

2.14 g

3.61 g

0.29 g

4.71 g

4.50 g

0.90 g

0.57 g

3.13 g

1.62 g

2.79 g

0.77 g

5.25 g

N-content
Radish

Barley

Weed

Stubble

0.36 g

0.06 g

0.00 g

0.10 g

0.44 g

0.10 g

0.01 g

0.09 g

0.20 g

0.19 g

0.02 g

0.06 g

0.44 g

0.06 g

0.04 g

0.05 g

0.15 g

0.14 g

0.05 g

0.01 g

Weather data

Mean temperature

Precipitation

Global radiation

Soil temperature, 10 cm

Soil temperature, 30 cm

8.2 �C

0 mm

3.5 MJ m−2

9.8 �C

10.2 �C

Figure 4. Example of available data from the dataset. The example shows plot 3 in week 5 with the associated sampling areas, annotated

images, field data and weather data.



number of instances from class o predicted as class p. If

o = p, co,p is the number of correct predictions for a given

class. The intersection over union for class k is then given

by:

IoUk =
ck,k

−ck,k +
PK

o=1
co,k +

PK

p=1
ck,p

(1)

where K is the number of classes. The per class, mean

and frequency weighted intersection over union are used as

evaluation metrics. The mean and frequency weighted in-

tersection over union are given by:

mean IoU =
1

K

K
X

k=1

IoUk (2)

and

f.w. IoU =

K
X

k=1

 

IoUk

PK

o=1
co,k

PK

o=1

PK

p=1
co,p

!

(3)

Pixels labelled as ’Unknown’ in the annotated images are

ignored in the final evaluation.

4.1.2 Baseline results

Two deep convolutional neural networks were trained to

provide baseline models for this challenge. Both networks

used the FCN-8s network structure [11], but one network

was trained solely on the labelled images, while the other

was trained using the unlabelled images. Both networks

was trained for 50 epochs with a learning rate of 25× 10�5

using the Adagrad algorithm for optimization [5] and a

batch size of 3. Each class was weighed with respect to

the log frequency of its occurrence in the training set. The

class weights was normalized such that the average class

weight was 1. During training, the images were augmented

using random brightness, saturation, hue and contrast and

randomly cropping the image to 1200 px × 1200 px. 8% of

the image data (8 labelled images and 423 unlabelled im-

ages) was used for validation to monitor the performance

during training.

The network trained on the labelled data was trained

first. To train FCN-8s on the unlabelled data, the network

trained on the labelled data was used to ’annotate’ the unla-

belled data following the example of [13]. Only the center

3000 px×2000 px from the unlabelled images were used.

The baseline results for both networks are summarized

in Table 2.

4.2. Oil radish yield estimation

The oil radish yield estimation challenge focuses on the

collected oil radish field data. In the field plot experiment,

oil radish was sown as a catch crop and used to capture N

in soil in order to minimize N-leaching to ground and sur-

face water. The captured N will be available for the crops

sown in the following spring and may be included in the N

accounting for crop rotation the following year.

The challenge is, therefore, to predict the field data asso-

ciated with oil radish (fresh weight, dry weight, C-content

and N-content) from the sampling areas. Though the chal-

lenge stems from the field data, it is encouraged to include

the image and weather data in the predictions. Likewise, it

is encouraged to include field data from the other fractions

(barley/grass, weed and stubble) to account for any poten-

tial interactions.

4.2.1 Evaluation metrics

Yield estimation models are evaluated using the root mean

square error and the mean absolute percentage error. Given

a set of observed values {t1, t2, . . . , tN} and a set of pre-

dicted values {y1, y2, . . . , yN}, the root mean square er-

ror (RMSE) and mean absolute percentage error (MAPE)

is given by:

RMSE =

v

u

u

t

1

N

N
X

i=1

(ti − yi)
2

(4)

and

MAPE =
1

N

N
X

i=1

�

�

�

�

ti − yi

ti

�

�

�

�

100% (5)

where ti and yi are the ith observed and predicted values,

respectively, and N is the total number of samples. Dur-

ing evaluation, sampling areas without any corresponding

image data are ignored.

