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Abstract

Yield estimation and forecasting are of special interest in

the field of grapevine breeding and viticulture. The number

of harvested berries per plant is strongly correlated with

the resulting quality. Therefore, early yield forecasting can

enable a focused thinning of berries to ensure a high qual-

ity end product. Traditionally yield estimation is done by

extrapolating from a small sample size and by utilizing his-

toric data. Moreover, it needs to be carried out by skilled ex-

perts with much experience in this field. Berry detection in

images offers a cheap, fast and non-invasive alternative to

the otherwise time-consuming and subjective on-site anal-

ysis by experts. We apply fully convolutional neural net-

works on images acquired with the Phenoliner, a field phe-

notyping platform. We count single berries in images to

avoid the error-prone detection of grapevine clusters. Clus-

ters are often overlapping and can vary a lot in the size

which makes the reliable detection of them difficult. We ad-

dress especially the detection of white grapes directly in the

vineyard. The detection of single berries is formulated as a

classification task with three classes, namely ’berry’, ’edge’

and ’background’. A connected component algorithm is ap-

plied to determine the number of berries in one image. We

compare the automatically counted number of berries with

the manually detected berries in 60 images showing Ries-

ling plants in vertical shoot positioned trellis (VSP) and

semi minimal pruned hedges (SMPH). We are able to detect

berries correctly within the VSP system with an accuracy of

94.0 % and for the SMPH system with 85.6 %.

1. Introduction

Wine represents one of the oldest and economically most

important fruit crops. The breeding of new and robust vari-

Figure 1: Example for recognized berries. In order to ensure

the detection of single berries, each berry is surrounded by

pixels classified as ’edge’.

eties is therefore of special interest to the community. Wine

breeders do not only need information about the health and

growth status of the plants, they also call for early yield

forecasting.

Phenotypic traits can give information about the health

and growth status but are difficult to acquire on large scales.

This can be explained with the perennial nature of wine

which requires an on-site analysis by skilled experts. This

leads to expensive, subjective, and labour-intensive results.

The application of the BBCH Scale (Scale of the Biologis-

che Bundesanstalt, Bundessortenamt und CHemische In-

dustrie) [5] or the OIV (Organisation Internationale de la

Vigne et du Vin) descriptor [1], which mainly relied on sub-

jective visual interpretation, are the common approach.

Yield estimation by manual and visual means is time

consuming and error prone as well. Traditionally it is done

by counting and weighing grape bunches from a selected
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Figure 2: Examples of the different training systems. On

the left is an example of a plant in a vertical shoot posi-

tioned system (VSP). It features one main branch which

grows over multiple years. The other branches regrow ev-

ery year. The grapes are mainly positioned on the bottom of

the canopy and are often not much occluded. The right side

shows a plant which is trained in a semi minimal pruned

hedge (SMPH). It features more branches and leafs. The

grapes grow all over the plant and are often occluded by

canopy.

number of vines and extrapolating these numbers to the

whole wine plot. The accuracy increases the closer the mea-

surements are acquired to the harvest date. Early yield esti-

mation however offers the possibility to take early actions.

One example are guided and objective thinning procedures

to avoid an overload of the plants, which would lead to de-

creased berry quality.

Furthermore, different training systems pose different

difficulties for the yield estimation. The traditional verti-

cal shoot positioned (VSP) training system features com-

pact bunches and only few overlapping leafs. This is due to

the fact that only one main branch exists and many leaves

are cut down. Most grapes grow on the bottom part of

the canopy. The new training system semi minimal pruned

hedges (SMPH) features a looser bunch structure and an

increased leaf coverage. They have many branches and a

thick layer of canopy. Berries can occur in all places of the

canopy. Both are challenging regarding detection and quan-

tification of berries. For the SMPH the yield estimation with

the number of berries might not be sufficient due to the in-

homogeneous size of the berries. Therefore we aim in the

long run not only for the number of berries but also for an

investigation of the berry size.

