
Data augmentation from RGB to chlorophyll fluorescence imaging

Application to leaf segmentation of Arabidopsis thaliana from top view images

Natalia Sapoukhina

INRA, UMR1345 Institut de Recherche en Horticulture et Semences IRHS,

SFR 4207, PRES UNAM,

49071 Beaucouzé, France
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Abstract

In this report we investigate various strategies to boost

the performance for leaf segmentation of Arabidopsis

thaliana in chlorophyll fluorescent imaging without any

manual annotation. Direct conversion of RGB images to

gray levels picked from CVPPP challenge or from a vir-

tual Arabidopsis thaliana simulator are tested together with

synthetic noisy versions of these. Segmentation performed

with a state of the art U-Net convolutional neural network

is shown to benefit from these approaches with a Dice co-

efficient between 0.95 and 0.97 on the segmentation of the

border of the leaves. A new annotated dataset of fluorescent

images is made available.

1. Introduction

Due to heavy occlusion, variability in terms of size and

shape, leaf segmentation is a challenging task from the com-

puter vision perspective [16]. One strategy to simplify the

segmentation is to reduce the biological variability and fo-

cus on a limited amount of plant species of specific inter-

est. This has been undertaken in the CVPPP challenge since

2014 with a focus on a few species including Arabidopsis

thaliana which serves as a reference for a number of funda-

mental biological questions. The effort to provide finely an-

notated data [14] has enabled great improvement of the state

of the art on segmentation performance. An open question

is now how to transfer this knowledge obtained from RGB

images on annotated plants either to other species or other

modalities of imaging. In this work, we focus on the trans-

fer of the knowledge gained from annotated leaves of Ara-

bidopsis thaliana in RGB to images of the same plant in

chlorophyll fluorescence imaging.

2. Related Work

Segmentation of Arabidopsis thaliana leaves in RGB

images has been highly studied since the introduction of

the CVPPP challenge. If in 2014 and 2015 the contribu-

tions of this challenge proposed methods based on models

[20, 27, 21], most of the participants have so far mainly

tackled the challenge with deep neural network [29, 26, 31].

In this work we did not propose any innovation on this side

and rather work on a standard neural network architecture

but applied it for the first time on another imaging modal-

ity. We used the U-Net architecture [23] which had been

mainly employed for the pixel-wise segmentation of sepa-

ration boundaries in medical [34] and satellite images [13].

Here, we applied U-Net for the first time to the best of our

knowledge on leaf segmentation of Arabidopsis thaliana in

chlorophyll fluorescence imaging.

Chlorophyll fluorescence analysis is a non-destructive

technique which has been developed to probe plant phys-

iology [6]. Among all the chlorophyll fluorescence param-
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eters that can be estimated, the maximum quantum yield of

photosystem II (PSII) photochemistry (Fv/Fm = (Fm −

F0)/Fm) [9] is an indicator of plant stress [22]. Fluores-

cence chlorophyll by image analysis on whole plant has

been widely studied [24, 4, 17]. So far, to the best of our

knowledge analysis on individual leaves has not be tackled

in top view images of Arabidopsis thaliana.

Image simulation to boost machine learning received an

increasing interest in plant imaging [35, 10, 1, 8]. This can

include standard data augmentation, sophisticated infog-

raphy or generative models from convolutional networks.

In this communication we generated the images from one

imaging modality to learn on another imaging modality.

This topic has been demonstrated possible for instance for

life science applications in the medical domain [12] in a

cross modal image synthesis and also in microscopy in a

superresolution problem [19]. We considered for the first

time data augmentation from the synthesis of images from

RGB imaging modality to chlorophyl fluorescence imaging

in plant sciences.

3. Method

3.1. Datasets

Three datasets coined CVPPP, CSIRO and Real-Fluo are

considered in this study. They are described in the following

lines.

CVPPP. We used the dataset provided in the Leaf Seg-

mentation Challenge held as part of the computer vision

problems in plant phenotyping CVPPP workshop [14].

