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Abstract

Assigning team labels to players in a sport game is not

a trivial task when no prior is known about the visual ap-

pearance of each team. Our work builds on a Convolu-

tional Neural Network (CNN) to learn a descriptor, namely

a pixel-wise embedding vector, that is similar for pixels de-

picting players from the same team, and dissimilar when

pixels correspond to distinct teams. The advantage of this

idea is that no per-game learning is needed, allowing ef-

ficient team discrimination as soon as the game starts. In

principle, the approach follows the associative embedding

framework introduced in [22] to differentiate instances of

objects. Our work is however different in that it derives

the embeddings from a lightweight segmentation network

and, more fundamentally, because it considers the assign-

ment of the same embedding to unconnected pixels, as re-

quired by pixels of distinct players from the same team. Ex-

cellent results, both in terms of team labelling accuracy and

generalization to new games/arenas, have been achieved on

panoramic views of a large variety of basketball games in-

volving players interactions and occlusions. This makes our

method a good candidate to integrate team separation in

many CNN-based sport analytics pipelines.

1. Introduction

Team sports analytics has numerous applications, rang-

ing from broadcast content enrichment to game statistical

analysis for coaches [6, 30, 40]. Assigning team labels to

detected players is of particular interest when investigating

the relationship between team positioning and sport action

success/failure statistics [3, 12, 16], but also for some spe-

cific tasks such as offside detection in soccer [10] or ball

ownership prediction in basketball [33].

Many previous works have investigated computer vision

methods to detect and track team sport players [7, 10, 17,
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18, 19, 24, 31]. They can detect individual players, but gen-

erally resort to unpractical manual intervention or to unre-

liable heuristics to adapt their processing pipeline to rec-

ognize the players’ team. Specifically, they generally need

human intervention to adjust the team discriminant features

(e.g. RGB histogram in [18], or CNN features in [17]) to the

game at hand [3, 16, 17, 18]. A few methods have attempted

to derive game-specific team features in an automatic man-

ner [10, 31]. They consider the unsupervised clustering of

color histograms [10] or bags of color features [31] com-

puted on the spatial support of the players that are detected

in the game at hand. Those methods depend on how well

color discriminates the two teams, but is also quite sensitive

to occlusions and to the quality of player detection and seg-

mentation [19]. This probably explains why those previous

works have been demonstrated in outdoor and highly con-

trasted scenes, as encountered in soccer for example. We

show in Section 4 that those methods fail to address real-

life indoor cases.

As observed in [17], indoor sports analytics have to deal

with lower color contrast between players and background,

and more dynamic scenes, with more frequent occlusions.

[23, 24] also point out the low illumination, the strong re-

flections induced by dynamic advertising boards, the severe

shadows, the large player density and the lack of color dis-

crimination in indoor scenes.

In our work, we do not arbitrarily select a handcrafted

feature to discriminate the teams. We do not consider a

framework that requires game-specific adjustment either.

Instead we adopt a generic learning-based strategy that aims

at predicting a feature vector in each pixel, in such a way

that, independently of the game at hand, similar vectors are

predicted in pixels lying in players from a same team, while

distinct vectors are assigned to pairs of pixels that corre-

spond to distinct teams. In other words, we train a neu-

ral network to separate, in an embedding space, the pixels

of different teams and to group those in common team. A

simple and efficient clustering algorithm can then be used

to dissociate different teams in an image. Hence, we do

not rely on explicit recognition of specific teams, but rather
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learn how to map player pixels to a feature space that pro-

motes team clustering, whatever the team appearance. Al-

though teams change at each game, there is thus no need for

fine tuning or specific manual annotation for new games.

The approach has been inspired by the associative embed-

ding strategy recently introduced to discriminate instances

in object detection problems [21, 22]. However, differently

from [21, 22], it is demonstrated using a lightweight ICNet

convolutional neural network (opening broader deployment

perspectives than the heavy stacked hourglass architecture

promoted in [21, 22]) and, to our knowledge, is the first

work assigning similar embeddings to unconnected pixels,

thereby extending the field of application of pixel-wise as-

sociative embedding.

To validate our method, we have trained our network on

a representative set of images captured in a variety of games

and arenas. Since only a few player keypoints (head, pelvis,

and feet) have been annotated in addition to the player team

index, the player segmentation component of our network

has been trained with approximate ground-truth masks, cor-

responding to ellipses connecting the key points. Our CNN

model is validated on games (teams) and arenas that have

not been seen during training. It achieves above 90% team

recognition accuracy, despite the challenging scenes (in-

door, dynamic background, low contrast) and the inaccu-

rate segmentation ground-truth considered during training.

Interestingly, the lightweight backbone makes the solution

realistic for real-time deployment.

Our paper is organized as follow. Section 2 reviews the

related works associated to CNN-based sport analysis, seg-

mentation, and associative embedding. Section 3 then intro-

duces our proposed method, using a ICNet variant to both

segment the players and compute pixel-wise team discrim-

inant embeddings. The experiments presented in Section 4

demonstrate the relevance of our approach, while conclu-

sions and some perspectives are provided in Section 5.

