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Abstract

Camera based Simultaneous Localization and Mapping

(SLAM) in an agricultural field can be used by crop grow-

ers to count fruits and estimate yield. It is challenging due

to dynamics, illumination conditions and limited texture in-

herent in an outdoor environment. We propose a pipeline

that combines the recent advances in deep learning with

traditional 3D processing techniques to achieve fast and ac-

curate SLAM in vineyards. We use images captured by a

stereo camera and their 3D reconstruction to detect objects

of interest and divide them into classes: grapes, leaves and

branches. The accuracy of these detections is improved by

leveraging information about objects’ local neighborhood

in 3D.

We achieve a F1 score of 0.977 with ground truth grape

counts from images. Our method builds a dense 3D model

of the scene with a localization accuracy in centimeters

without any assumption of constant illumination conditions

or scene dynamics. This method can be easily generalized

to other crops such as oranges and apples with minor mod-

ifications in the pipeline.

1. Introduction

Modelling and mapping outdoor agricultural environ-

ments has applications ranging from crop monitoring to

yield estimation, especially in a high value crop like grapes.

Characterization at plant level is very important to track the

dynamics of crop development. Producing 30,000 dollars

worth of produce per acre, grapes are often the beachhead

industry for modernization. Because of the large scale ex-

tent of a typical vineyard as seen in Figure 1, a periodic

and exhaustive manual measurement of plant characteris-

tics is inaccurate and time consuming. Over the past years,

it is largely done by interpolating the measurements from

coarsely sub sampled fractions of the vineyard. This results

in a poor estimation as growth patterns may vary across the

vineyard due to factors such as soil characteristics, incident

radiation angle, light interception and irrigation practises.

Recently, several researchers have focused on develop-

ing both airborne and ground based robotic solutions to high

throughput phenotyping. Among them, cameras prove to

be a low cost solution as opposed to its counterparts such

as LIDAR, ultrasonic sensors and hyperspectral cameras.

In addition, cameras provide additional information such as

color and access to finer structures.

Figure 1. Aerial view of a vineyard depicts the large scale nature

of plant modeling and grape counting in vineyards

Figure 2. Left: Closeup view of the vineyard. Right Imaging

equipment with camera and air blower

To accurately model plant structures using a camera,

high-quality 3D reconstruction/mapping of the environment

is necessary. However, it is challenging because of the

dynamics, like the movements of leaves due to wind, and

changing illumination conditions based on cloud cover and

self shadow often present in an outdoor environment. Clas-

sical 3D reconstruction and mapping approaches such as

Structure from motion (SfM), Multi-View Stereo (MVS),

ORB-SLAM often fail when used individually due to lack

of texture in the scene or presence of dynamic objects and

repetitive structures. Interestingly, recent advances in deep



learning frameworks are able to detect and track objects

even with dynamics and changing illumination. Although

these frameworks are presumed to require a large amount

of training data, by carefully designing the cost function, a

framework such as Mask R-CNN [7] can be made to detect

instances of new objects, say grapes, given a small number

of labeled images.

We propose a camera based SLAM solution to accurately

count grapes by leveraging the information from 2D as well

as 3D. We demonstrate our approach on stereo images col-

lected from a camera and air blower setup mounted on a

ground vehicle shown in Figure 2. The air blower is at-

tached below the camera to move leaves and increase fruit

visibility in dense canopy regions. We adapt Mask R-CNN

[7] to perform instance segmentation of grapes in images

and develop a module that computes instance segmentation

masks in parallel to generating disparity based point cloud.

Instance masks are propagated to 3D to generate several

regions of interest (ROIs) in 3D. At each of these ROIs,

Singular Value Decomposition (SVD) is performed at three

different scales. Based on the SVD outputs, ROIs are re-

grouped to include any point belonging to grape class that

was missed earlier.

Merging SVD results with masks not only improves the

accuracy of classification of points into grapes and non-

grapes but also demarcates leaves from branches. We itera-

tively fit shapes to these classes and use it to estimate frame-

to-frame transformation. The benefit of using fitted shapes

is twofold. Firstly, it is robust to the dynamics introduced in

the scene by leaf blower where other feature/intensity based

SLAM techniques will perform poorly. Secondly, it limits

the number of landmarks to the number of parameterized

shapes thereby decreasing the optimization time for SLAM.

By tuning the segmentation module and reparameterizing

the shape fitting, this solution can be extended to other va-

rieties of fruits/vegetables without any hassle.