CVPPP dataset consists in 27 RGB images of tobacco

plants and 783 RGB images of Arabidopsis wild and mu-

tant plants. We considered only the Arabidopsis dataset in

this study. All images are hand labelled to obtain ground

truth masks for each leaf in the scene (as described in [14]).

These masks are image files encoded in PNG where each

segmented leaf is identified with a unique integer value,

starting from 1, where 0 is background.

CSIRO. To extend the CVPPP dataset we also used syn-

thetic images of top down view renders of Arabidopsis gen-

erated with the simulator described in [30, 32]. The CSIRO

dataset contains 10000 synthetic images (width x height:

550 x 550 pixels). Similarly to CVPPP dataset, each RGB

image has a corresponding leaf instance segmentation an-

notation: each leaf in an image is uniquely identified by a

single color value, starting from 1, where 0 is background.

All images are stored in PNG format.

Real-Fluo. For model testing we used 38 real gray-scale

fluorescent images of Arabidopsis. The PSI Open Fluor-

Cam FC 800-O (PSI, Brno, Czech Republic) was used to

capture chlorophyll fluorescence images and to estimate the

maximum quantum yield of PSII (Fv/Fm) on wild type

control of Arabidopsis thaliana. The system sensor is a

CCD camera with a pixel resolution of 512 by 512 and a

12-bit dynamic range. The system includes 4 LED panels

divided into 2 pairs. One pair provides an orange actinic

light with a wavelength of around 618 nm, with an intensity

that can vary from 200 to 400 µmol/m2/s. It provides a 2s

pulse that allows the measurement of the initial fluorescent

state (F0). The other pair provides a saturating pulse during

1s in blue wavelength, typically 455 nm, with an intensity

of up to 3000 µmol/m2/s. The saturating pulse allows col-

lecting of the maximum fluorescence (Fm). Fluorescence

chlorophyll imaging was used in a dark adapted mode after

a dark period of 45 min to produce maps with the fluores-

cent quantum efficiency Fv/Fm = (Fm − F0)/Fm. All

these 38 images were manually annotated using Phenotiki

image analysis software [15] and are made available to the

reader (see the web link at the end of the article).

3.2. U­Net Model

The segmentation of the leaves was considered to be a

pixel-wise classification where the pixel of the leaf con-

tour should be detected among the other pixels of the im-

age. Picking out leaf contours allowed separating leaves

and thereby performing leaf segmentation, for example with

help of a watershed transform. Each pixel was therefore

classified among three mutually exclusive classes: mask

without contours, leaf contours and background. It means

that every pixel was labeled by a three-component one-hot

vector.

The U-Net model [23] was used for the pixel-wise clas-

sification. As shown in Figure 1 U-Net architecture is sep-

arated in 3 parts: the contracting/downsampling path, the

bottleneck, the expanding/upsampling path. The encoder-

decoder type architecture with skipped connections allows

combining low-level feature maps with higher-level ones,

and enables precise pixel classification. A large number

of feature channels in upsampling part allows propagating

context information to higher resolution layers. The output

of the model was a three-channel label that indicated the

class of every pixel as shown in Figure 2. All activation

functions in the convolutional layers were rectified linear

units, ReLU [11]. The last layer before the prediction was

a softmax activation with 3 classes. Images and labels from

all datasets were resized to width x height: 128 x 128 pixels.

Using ground truth (GT) labels, we created three-channel

labels as shown in Figure 2. To reinforce the learning of the

contour class, which was highly unbalanced, we replaced

the encoder by a ResNet152 backbone pre-trained on Ima-

geNet [33]. The decoder was not changed from the original

description [23]. We empirically found that the best perfor-

mances were obtained when all skipped connections were

kept which was in accordance with the intrinsic multiscale

nature of plants [25]. The resulting U-Net neural network

had a total 1,942,275 trainable parameters.
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Figure 1: U-Net architecture. Each blue box corresponds

to a multi-channel feature map. Gray arrows indicate the

merging of the context and localization information that

was done by concatenating the features from the contract-

ing path with the corresponding ones in the expansion path.