A reliable and accurate yield estimation demands an ob-

jective and fast high-throughput on-site investigation. The

number of bunches and grapes is heavily correlated to the

resulting yield. The traditional yield estimation is based on

the investigation of bunches. This is a hard task by visual

means only because bunches are hard to distinguish from

each other. One way is the automatic detection of single

berries in images which offers a cheap and fast alternative

to manual expert-based procedures. We present a robust de-

tection pipeline which detects single berries in images by

defining a three-class classification task and the application

of a fully convolutional neural network. Furthermore our

approach enables the investigation of the berry size which

might be helpfull for an even better yield estimation.

Our main contribution is the reformulation of an instance

segmentation as an semantic segmentation task. For this, we

define the classes ’berry’, ’edge’ and ’background’, where

the use of the classes ’berry’ and ’edge’ enables the dif-

ferentiation between single berries within a cluster. This

definition enables not only the counting and location iden-

tification of each berry but also the possible investigation of

another important phenotypic trait, the size.

2. Related Work

For many plants such as perennial crops it is important

to investigate the phenotypic traits on-site and to acquire

large scale data sets to avoid extrapolating from small sam-

ple sizes. Image processing and machine learning enable

high-throughput phenotyping which is important for this

task. The main advantages of automatic procedures are ob-

jectivity, repeatability and high quality.

Two main approaches exist for the problem of counting

in images. The first one is a regression-based while the sec-

ond one relies on detection. One of the earliest works which

skips the detection while having counting in mind was done

by Lempitsky and Zisserman [12]. They utilized dot anno-

tated training data to learn an estimation for image density

by minimizing a regularized risk quadratic cost function.

The integration of the image density leads to the count of

objects in the image. Later, Xie et al. [20] used convo-

lutional neural networks to regress the spatial density over

images. Their application was focused on microscopical

images of cells. Arteta et al. [4] tackled the counting of pen-

guins which stated a complex real word problem. The data

set featured object occlusions and scale variations. They

used a deep multitask architecture to combine a density es-

timation with a foreground-background separation and local

uncertainty estimations. The count-ception network was in-

troduced by Cohen et al. [7]. They applied regression in a

fully convolutional way to the images and counted redun-

dantly and average all predictions. A first class agnostic

approach was presented by Lu et al. [14]. They reformu-

lated the counting as an matching problem which enabled

the use of video annotations as training data. By using an

adapter module they are able to easily extend their approach

for arbitrary counting tasks. All regression methods focus

on avoiding the detection task and offer at best a spatial in-

formation additional to the count. In contrary to this, we

provide a framework which is able to provide more com-



prehensive and valuable phenotypic traits such as the berry

size.

An overview about agricultural applications was done,

for example, by Gongal et al. [8], in which they compare

different sensors and algorithms for fruit detection and lo-

calization with a robotic background.

Some research focuses on simple image analysis frame-

works by detecting geometric objects in images. Nyarko et

al. [16] detect fruits in uncontrolled conditions by detecting

convex surfaces. The surfaces are classified with a k-nearest

neighbour approach into ’fruit’ and ’not fruit’. They per-

formed experiments on 4 different fruits including tomato,

nectarine, pear and plum. Roscher et al. [17] investigate

berry sizes in images taken by a consumer camera using an

image analysis framework. They apply a circular Hough-

Transform to the images and classify the results into ’berry’

and ’not berry’ using a Markov random field. However, the

counting of grapes is not realized. The first large scale ex-

periment was presented by Nuske et al. [15] in 2014. They

evaluated their system in a realistic experimental setup over

several years and hundreds of vines. Nuske et al. use a cam-

era system with illumination which is mounted on a vehicle.

A circular Hough-transform is applied to the images, and

resulting berry candidates are classified by texture, colour

and shape features. Neighbouring berries are grouped into

clusters.