2. Related work

As our work spans across different domains such as fruit

detection and classification of plant parts, SLAM, instance

segmentation, and 3D reconstruction, we divide this section

accordingly.

Several camera-based systems are present in the litera-

ture which perform phenotyping tasks such as fruit detec-

tion, leaf area measurement and yield estimation. Classifi-

cation of grapevines into branches, leaves and grapes with

an area under the curve (AUC) of 0.94 has been achieved us-

ing color and shape features along with conditional random

field by [5]. They use feature based SfM for 3D reconstruc-

tion which consumes significant time and is prone to accu-

mulate drift and feature correspondence errors. They also

require a large dataset with labels in 3D and cannot identify

instances of grapes separately for the purpose of counting.

A set of custom image filters and transforms have been de-

veloped in [3] to detect shoot and leaves in vineyard, but

they do not focus on 3D modeling or fruit detection.

There are different image-based algorithms to detect

fruits and estimate yield which assume the scene to be static.

A fruit counting pipeline which combines image segmenta-

tion, frame to frame tracking, and 3D localization to count

visible fruits is presented in [11]. They achieve a count er-

ror of around 3% mean and 4% standard deviation for ap-

ples. [16] detect and count grapes from images using shape

and visual texture features. Although they can predict yield

within 9.8% of actual crop weight, it involves calibrating

their counts based on ground truth count over a small sam-

ple of vineyard. [17] present a keypoint based algorithm

to detect round fruits like apples and grapes from images

which achieves a F1 score of 0.82.

Current state-of-the-art SLAM systems like ORB-

SLAM2 [13], LSD-SLAM [6] do not leverage semantic in-

formation. DeepSLAM [4] aims at finding a small set of

geometrically stable point features from images that can be

directly used in SLAM. However, recent advances in object-

detectors and semantic mapping networks have made it pos-

sible for researchers to use classification, detection and seg-

mentation in SLAM [2, 12, 15, 19]. Semantic SfM [2] uses

points, object detections and semantic regions to impose

geometrical constraints on estimation of camera and object

pose.

Fusion++ [12] presents an object-level SLAM for indoor

scene understanding. It fuses instance segmentation with

Truncated Signed Distance Functions (TSDF) presented in

Kinect Fusion [14]. Although they use Mask-RCNN based

object detections as landmarks, they do not consider the de-

tection accuracy. Their method is applicable to static in-

door scenes and requires computationally expensive opti-

mization and re-localization steps when the TSDF is reset.

SLAM++ [19] is another object-level SLAM framework

where objects are detected, tracked and mapped in real-time

in a dense RGB-D framework which can identify and ignore

dynamics in the scene. However, it requires a database of

well defined 3D models of the objects to refer to, and it calls

for creation of such a database offline.

QuadricSLAM [15] is another object-oriented SLAM

system that estimates camera pose and object pose simul-

taneously from noisy odometry and object detection bound-

ing boxes. It incorporates state-of-the art deep learning ob-

ject detectors as sensors to build surfaces in 3D space called

“quadrics” by combining object detections from multiple

views. Quadrics act as 3D landmarks and provide a com-

pact representation that approximates an objects position,

orientation and shape. Performance of this algorithm will

be poor in a cluttered scene such as ours where the bound-

ing boxes for grapes will significantly overlap on each other.

For instance segmentation of grapes, we considered both



Figure 3. Visualization of our pipeline. Inputs are stereo images shown on the left. Data flows from left to right and is represented by gray

arrows. Green arrows indicate the outputs at each stage. Final outputs are Dense 3D map, camera trajectory (in red) and final grape count

which are at the right end of the pipeline.

image and 3D classifiers. Fully Convolutional Network [9]

and Mask R-CNN [7] identify objects of interest in an im-

age and provide the location of all the pixels belonging to

that object. Capsule network [27] is a family of neural net-

works which explicitly models the spatial relationship be-

tween objects in an image. Replacing the feature points

with these instance masks to find correspondence not only

brings down the dimensionality of state-space but improves

the quality of dense reconstruction. In addition, they gen-

erate a multi-resolution map, where regions have resolu-

tions based on object size. SplatNET [22] is another net-

work architecture which performs spatially-aware feature

learning, as well as joint 2D-3D reasoning. While Mask

R-CNN is currently the state-of-the art in 2D instance seg-

mentation, 3D networks such as PointNet [18] perform ob-

ject classification and part segmentation from unstructured

point clouds. PointFusion [25] is another 3D object detec-

tion method that intelligently fuses both image based and

point cloud based object detectors to predict 3D bounding

boxes.