4.2.2 Baseline results

Linear models for predicting oil radish dry weight, fresh

weight, C-content and N-content have been fitted to the

training data to create baselines for this challenge. Two sets

of models have been fitted.

The first set of models are based on the temperature sum

derived from the weather data. The temperature sum Tsum

over a given period is given by:

Tsum =

tN
X

t=t0

max(Tt − TB , 0) (6)

where Tt is the daily average temperature to the time t, TB

is the base temperature required for growth, and t0 and tN
is the starting and ending time. For the baseline models,

TB = 0 and t0 was set to the harvest date of spring barley.

Scatter plots of the training data and the fitted models are

shown in Figure 5 (top row).

The second set of models are based on the oil radish cov-

erage derived from the image data. The coverage of a given



Intersection over union

Method mean f.w. Radish Barley Weed Stubble Soil Equipment

FCN-8s 0.449 0.712 0.859 0.459 0.135 0.322 0.633 0.285

FCN-8s + UL 0.449 0.712 0.859 0.461 0.119 0.325 0.631 0.300
Table 2. Baseline results for the semantic segmentation challenge. ’FCN-8s’ was trained only on the labelled images. ’FCN-8s + UL’ was

trained on the unlabelled images. F.w. is the frequency weighted intersection over union.

sampling area was calculated as the number pixels labelled

as oil radish with respect to the total number of pixels. For

each sampling area, the full 1600 px × 1600 px image was

used. For evaluation on the test set, the label predictions

produced by the FCN-8s network trained in the semantic

segmentation challenges were used. Scatter plots of the

training data and the fitted models are shown in Figure 5

(bottom row).

The oil radish yield estimation baseline results are sum-

marized in Table 3. From both the scatter plots of the train-

ing data (Figure 5) and the baseline results from the eval-

uation on the test set (Table 3) it is clear that coverage ex-

tracted from the images is a better predictive variable than

the temperature sum. This is largely due to the fact that

the coverage can explain the spatial variance within the oil

radish. The temperature sum, on the other hand, is the same

for all sampling areas within the plots one a given date and

thus can not be used to explain this variance. The coverage

can, however, only be expected to provide decent results up

till a certain point. When the oil radish covers the full im-

age, an increase in biomass can no longer be described by

the coverage and must be explained otherwise. One poten-

tial solution would be to create a joint model based on both

image and weather data.

5. Discussion and conclusion

This paper has presented the Oil Radish Growth dataset,

which contains image and field data from an oil radish field

plot experiment collected over 8 weeks. To the best of the

authors knowledge, this is the first openly available dataset

which combines images and field data of oil radish.

One drawback of the dataset is that it contains data from

only a single growing season and from a single field. This

severely limits the potential of creating generalized models

based on the dataset. Especially considering years with ex-

treme growth such as 2014, where the conditions for growth

in the fall was just right. The dataset will, however, still be

useful for benchmarking and may be combined with other

future datasets to create larger datasets.

The image annotations was performed by an external

company with no expertise in crops. As such, the an-

notations are expected to contain some level of misla-

belling. The mislabelled annotations have been corrected

when identified, but some may still inhabit the dataset.

The authors remain open to any feedback, corrections to

or extensions on the dataset and aim to update the dataset

based on those responses. Possible extensions to the dataset

annotations include plant instance labels, stem emergence

points and labelling of individual leafs (similar to [12]).

Each of which can easily spur off an additional challenge.
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Tsum 72.3 g 35.0% 7.5 g 29.6% 2.74 g 29.9% 0.29 g 32.1%

Coverage 36.0 g 17.9% 3.4 g 17.2% 1.24 g 17.0% 0.14 g 15.0%
Table 3. Baseline results for the yield prediction challenge.
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