Most image analysis methods rely on carefully chosen

features and thresholds which require finetuning for ev-

ery application. Since 2012 the application of neural net-

works to image classification problems became common,

after Krizhevsky [11] won the most popular image classi-

fication challenge. In 2015 fully convolutional neural net-

works were proposed by Long et al. [13] which enable a

pixelwise semantic segmentation of images. The pixelwise

identification of single objects, so-called instance segmen-

tation, is another major development of the deep learning

community. He et al. [9] proposed Mask-RCNN, a major

development in this research area.

Neural networks have also been applied for the analysis

of grapevine images. In 2016, Aquino et al. [2] presented

a smartphone application which was able to recognize and

count green berries in images. They put a black box around

single clusters and took an image. They applied a circu-

lar light reflection detection and classified the results with a

neural net. In a later approach, they implemented a more au-

tomated data collection approach and discarded the need for

a black box around the grape cluster [3]. Rudolph et al. [18]

concentrated on the detection and quantization of grapevine

inflorescences in images. They first identified image regions

containing inflorescences with a neural network and applied

a circular Hough-transform on the resulting image regions.

In contrast to other multi-step approaches, we present an

end-to-end detection framework for berries. The potentially

Figure 3: Field phenotyping platform called Phenoliner

[10]. The Phenoliner is based on a grapevine harvester.

The harvesting equipment is replaced by a calibrated stereo

camera system. The camera system produces overlapping

images of the plants covering approximately 1.2 m verti-

cally of the wine row.

high number of berries in images (up to 1000) is challeng-

ing and the detection cannot be accomplished easily with

commonly used instance segmentation approaches. For ex-

ample, many of those approaches reduce the runtime by

limiting the number of instance proposals. We achieve a

proposal-less detection and segmentation of single berries.

Therefore, we choose to formulate the berry detection task

as a semantic segmentation which is able to divide single

berries by introducing an additional class ’edge’. This pro-

ceeding allows later the extraction of further phenotypic

data like the berry size.

3. Data

Images were acquired with the Phenoliner [10], a field

phenotyping platform which is shown in Fig. 3. The Phe-

noliner is composed of a modified grapevine harvester. The

harvesting equipment was removed and a camera system

with several lamps was installed. The camera system con-

sists of three vertically aligned cameras. The Phenoliner is

able to cover 1.2 m of the plants vertically. Each image has

2048× 2592 pixels.

Data were acquired on three different dates in 2018. The

first images were taken shortly before the thinning, the sec-

ond after the thinning and the last one a few days before the

harvest.

The measurements were taken in different experimental

vineyard plots at the JKI Geilweilerhof located in Siebeldin-



gen, Germany. Three different varieties were observed: Re-

gent, Riesling and Felicia.

The observation of every variety contained at least two

different training systems, semi minimal pruning hedge

(SMPH) and vertical shoot positioning (VSP), illustrated

in Fig. 3. Both systems feature different difficulties. The

leaf area is drastically reduced in the VSP and berries are

well visible. The grape bunches are compact and berries

are mostly clustered in them. The plant itself has one major

branch which grows over several years while other branches

and canopy is cut down every year. In the SMPH many

berries are occluded by leafs due to the minimal pruning.

Furthermore they feature a loose bunch structure and single

small bunches appear between a lot of leaf coverage. The

plant features a few main branches which leads to the ex-

tended canopy cover.

Images showing the VSP feature up to 890 berries per

image, with an average of 329 berries. For the SMPH up to

1.106 berries are shown per image. The average number of

berries is 556 berries.

3.1. Image Annotation

The detection of single berries is formulated as a seman-

tic segmentation task with three classes: ’berry’, ’edge’, and

’background’. Pixels of the class ’berry’ are surrounded by

pixels of the class ’edge’, while remaining pixels are as-

signed to the class ’background’.