Input image has 128x128 pixels, the output of the model is

a three-channel binary image: mask without contours, leaf

contours and background.

Figure 2: Production of the three-channel binary labels

from ground truth (GT) labels: the first channel contains

mask without leaf contours, the second channel - leaf con-

tours and the third one - background.

3.3. Data augmentation

Several strategies of data augmentation were investi-

gated from CVPPP and CSIRO datasets to train our U-

Net in order to perform leaf segmentation on the Real-Fluo

dataset.

In a first simplest strategy, we converted CVPPP and

CSIRO directly from RGB to gray levels along the simple

CIE formulae Gray = .299 ∗Red+ .587 ∗Green+ .114 ∗
Blue. In a second strategy, we considered binary images

such as the ones in Figure 3 column (b) and mapped on them

a noisy texture learned from the real fluorescence images,

Real-Fluo, shown in Figure 3 column (a). A copy of the

original binary image for each plant was also kept so as to

produce the associated GT. For a first trial of transfer from

RGB images to fluorescence images, we propose to test an

extremely simple model for the noisy texture which is esti-

mated as an additive Gaussian white noise process indepen-

dent and identically distributed for a given leaf. This choice

was first driven by an Occam’s Razor simplicity spirit. In-

deed with such a model the simulated leaves have no spa-

tial structures such as vascular veins. Leaves are therefore

expected to be distinguished in real images only from their

first order statistics. Also, as an additional motivation to test

this simple fluorescence chlorophyll simulator, the noise in

real fluorescence images is expected to be mostly thermal

noise on the camera which will control the standard devi-

ation of the noise. The leaves themselves, if considered to

have homogeneous tissue, may have a variety of average

values in fluorescence emission depending on their physio-

logical state.

To estimate the parameters of these Gaussian processes,

we analyzed the distribution of the gray levels among a

small set of images of real plants. In order to ensure that

this small set of chlorophyll fluorescence images was rep-

resentative from the rest of the images we considered one

image of plant at each developmental stage represented in

the test dataset. Average value and standard deviation of the

gray levels inside the plants for both considered chlorophyll

fluorescence parameters F0 and Fm are given in Table 1.

The order of magnitude of the average value and standard

deviation of the chlorophyll fluorescence parameters F0 and

Fm remained in the same range in our experiment.

Synthetic chlorophyll fluorescent images were then sim-

ply produced by adding Gaussian noises with mean µ and

variance σ2 for each fluorescence map (µF0
, σ2

F0
), and

(µFm
, σ2

Fm

), randomly sampled in Table 1. A different real-

ization of these noises was applied for each individual leaf

of gray scale GT labels in CVPPP and CSIRO datasets so as

to produce a synthetic fluorescent example xF given by

xF = 1−

∑
l(yg

(l) +N (µF0
, σ2

F0
))

∑
l(yg

(l) +N (µFm
, σ2

Fm

))
, (1)
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Figure 3: Examples from datasets used for model training

and its evaluation. (a) Plant image examples. (b) three-

channel labels for pixel-wise classification. (c) Ground

truth labels with leaf segmentation. First line: CSIRO

dataset, 783 examples. Second line: CVPPP dataset, 783

examples. Third line: Real-Fluo dataset, 38 examples.

Forth line: CSIRO-Fluo dataset, 5481 examples. Fifth line:

CVPPP-Fluo dataset, 5481 examples. Number of examples

in datasets are given before application of the standard data

augmentation.

where yg
(l) is lth binary leaf from a gray scale GT label

and N (µF0
, σ2

F0
) is a Gaussian noise realization. For ev-

ery GT label we produced 7 synthetic fluorescent examples

xF by drawing random values for µF0
, σF0

and µFm
, σFm

from Table 1. The pipeline of data augmentation is shown

in Figure 4.