All of these 3D segmentation techniques require exten-

sive training data. No such training data readily available

for vineyards, and labeling point clouds is not feasible at

such a scale. Moreover, grapes cannot be assigned a pre-

defined 3D shape as most of the grapes are partially visible

either due to self occlusion or due to lack of different cam-

era views resulting in 2.5 dimensional shape. Folding Net

[26] on the other hand does unsupervised learning with end-

to-end deep auto-encoder. Although this seems promising

to use in a low training data setup, it will fail to perform in

our case where the canopy does not have a predefined 3D

shape.

3. Method

We present a method that combines features and ideas

from the literature to create an end-to-end vineyard map-

ping pipeline. Specific contributions of this paper are:

• Combination of image features and local shape infor-

mation from 3D to improve accuracy of plant structure

classification.

• Simplifying SLAM by using shapes fitted in 3D as

object-level features.

• End-to-end pipeline for accurately counting grapes.

Figure 3 gives a visualization of our approach where gray

arrows represent data flow and green arrows represent the

outputs. 3D reconstruction module and instance segmen-

tation module run in parallel by taking stereo images and

left image as inputs respectively. Masks generated by the

instance segmentation module are projected onto the 3D

model constructed using disparity. This information flows

to the SVD module which further improves classification

and generates labels for plant structures. Spheres are fit

to the SVD output and passed to SLAM module. SLAM

module stitches consecutive point clouds based on corre-

spondence between fitted shapes to build a dense map and

estimate camera trajectory. Grape counts are obtained from



3D model given out by SLAM and are reprojected to im-

age space to compare with image-wise ground truth count.

Grape count after every step is also given out to perform

ablation experiments detailed in section 4.3 .

3.1. 3D reconstruction

We use point clouds to represent the 3D profile of the

scene. As the goal here is to model the plant and classify

its structures, a dense point cloud is necessary. Therefore,

a disparity-based method is needed as opposed to modern

SIFT and SURF based correspondence matchers for 3D re-

construction. Looking at the taxonomy of stereo matching

algorithms in [20, 23], we found that Semi-Global Matching

best serves our purpose. The algorithms calculates the dis-

parity for each pixel in the left image where matching cost

calculation is based on Mutual Information (MI) which is

insensitive to recording and illumination changes. We refer

readers to [8] for further details.

Figure 4. Left : Input image (histogram equalized for visualiza-

tion) Right: Disparity map colored based on depth from the cam-

era where red indicates points are closer to camera and blue indi-

cates the points are away from camera.

3.2. Instance segmentation

We chose Mask R-CNN [7] for instance segmentation af-

ter experimenting with various network architectures. The

network configuration was selected empirically by training

and analyzing the test results and are listed in Table 1. We

created a training and validation dataset to fine-tune the pre-

trained Mask R-CNN. We observed that the segmentation

network performs well when the object of interest occu-

pies at least 5% of the image. Hence, 9MP RGB images

were divided into tiles of 256X338 size which contained

0-20 grapes each. Up-down and left-right image augmenta-

tions were used on these tiles to increase the size of dataset.

Grapes closer to the camera were labeled and tiny grapes

captured from background rows were ignored so that the

network learns to detect grapes present on the nearer side of

the row. Retraining the network head that was pre-trained

on MS-COCO dataset [10] using this grape dataset gave the

expected results as shown in Figure 5. We refer readers to

[1] for implementation details.

Parameters Values

Backbone layer ResNet 50

Head layer Faster R-CNN

Input size 256X338

Anchor ratio [0.5,1,2]

Learning rate 0.007

Epochs 200

Steps per epoch 100

RPN anchor scale [16,32,64,128]

Avg grape size in pixels 50X50

Augmentation LR, UD flip

Training images 62 image segments

Validation set 7 image segments

Table 1. Network parameters for instance segmentation of grapes

using Mask R-CNN

Figure 5. Top: Left: Input image equalized for visualization

Right: Instance masks overlayed on input. Bottom: Left: Input

image showing grapes of varying pixel size equalized for visual-

ization. Right: Midpoints of masks marked in red on a histogram

equalized image for better visualization

3.3. Singular Value Decomposition

We use SVD to characterize the local neighborhood

around each 3D point in terms of its ‘pointness’, ‘curveness’

and ‘surfaceness’. If the local neighborhood is compact and

spatially isotropic then it corresponds to grape berry. A dis-

tribution with a single dominant axis of spatial variation cor-

responds to branch and a distribution with two axes of varia-

tion corresponds to leaves. We store the point cloud in a k-d

tree, which enables fast lookup of the local neighborhood

around each point. We perform the following operations

for each point p obtained by picking the center of instance

segmentation masks projected to 3D:



• Retrieve points within a distance of d and store it in N,

a k x 3 matrix where k is the number of points in the

neighborhood.:

N = {pi : ‖p− pi‖ < d}

• Compute the co-variance matrix CN for every N:

CN =
1

k

k
∑

i=1

(pi − p)(pi − p)T

where p denotes the mean of the 3D points in N.