We manually annotated 32 images, where each berry is

colored independently. This means that every berry is col-

ored in one out of four colours and touching berries never

have the same colour to ensure the identification of every

single berry. For every individually coloured berry an edge

is computed with a fixed size. This edge is labeled as ’edge’

and the rest is labeled as ’berry’. Every pixel which was not

annotated manually is uniformly labeled as ’background’.

To evaluate the counting we annotated 60 images of

Riesling with dot annotations. This means that every berry

in the image was marked with a single dot to give an objec-

tive reasoning about the berry count and spatial allocation.

30 of these images show plants in the VSP, the other 30

plants in the SMPH.

4. Methods

4.1. Overall Workflow

Fig. 4 illustrates the workflow for the application on

a test image. In Fig. 4a, the image is cut into overlap-

ping image patches with a sliding window approach, where

each patch is classified separately with the neural network.

A mask for the original image is reconstructed from the

patches (Fig. 4b). The resulting class for each pixel is

determined by a majority vote over all overlapping image

patches.

A connected component algorithm is used to determine

the number of berry components. The edges and the back-

ground are not considered. We discard objects which are

likely noise fragments by thresholding with a minimum

number of 25 pixels for each component.

A visual inspection is possible when the resulting pre-

diction mask is overlayed with the original image, as shown

in Fig. 4c. The evaluation is realized by comparing the

prediction mask with manually marked berries in the im-

ages (Fig. 4d). Green components are correctly identified

berries. They overlap with the manual markers. Black re-

gions are incorrectly classified as berry. Black dots with

boxes show berries which were not detected by the neural

network.

4.2. Semantic Segmentation Network

The main contribution of this paper is the reformulation

of the counting and instance segmentation task as a seman-

tic segmentation problem. This turns the problem of detect-

ing and segmenting each individual berry instance in the

image into a pixel-wise classification of 4a into the classes

’berry’, ’edge’, and ’background’ resulting in an inferred

mask like the one in Fig. 4d.

The images that the collection platform provides are

DSLR-quality, which makes them really expensive to work

with in terms of memory consumption. This becomes a

problem in moving platforms that carry on-board process-

ing hardware. The two possible ways to make the pro-

cessing more efficient using convolutional neural networks

(CNNs) are to downsample the images, or to work with

image patches. Because the berries are small, the down-

sampling process hurts performance, resulting in missing

berries and wrong classification results. Instead, working

with overlapping patches allows us to obtain a classifica-

tion mask for all the pixels in the original full-resolution

image, without hurting performance. However, this means

that we need to run the CNN multiple times, and this re-

quires a light-weight, yet powerful neural network in order

to efficiently process each patch.

For this, we use an hourglass encoder-decoder archi-

tecture based on the inverted residual concept introduced

in [19]. The encoder backbone used is MobileNetV2 [19]

which is an efficient and lightweight feature extractor

formulation for mobile applications that achieves results

close to the state-of-the-art for tasks such as classifica-

tion, segmentation, and detection. The decoder used is

DeepLabV3 [6]. This combination results in a fully convo-

lutional semantic segmentation CNN that can accurately re-

solve the proxy task of segmenting berries, edges, and back-

ground, while still performing fast in the moving platform.



(a) Original image (b) Prediction mask

(c) Overlayed Prediction (d) Evaluation

Figure 4: Classification workflow. (a) overlapping windows are slid over the original image and extract small image patches. Each image

patch is classified with the neural network. (b) the classified image patches are used to reconstruct a mask for the original image using a

majority vote. (c) the mask overlaps the original image which allows a visual evaluation. (d) evaluation with manually counted berries.

Green regions show correctly classified components which include a manual marker. Black components show incorrectly classified regions.

Black dots with a box around show manually counted berries which were not found by the neural network.

4.3. Post­processing

In order to reduce the amount of components which are

misclassified as ’berry’, we filter our results by assuming

general geometric properties of berries. Roundness is the

main property of berries. We explore two possibilities to re-

move objects that do not feature the definition of roundness.