As a result, in addition to CVPPP and CSIRO, we ob-

tained new datasets, CVPPP-Fluo and CSIRO-Fluo, con-

taining 5481 = 783 * 7 and 70000 = 10000 * 7 synthetic flu-

orescent images (width x height: 128 x 128 pixels), respec-

tively. Now, our objective is to compare the added value of

all these datasets for leaf segmentation in Real-Fluo dataset

with the U-Net model presented in previous section.

Figure 4: Data augmentation using synthetic fluorescent

training data. For each gray-scale GT label from CVPPP

or CSIRO datasets we produced fluorescent images and as-

sociated three-channel labels.

Time µF0
σF0

µFm
σFm

Day 1 167.83 34.88 180.77 24.68

Day 5 165.81 33.1 180.00 22.36

Day 6 164.48 30.87 177.9 20.8

Day 7 158.16 31.45 174.73 21.1

Day 8 165.24 32.31 181.14 21.36

Day 9 168.3 28.03 184.36 17.86

Day 12 173.06 28.01 189.96 17.15

Table 1: Mean, µ, and standard deviation, σ for chlorophyll

fluorescence F0, Fm estimated on a single plant from Real-

Fluo dataset at different dates after emergence of first leaves

(cotyledons).
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3.4. Watershed Post­Processing

To segment leaves with use of estimated three-channel

labels, we applied the classical marker-controlled watershed

segmentation [3, 2]. The markers were generated with a

contourless mask from output three-channel label and then,

to segment leaves, we flooded marked “basins” within the

bounds of mask.

4. Experiment and Results

4.1. Training

On top of the data augmentation techniques that we gen-

erated from CVPPP and CSRIO datasets as described in sec-

tion 3.3, we apply a standard data augmentation strategy in

order to further reduce overfitting and improve generaliza-

tion. For this data augmentation we used Albumentations li-

brary [5]. While the data augmentation strategies of section

3.3 focused on contrast and noise distribution, here we gen-

erated geometrical transformation such as horizontal flip,

vertical flip, random rotate at 90 degree and random half-

sized crop and applied them to shuffled training dataset.

It was shown that for high level of imbalance, loss func-

tions based on overlap measures appeared to be more ro-

bust [28]. Through all of our experiments, we minimized

weighted combination of multi-class cross entropy and dice

losses

L(y, y∗) = w0C(y, y∗) + w1(1−D(y[..., 0], y∗[..., 0]))

+w2(1−D(y[..., 1], y∗[..., 1])). (2)

C(y, y∗) is the categorical cross entropy defined as

C(y, y∗) = −
∑

ij

yij log y
∗

ij (3)

and D(y, y∗) is the Dice coefficient

D(y, y∗) =
2
∑

ij yijy
∗

ij + ǫ
∑

ij yij +
∑

ij y
∗

ij + ǫ
, (4)

where y is a model prediction with values yij , y∗ is a ground

truth label with values y∗ij and ǫ = 0.001 is used here to

ensure the coefficient stability by avoiding the numerical is-

sue of dividing by 0. The weight ratios (w0, w1, w2) used

to correct the class imbalance was respectively 0.4, 0.1, 0.5

for cross entropy, contourless mask and contours. Adam

optimizer was used with default parameters lr = 0.001,

β1 = 0.9, β2 = 0.999. Our training procedure consisted

of splitting the data into 80% and 20% training and cross

validation respectively. We shuffled the dataset examples at

the beginning of each epoch and used a batch size of 16 ex-

amples. We also implemented batch normalization before

each activation.

Leaf segmentation in fluorescence images was done with

different data augmentation strategies for the training based

on the datasets of Figure 3 and their combinations. A base

line consisted in training directly on the CVPPP or CSIRO

RGB to gray images. The learning from the simulated

fluorescence dataset either generated along Eq. (1) from

CVPPP labels and/or CSIRO labels was tested for compar-

ison. The previous strategies were tested also when small

amount of real fluorescence images were added in the train-

ing. The eight different tested training strategies are sum-

marized in Table 2.