• Perform SVD on all CN .

• Analyze the top three singular values (λ3 ≤ λ2 ≤ λ1)

to identify the number of dominant directions:

λ3 = λ2 = λ1 −→ isotropic spatial distribution

λ3 = λ2 << λ1 −→ linear distribution

λ3 << λ2 = λ1 −→ planar distribution

• Generate saliency feature for every point

saliencyp =





grape

branch

leaf



 =





λ3

λ1 − λ2

λ2 − λ3





We perform the above steps at three different neighborhood

sizes to obtain a 9X1 feature vector. These features are used

to train a Transductive Support Vector Machine (TSVM)

that can classify point cloud into plant structures.

TSVM is a semi-supervised learning algorithm that

makes use of unlabeled data for training. We chose this

particular classifier as it is able to achieve a high accuracy

with a dataset that has only 20% labelled and 80% unla-

belled data. Let w be the weight vector and xi ∈ R
9 be

the input feature vector and yi ∈ {−1, 1} be the output.

Let r be the fraction of labeled examples that belong to the

positive class. TSVM minimizes the objective function of

linear Support Vector Machines (SVM) by adding an ad-

ditional term to drive the classifier away from high-density

regions:

min
w,y′

j
u

j=1

λ

2
||w||2 +

1

2l

l
∑

i=1

l(yiw
Txi) +

λ′

2u

u
∑

j=1

l(y′wTx′

j)

(1)

subject to
1

u

u
∑

j=1

max[0, sign(wTx′

j)] = r

where l(z) = max(0, 1 − z) is the hinge loss function,

λ is the regularization parameter and λ′ is a tunable pa-

rameter that controls the influence of unlabeled data. We

build on the SVM toolbox implemented in [21] to achieve

multi-class TSVM classification. We refer the user to

[21] for further details on TSVM and its implementation.

TSVM estimates a label yi ∈ {1,−1} where {1,-1} corre-

sponds to {grape, non-grape} classes respectively for every

point. Points belonging to non-grape class are again passed

through TSVM to get leaf vs branch classification.

3.4. Sphere fitting

We fit spheres to grapes and use them as object features

for SLAM. A sphere is defined by its centre (x0, y0, z0)
and radius r. If a point (xi, yi, zi) lies at a distance r from

(x0, y0, z0) , then it is on the surface of the sphere. Here, we

fit spheres to the points which were classified as grape by es-

timating r, x0, y0, z0 using M-estimator SAmple Consensus

(MSAC) algorithm [24]. MSAC is a variant of RANdom

SAmple Consensus (RANSAC) which iteratively estimates

the parameters of a sphere by choosing a set of points that

minimize the cost function :

n
∑

i=1

[(xi − x0)
2 + (yi − y0)

2 + (zi − z0)
2 − r2)] (2)

subject to (xi − x0)
2 + (yi − y0)

2 + (zi − z0)
2 − r2) ≤ d

d, the maximum allowable error per point, and the number

of iterations are set empirically. Range of the radius, r, and

the regions for search are provided from the ROIs that were

obtained by projecting instance segmentation masks to 3D

and refined by SVD module. For every predicted grape,

MSAC estimates the corresponding parameters and fits a

sphere. After fitting every sphere, the points belonging to

it are removed from the point cloud so that the MSAC does

not incorrectly use same subset of points to fit two different

spheres.

Fitting a parameterized model such as a sphere has mul-

tiple benefits. Firstly, it provides a compact high level repre-

sentation that naturally aids map compression in large-scale

mapping. Secondly, it provides higher-level descriptions of

the object geometry which provides a closed form solution

to data association problem.

3.5. Simultaneous Localization and Mapping

Gps data is accurate only upto sub meters and is often not

reliable in an agricultural field due to occlusions. Hence,

registering images and grapes to each other calls for a lo-

calization method with an accuracy in sub-centimeter range.