After identifying connected components we compute prop-

erties for every single component, where minor and major

axis as well as the area are the most interesting ones for

us. By comparing the minor and major axis we remove

objects which have a relation between both under 0.3. By

using the mean of the minor and major axis we compute

a radius. With this radius we compute the area which the

component should have if it was a circle. Components with

an actual area smaller than 0.3 times the computed area are

disregarded as well. Furthermore we investigate the edges

around each detected berry. Components which are classi-

fied with a high confidence are often surrounded completely

by an edge. Therefore we don’t consider components which

are surrounded by less than 40% by an edge.

5. Experiments

5.1. Experimental Setup

We perform the following experiments:

• A variation of edge thickness values and its influence

on the test accuracy,



Training

System

Edge

[pixel]

Correct

Detection [%]

Misclassified

[%]

VSP 2 93.9 19.2

VSP 3 92.6 25.4

SMPH 2 89.0 25.6

SMPH 3 85.3 28.4

Table 1: Comparison of various edge thickness values on

different training systems. ’Correct detection’ indicates the

percentage of manually counted berries which lie within a

berry component. ’Misclassified’ is the percentage of com-

ponents which are not overlapped with a manually counted

berry.

• analysis of intersection over union (IoU),

• an analysis of the influence of post-processing, and

• the investigation of the berry counting

The network is trained on overlapping image patches ex-

tracted from the 32 edge annotated images. Each patch has

384×512 pixels and 50 % overlap in vertical and horizontal

direction. This reduces the training time drastically com-

pared to training on the full resolution of the images. We

perform three kind of data augmentations. The first aug-

mentation is horizontally flipping the original image. The

second one is blurring the image with a random kernel size

between 3 and 7. The last augmentation is gamma shifting

randomly between 0.8 and 1.2. In the end, we get roughly

4.900 image patches from 32 annotated images. The train-

ing set contains 90% of these patches and the test set the

remaining 10%. To evaluate the classification accuracy we

investigate the intersection over union (IoU). The IoU de-

scribes the relation between area of overlap between ground

truth and prediction and the area of union between both.

Furthermore we evaluate our network on 60 images of

Riesling, as described in Sec. 3.1. With these images we fo-

cus on the evaluation of the total count of berries in images

patches. The images are therefore cut into the same dimen-

sions as the patches which are used for training. This means

we have 750 image patches for each training system where

we compare the actual number of berries with the detected

number of berries. Half of the images show plants in the

VSP and the other half in SMPH. We manually marked the

center of all berries in each image as reference with dots. A

berry is correctly detected if the marker lies within the berry

segment. Finally, we compare the detected berries with the

manually marked berries.

The learning rate for the network is 0.001 and the mo-

mentum is 0.9. The learning rate is decreased by 0.99 after

5 epochs.

Edge [3 pixels] Edge [2 pixels]

Average IoU [%] 76.0 72.2

IoU Background [%] 99.0 98.9

IoU Berry [%] 75.3 76.0

IoU Egde [%] 53.7 41.7

Table 2: Investigation of the intersection over union (IoU).

The IoU is better for berry than edge which can be explained

with the nature of the classes. The overlay of thin edges is

unlikely.

5.2. Results

Tab. 1 shows that with our main setup we are able to

detect between 85 − 94% of manually identified berries.

However, up to 28% of detected components are incorrectly

classified as berry. Therefore further experiments with fil-

tering out misclassified objects are done in Sec. 5.2.2.

5.2.1 Edge Thickness and Training System

The correct detection of single berries depends on the ac-

curacy of the class ’edge’. We tested two different edge

thickness values of 2 and 3 pixels and evaluated if a stable

and explicit differentiation between single berries can be en-

sured. We apply our classifier with different edge thickness

values on two different training systems: VSP and SMPH.