4.2. Results

To assess the quality of segmentation, we used the soft

Dice coefficient, Eq. (4), that was computed separately for

all pixels and for leaf contours. Furthermore, the pixel-wise

accuracy was evaluated in order to get a general idea of the

model performance. It was computed as the ratio between

correctly classified pixels and the total number of pixels in

the test sample. To assess the performance of leaf contour

detection we computed additional metrics. True positives

(TP ) are contour pixels present in both prediction and GT

mask. False positives (FP ) are contour pixels present in

prediction but absent in GT mask. False negatives (FN ) are

contour pixels absent in prediction but present in GT mask.

Knowing these numbers we can estimate true positive rate

TPR =
TP

TP + FN
, (5)

that describes the fraction of correctly classified contour

pixels in comparison of the total number of contour pixels

in GT mask. Moreover, positive predictive value

PPV =
TP

TP + FP
, (6)

gives us the fraction of correctly classified contour pixels

among all predicted contour pixels.

Table 2 displays the model performance on the Real-

Fluo dataset for eight model training experiments. A first

global observation is that the performance of training on

CVPPP alone was rather high. This demonstrates a high

similarity of RGB reflectance images converted to gray lev-

els and the fluorescence images despite the physical differ-

ences in the mechanism of their production. Training on

CVPPP-Fluo and CSIRO-Fluo alone or combined did not

provide better performances than CVPPP alone. The best

model Dice score was 97% obtained for extended CVPPP

and CVPPP-Fluo datasets with 10 examples from Real Fluo

dataset. The use of small quantity of real fluorescent im-

ages among images with modeled fluorescence resulted in

Dice score gain of 2-3% in comparison with CVPPP and

CVPPP-Fluo datasets. The same positive effect of the injec-

tion of 10 real fluorescent images on the model performance
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Training dataset Accuracy Ltrain Dtrain Ltest Dtest Dc TPR PPV
CVPPP 0.96 0.03 0.98 0.19 0.95 0.67 0.74 0.62

CVPPP-Fluo 0.96 0.01 0.99 0.22 0.94 0.68 0.82 0.58

CSIRO-Fluo 0.94 0.02 0.99 0.27 0.92 0.46 0.48 0.46

CVPPP-Fluo + CSIRO Fluo 0.95 0.01 0.99 0.3 0.93 0.62 0.63 0.62

CVPPP + 10ex 0.98 0.04 0.98 0.05 0.97 0.84 0.8 0.87

CVPPP-Fluo + 10ex 0.98 0.02 0.99 0.05 0.97 0.84 0.83 0.85

CSIRO-Fluo + 10ex 0.98 0.03 0.98 0.06 0.96 0.84 0.85 0.82

CVPPP-Fluo + CSIRO Fluo + 10ex 0.98 0.04 0.97 0.06 0.96 0.8 0.8 0.82

Table 2: Performance metrics on Real-Fluo samples for training strategies with the various strategies tested of data augmen-

tation. To estimate the overall model performance, we used pixel-wise Accuracy. To assess overfitting, we calculated loss

function, Eq. (2), and Dice coefficient, Eq. (4), for the training dataset, Ltrain, Dtrain , and for the test dataset, Ltest, Dtest,

rescpectively. The accuracy of contour pixels detection was evaluated by means of Dice coefficient, Dc, true positive rate,

TPR, and positive predictive value, PPV . See Eq. (5, 6) for the last two estimates.

was observed for the other datasets as well, CSIRO-Fluo +

10ex and CVPPP-Fluo + CSIRO Fluo + 10ex. It increased

overall pixel-wise accuracy to 0.98 and the quality of con-

tour detection became quite high as well: Dc ∈ [0.8, 0.84],
TPR ∈ [0.8, 0.83], PPV ∈ [0.82, 0.87]. In more de-

tails, the comparison of model performance from training

on CVPPP and CVPPP-Fluo showed that the imitation of

fluorescence by modelling increased TRP by 9% and de-

creased PPV by 6%. It means that the modelled fluores-

cence allowed us to detect a little bit better leaf contours on

real fluorescent plant images but at the same time it had

the tendency to classify surplus pixels as contour pixels.