Our SLAM module finds the 6 DOF camera position and in-

crementally stitches point cloud frames into a 3D map with

sub-centimeter accuracy. A world frame with origin at the

starting point of the camera, and a current frame with the

origin at the current camera location are maintained. We



use a 4X3 transformation matrix to represent the camera

pose and also to transform the current frame to world frame.

The state-of-the-art methods to estimate the transforma-

tion between two frames either involve probabilistic esti-

mation or error minimization techniques such as Iterative

Closest Point (ICP). ICP alignment has the problem of low

efficiency in large data sets. Using fitted shapes instead of

raw points reduces the amount of data and overcomes this

problem.

Input to the SLAM module is the point cloud

of fitted spheres. Given two point clouds fixed,

F= {f1, f2, ...., fn}, fi ∈ R3 and moving, M=
{m1,m2....,mn}mi ∈ R3, ICP finds a rotation matrix R

and a translation vector t such that error between trans-

formed moving cloud and fixed cloud is minimum. We take

advantage of the fact that if the correct correspondences

between F and M are known, R and t can be calculated

in closed form. We experiment with two variants of ICP

point-to-point and point-to-plane. In both the cases, rotation

matrix is represented in quaternion form and is converted

to linear approximation problem. Although point-to-plane

ICP takes more time per iteration due to added cost of nor-

mal computation, it converges in fewer iterations. Hence,

we chose point-to-plane ICP for our pipeline.

3.5.1 Point-to-plane ICP

In this variant of ICP, R and t are iteratively estimated to

minimize the distance between every point mi and the tan-

gent plane at its corresponding point fi. Tangent plane is

represented by its unit normal ni computed around a small

3D neighborhood with 50 points around the point fi.

min
R,t

k
∑

i=1

(|(Rmi + t− fi)
Tn|2) (3)

This provides a more accurate estimation in cases where

one point cloud is denser than the other and exact corre-

spondences are sparse.

The transformation parameters given out by ICP is con-

verted to global frame to get camera trajectory and dense 3D

model. Grape counts are obtained from this 3D model and

are reprojected to image space using the estimated camera

poses in world frame to get final grape count per image.

4. Experiments

4.1. Dataset

Data was collected from a vineyard in Delano, Califor-

nia in July 2018. An air blower was attached below the

camera to blow leaves occluding the grapes to increase vis-

ibility. This blowing causes movement in the leaves and

introduces dynamics to the scene. Images were taken using

two 9MP PointGrey cameras with a 0.22m baseline which

was mounted on a field vehicle. Consecutive images in a

given sequence overlap by at least 50% in the dataset at any

time and overlap more than 85% when the leaf blower is on.

Images were collected from more than 20 rows with each

row being 187m long, comprised of 70-80 vines captured in

about 750 images. Experiments were conducted with and

without the blower whose results are separately reported.

4.2. Main results

Grape counts were re-projected onto images and com-

pared with the grapes manually counted from images. We

obtained an average precision of 0.9662, recall of 0.9881

and F1 score of 0.977. For a randomly selected group of

20 consecutive images, an R2 correlation of 0.9989 was

achieved. Figure 6 shows the plot of final grape count es-

timated from 20 consecutive images re-projected to images

against the ground truth grape count from those images.

With the assumption that the plants were planted in a

straight line, we interpolated the gps location of starting and

ending points of the row to test the localization accuracy.

Dense 3D SLAM output obtained from 20 consecutive im-

ages is shown in Figure 9 (a) along with the straight line in

green and camera trajectory in red. Mean square error was

calculated using the deviation of stitched model from the

straight line at every frame and was found to be 20cm for a

run of 187m.
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Figure 6. Left: Plot of grape count estimated by our pipeline

against ground truth grapes for 20 consecutive images Right:

Residual error plot for the same.

4.3. Ablation experiments

We ran ablation experiments to demonstrate the impor-

tance of each module in the pipeline.

4.3.1 Mask R-CNN

If we remove the instance segmentation part from our

pipeline, the SVD module will have to choose random ROIs

and classify them into grape, branch and leaf. We experi-

mented with different strategies to pick ROI: random selec-

tions, voxel grid, uniform distribution and color based. All

of these strategies result in only a fraction of grapes being



selected as ROI. This leads to noisy transformation estima-

tions which keep compounding and results in a poor map.