Tab. 1 shows that we recognize more berries correctly

in the VSP compared to the SMPH. That means that the

influence of the different edge thickness values on the num-

ber of correct detections is smaller for VSP than for SMPH.

For SMPH the smaller edge thickness of 2 pixels correctly

identifies 4% more berries. The SMPH is characterized by

inhomogeneous berry sizes with a higher number of small

berries than VSP. Smaller berries might only consist of edge

pixels, and therefore, cannot be detected by our proposed

method.

Furthermore we investigate the intersection over union

(IoU) for every class that can be seen in Tab. 2. For both

training systems we achieve an IoU of over 75 %. The data

set with an edge width of 2 pixels has a slightly better IoU

for the class ’berry’, but shows a notably worse accuracy

for class edge with 41.7 %. However, a thin edge is hard to

reproduce and therefore the result is reasonable.

5.2.2 Filtering

Fig. 5 shows examples for objects which are not round. On

the left and right we see dark image regions which are incor-

rectly classified as berries. The objects are not sufficiently

round and not surrounded correctly by an edge. In the mid-

dle, the component itself looks like an edge and is not round



Figure 5: Incorrectly segmented objects. The examples

show objects which are not sufficiently round (left and right)

and in many cases the berries are not completely surrounded

by an edge.

as well.

Tab. 3 shows the results after applying different filter

methods. The application of the simple geometric prior

information reduces the number of misclassifications by

around 4%. After incorporating the edge criterion we are

able to reduce the misclassifications to 10% and 15% while

only losing around 1% of the correctly classified berries.

5.2.3 Berry Count

The evaluation of the berry counts is done on 30 indepen-

dent, dot annotated images of Riesling in the VSP and 30 in

the SMPH.

Fig. 7 shows the R
2-plots for the VSP and SMPH.

In general the correlation between the number of detected

berries and manually counted berries is high. We tend to

underestimate the number of berries slightly. The worse

correlation in the VSP training system, which is indicated

by the R
2 of 88.33 tends to undersegment the berries more

because we have a compact bunch structure where berries

overlap each other. When the underlying berries are seen

only by a fraction we are sometimes not able to distinguish

it from the berry above.

In contrast to that we are able to distinguish single berries

with a better confidence in the SMPH because the bunch

structure is looser than in the SMPH. Therefore we are able

to distinguish the single berries with a higher confidence

(R2 of 93.14).

5.3. Discussion

Examples for incorrectly classified objects occur at leaf

borders or round structures. An example for a vine which

growth in a circle is shown in Fig. 5.

By removing objects which do not meet the geometric

roundness assumption we are able to remove many of these

misclassified objects. Another problem is that the classifier

tends to undersegment berries. This means, that more than

one manually counted berry lies within one detected com-

ponent, see Fig. 6.

Figure 6: Detection problems. On the left side manually

guessed berries in dark image regions cannot be found by

network. On the right side is an example where multi-

ple manually marked berries lie in the same component.

The green areas with the pink dots show correctly detected

berries. The dark dot in the middle of the square is a manu-

ally marked berry which was not detected by our network.

After applying these simple filter methods we are able to

reduce the misclassification to 10− 15% by decreasing the

correct detections by not more than 2%.

6. Conclusion

Wine breeders and viticulture are especially interested in

yield estimation and forecasting. The traditional procedures

for this involve skilled experts which extrapolate small sam-

pled and combine them with historic data and experience.

This is subjective and error-prone. Therefore the applica-

tion of sensor systems, for example cameras, offer a cheap,

fast and objective alternative.

In this paper, we present a robust pipeline for the detec-

tion and counting of berries in images by using a semantic

segmentation approach. With this we simplify the instance

segmentation task. We aim to detect single berries with the

final goal of yield estimation and forecasting in mind. For

future work and an even more sophisticated yield estimation

we are able to provide even the berry size, although that was

not investigated in this work.