Training on CSIRO-Fluo had the lowest values of metrics

in comparison with the other training strategies. However

these can be considered as interesting results if one keeps

in mind that in this case the network was trained only on

purely synthetic datasets. Probably, there is a deficiency

of important information of leaf texture in synthetic plants

from CSIRO-Fluo that prevents the simulation of fluores-

cence in a sufficient realistic way.

As shown in Figure 5, with the worst example from the

best training strategy, most errors of pixel classification oc-

curred for occluded leaves, i.e. for really difficult cases.

Another source of discrepancies was an inaccurate annota-

tion of some contour pixels. It means that some pixels were

correctly classified as contour but since they were present

in GT label with displacement they were not counted in

true positive rate. However, this type of errors did not

prevent the correct segmentation as it is shown in the up-

per line of Figure 6. Only two cases of occlusive leaves

were not segmented. These kind of discrepancies could po-

tentially be solved using a more advanced post-processing

method. Overall, the segmentation performance was higher

for young small plants where there was not a lot of leaf oc-

clusion as it is shown in the lower line of Figure 6.

5. Conclusion and Discussion

In this paper, we studied the transfer of knowledge for

leaf segmentation learned from RGB imaging to fluores-

cence imaging. Various data augmentation strategies were

tested with real images of plants or on pure synthetic plants

and from RGB to gray conversion up to a physical mod-

elling of noise in fluorescence.

This was illustrated on Arabidopsis thaliana which is

one of the most studied plant for fundamental biology and

with the U-Net neural network architecture applied for the

first time in this context. We have demonstrated that ex-

isting annotated datasets in RGB could be used to learn to

segment leaves in fluorescence images by a simple RGB

to gray conversion. Also, good performances (although

not the best) of segmentation could be obtained by learn-

ing on purely synthetic datasets automatically annotated

and mapped with a first order statistics physical modelling

of noise in fluorescence. Segmentation performance were

found higher when some real images were also introduced

in the training process.

These results could be extended in various promising di-

rections. First, one could try to improve the segmentation

result presented here. Other neural network architectures

could for instance be tested such as the one recently intro-

duced to consider segmentation as a regression [18]. Also

performances on training from simulated datasets could

benefit from domain adaptation [7] to compensate for the

necessarily non perfect match between simulation and re-

ality. Other plant imaging modalities could finally be also

investigated in the same way as in this communication. One

could for instance think to thermal imaging or Tera hertz

imaging which are also used to assess the physiological

state of leaves. There are currently no annotated datasets for

these images and it would therefor be interesting to explore

if data augmentation from other imaging in which annotated
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Figure 5: Example of leaf contours detection in a Arabidopsis fluorescent image. In this case the model was trained on

CVPPP-Fluo + 10ex dataset including 5481 images with imitated fluorescence and 10 real fluorescent images. True positives

show well predicted contour pixels existing in GT label. False positives show surplus pixels that were classified as the contour

but did not exist in GT label. False negatives are pixels that had to be classified as contour pixels since they were presented

in GT label.

Figure 6: Examples of watershed segmentation produced by

the model trained on CVPPP-Fluo + 10ex. Upper line: Dc

= 0.8, Accuracy = 0.96, TPR = 0.82, PPV = 0.78. Lower

line: Dc = 0.84, Accuracy = 0.98, TPR = 0.83, PPV =

0.86.

datasets are available could be helpful.

To contribute to reproducible science, we have

opened, as an additional result from our study,

access to our annotated dataset of Arabidopsis

thaliana in fluorescence imaging (https://uabox.univ-

angers.fr/index.php/s/BglUZgoE5EWK4MM).
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