4.3.2 SVD

Roles of the SVD module are to reduce the false positive

grape detections and to classify non-grape points into leaf

and branch. We examined the spheres fitted onto ROIs pro-

jected from instance segmentation directly by skipping the

SVD module. Since ROIs from Mask R-CNN often overlap

or cover lesser number of pixels than expected, this either

results in multiple spheres being fitted to one grape or one

sphere fitted to multiple grapes. This behaviour is shown in

Figure 7 where multiple spheres intersect on the grape.

Figure 7. Left: Raw image. Center: Predicted masks. Right:

Snapshot showing sphere overlapping as a result of overlapping

and inaccurate instance mask predictions. Fitted spheres in blue

are overlapped on original point cloud with grapes.

Removing the SVD module reduces the pipeline to

an end-to-end network which estimates grape centres and

transformations from stereo image inputs. Although this

sounds promising because of the proven performance of

3D segmentation networks in the literature, we expect it

to require a large amount of labelled 3D data to reach our

pipeline’s level of accuracy and is left for future work.

4.3.3 Sphere fitting

Sphere fitting acts as a landmark extractor for SLAM. It re-

duces the complexity of SLAM module to iterative fitting

of point clouds. In ideal conditions, when the segmenta-

tion module produces non-overlapping masks with perfect

boundaries and completely static scene, this module can be

replaced by a tracking estimator such as optical flow. We

observed that decreasing the number of iterations of MSAC

reduces the accuracy of fitted spheres and leads to poor reg-

istration of point clouds in SLAM module. When we re-

moved this module and used ROI along with a mean radius

guess to obtain a sphere, we saw that the false positives re-

mained and occluded grapes were missed as shown in Fig-

ure 8.

5. Timing

We summarize module wise time requirements in Table

3. All the modules were tested on a 6 core i7 processor.

Instance segmentation network and 3D point classifier were

Figure 8. 3D snapshots showing Left: Raw point cloud with grapes

Right: Spheres drawn with guessed radius and ROI centres instead

of iterative MSAC of sphere fitting module

trained on a GeForce GTX 1080 Ti GPU. Implementations

are done in C++ using OpenCV and PCL libraries.

Module Time

Nearest neighbour 0.02 ms per ROI

SVD 0.15 ms per ROI

TSVM classification 1 ms per frame

Sphere fitting 0.1 ms per sphere

SLAM 1 ms per frame

Mask R-CNN training 10 hours

TSVM training 2 minutes

Table 2. Module wise time requirements for testing and training

6. Comparisons

We compare our fitted shape based SLAM method

against ICP on raw point cloud and feature-point based SfM

and show them in Figure 9. In the sub-figures a and b, green

line represents the expected straight line in which the plants

must lie. It is obtained by interpolating start and end gps

points of the row. Red box represents the camera positions.

Map built by applying Point-to-plane ICP on raw point

cloud is shown in Figure 9 (b) where grape vines are seen

drifting from the expected line shown in green.

Feature based SfM was ran using SIFT, SURF and cor-

ner features and the best result is shown in Figure 9 (c). We

observed that in every frame, strongest of these features al-

ways lied on leaf corners shown in Figure 9 (c) Left and

gave wrong feature correspondences as shown in Figure 9

(c) Right. We ran ORB-SLAM2 on our dataset and found

the map to be too sparse to extract any information regard-

ing grapes.

7. Discussion

We presented a camera based end-to-end pipeline to

build a dense 3D model of a vineyard and count grapes.

Our pipeline makes use of 3D characteristics of a point in

addition to semantic information from images to improve

the accuracy. The process of estimating transformation is



(a) SLAM output from our pipeline

(b) SLAM model obtained using ICP on raw point cloud

(c) Left: Detected SURF features marked in red. Right: Feature matching between images where yellow dotted line represents matches

between red feature points in left image and green points in right image.

Figure 9. Comparisons of SLAM model built from 15 consecutive images using different techniques. Green line indicates the ground truth

position of the base of point cloud which was obtained by connecting the gps coordinates of starting and ending point of the plant row. Red

points are camera position outputs. All point clouds are down-sampled and filtered for visualization purpose.

made robust and efficient by using object-level representa-

tion instead of feature points. As every part of the pipeline

except instance segmentation is independent of the sensor

used to acquire data and the type of fruit, this method can

be extended to other fruit types such as apples, oranges, and

other sensor types by just retraining the instance segmenta-

tion module which is left to future work. Another direction

of future work is to generate maps based on gps location of

start and end point of rows and overlay it on latest satellite

images to get an overview of grape distribution in the field.
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