We investigated the intersection over union (IoU) of the

network on the test set. The class ’berry’ is detected with a

higher confidence (IoU = 76 %). The class ’edge’ is defined

to be the boundary with a two pixels thickness. Therefore it

is hard to detect the same edge precisely but an IoU of more

than 40 % is still satisfactory.

We evaluate our network on 60 independent and dot an-

notated images, divided into half showing to different train-

ing systems: vertical shoot positioned (VSP) and semi min-

imal pruned hedges (SMPH). We show that we can identify

up to 87% of berries in the leaf covered areas of the SMPH.

For the VSP we are able to detect up to 94% of berries cor-

rectly.



Training System Axis Area Edge Correct Detection [%] Misclassified [%]

VSP - - - 93.9 19.2

VSP 0.3 - - 93.7 14.9

VSP 0.3 0.3 - 93.7 14.1

VSP 0.3 0.3 0.4 92.5 10.3

SMPH - - - 89.0 25.6

SMPH 0.3 - - 88.9 22.0

SMPH 0.3 0.3 - 88.8 20.9

SMPH 0.3 0.3 0.4 86.9 14.7

Table 3: Comparison of different filter strategies. Axis means that the relation between the minor and major axis of each

component isn’t allowed to be smaller than 0.3. For the computation of a circle area we compute the radius of each component

as the mean of the minor and major axis. We then compare the computed area with the actual area of each component. The

actual area is not allowed to be smaller than 0.3 times the circle area. Edge means that every component needs to be

surrounded by at least 40% of edge.

(a) R2-Plot for the VSP with R
2
= 88.33 (b) R2-Plot for the SMPH with R

2
= 93.14

Figure 7: R
2 Plots for the VSP and SMPH. The red circles depict the berry count for an image patch. The dashed line represents the

optimal mapping, the continuous line the estimated one.

Acknowledgment

This work was partially funded by German Federal Min-

istry of Education and Research (BMBF, Bonn, Germany)

in the framework of the project novisys (FKZ 031A349)

References

[1] Oiv, 2001. 2nd Edition of the Oiv Descriptor List for Grape

Varieties and Vitis Species. 1

[2] A. Aquino, M. P. Diago, B. Millan, and J. Tardaguila. A new

methodology for estimating the grapevine-berry number per

cluster using image analysis. Biosystem Engineering, 159:80

– 95, 2016. 3

[3] A. Aquino, B. Millan, M.-P. Diago, and J. Tardaguila. Au-

tomated early yield prediction in vineyards from on-the-go

image acquisition. Computers and Electronics in Agricul-

ture, 144:26 – 36, 2018. 3

[4] C. Arteta, V. Lempitsky, and A. Zisserman. Counting in the

wild. In European Conference on Computer Vision, 2016. 2

[5] B. Bloesch and O. Viret. Stades phnologiques repres de la vi-

gne. Revue Suisse de Viticult. Arboricult. Horticult, 40(6):1–

4, 2008. 1

[6] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.

Encoder-decoder with atrous separable convolution for se-

mantic image segmentation. CoRR, abs/1802.02611, 2018.

4

[7] J. P. Cohen, G. Boucher, C. A. Glastonbury, H. Z. Lo, and

Y. Bengio. Count-ception: Counting by fully convolutional

redundant counting. CoRR, abs/1703.08710, 2017. 2

[8] A. Gongal, A. Amatya, M. Karkee, Q. Zhang, and K. Lewis.

Sensors and systems for fruit detection and localization: A

review. Computers and Electronics in Agriculture, 116:8–

19, 2015. 3

[9] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask

r-cnn. 2017 IEEE International Conference on Computer

Vision (ICCV), pages 2980–2988, 2017. 3



[10] A. Kicherer, K. Herzog, N. Bendel, H.-C. Klck, A. Back-

haus, M. Wieland, J. C. Rose, L. Klingbeil, T. Läbe, C. Hohl,
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