2. Related works

Recent developments in computer vision make an exten-

sive use of Convolutional Neural Networks [28]. This sec-

tion reviews the specific type of CNNs, named Fully Con-

volutional Network (FCN), that is used for image segmen-

tation. It then introduces the recent associative embedding

methods considered to turn object class segmentation into

object instance segmentation.

2.1. Fully Convolutional Network (FCN)

Fully Convolutional Networks are characterized by the

fact that they output spatial feature maps, strictly com-

puted by the recursive application of convolutional lay-

ers, generally completed with ReLu activation and batch-

normalization or dropout regularization layers.

In recent works dealing with sport video analysis, FCNs

have been considered for specific segmentation tasks, in-

cluding player jersey number extraction [11], soccer field

lines and players segmentation [7]. In [17], a two-steps ar-

chitecture, inspired by [35] and [37], is even proposed to

extract players bounding-boxes with team labels. The net-

work however needs to be trained on a game-per-game ba-

sis, which is impractical for large scale deployment. None

of these works is thus able to differentiate player teams

without requiring a dedicated training for each game, as

proposed in Section 3, where a real-time amenable FCN

provides the player segmentation mask, as well as a pixel-

wise team-discriminant feature vector.

There are two main categories of real-time FCNs:

encoder-decoder networks and multi-scale networks.

Encoder-decoder architectures adopt the encoder struc-

ture of classification networks, but replace their dense clas-

sification layers by fully convolutional layers that upsample

and convolve the coded features up to pixel-wise resolution.

SegNet (Segmentation Network) [2] was the first segmenta-

tion architecture to reach near real-time inference. It is a

symmetrical encoder-decoder network, with skip connec-

tion of pooling indices from encoder layers to decoder lay-

ers. ENet (Efficient Neural Network) [25] follows SegNet,

but comes with various improvements, whose most promi-

nant one is the use of a smaller decoder than the encoder.

Quite recently, several authors proposed to adopt multi-

scale architectures to better balance accuracy and infer-

ence complexity. Considering multiple scales allows to ex-

ploit both a large receptive field and a fine image resolu-

tion, with a reduced number of network layers. Among

those networks, ICNet (Image Cascade Network) [38] is

based on PSPNet (Pyramid Scene Parsing Network) [39],

a state-of-the-art network for non real-time segmentation.

ICNet encodes the features at three scales. The coars-

est branch is a PSPNet, while finer ones are lighter net-

works, allowing to infer segmentation in real-time. Two-

columns network [34], BiSeNet (Bilateral Segmentation

Network) [36], GUN (Guided Upsampling Network) [20]

and ContextNet [27] are composed of two branches.

2.2. Associative embedding

An embedding vector denotes a local descriptor that

characterizes a signal locally in a way that can support a

task of interest. Embeddings are thus not defined a priori.

Instead, they are defined in an indirect manner, to support

the task of interest. In computer vision, FCNs have recently

been considered to compute pixel-wise embeddings in a va-

riety of contexts related to pixel clustering or pixel associ-

ation tasks. In this context, FCN training is not supervised

to output a specified value. Rather, FCN training supervises

the relations between the embedded vectors, and checks that

they are consistent with the task of interest.



In [32], the embedding vector is used to compute the

similarity between two pixel neighborhoods from two dis-

tinct images, typically to support a tracking task. Interest-

ingly, a proxy task that consists in predicting the (known)

color of a target frame based on the color in a reference

frame is used to supervise the training of the FCN comput-

ing the embeddings. Good embeddings indeed result in rel-

evant pixel associations, and in accurate color predictions.

This reveals that a FCN can be trained in an indirect manner

to support various higher-level tasks based on richer pixel-

wise embedding.

Of special interest with respect to our team discrimi-

nation problem, associative embeddings have been intro-

duced in [21, 22] and used in [15, 21, 22] to associate pixels

sharing a common semantic property, namely the fact that

they belong to the same object instance. Authors in [22]

introduced associative embedding in the context of multi-

person pose estimation from joints detection and grouping,

and extended it to instance segmentation. More recently,

[15] proposed CornerNet, a new state-of-the art one-shot

bounding box object detector, by using associative embed-

ding to group top-left and bottom-right box corners. In all

these publications, the network is trained to give close em-

beddings to pixels from the same instance and distant em-

beddings to pixels corresponding to different instances. All

these works are based on the same heavy stacked hourglass

architecture. However, [21] suggest that the approach is not

strictly restricted to this architecture, as long as two impor-

tant properties are fulfilled: first, the network should have

access both to global and local information; second, pixel-

wise prediction at fine resolution is recommended, in or-

der to avoid that a vector is subject to concurrent instances.

This makes ICNet a premium candidate to segment players

and compute team-specific embeddings in real time, since

it computes features at three scales instead of two for other

lightweight multi-branch FCN architectures.

3. Team segmentation using pixel-wise associa-

tive embedding

Player team discrimination is not a conventional segmen-

tation problem since the visual specificities of each class are

not known in advance. This section explains how associa-

tive embedding can be combined with player segmentation

to address this problem.

3.1. Team discrimination & player segmentation

We propose to adopt the associative embedding

paradigm to support the team discrimination task. In short,

we design a fully convolutional network so that, in addition

to a player segmentation mask, it outputs for each pixel a

D-dimensional feature vector that is similar for pixels that

correspond to players of the same team, while being distinct

for pixels associated to distinct teams. As explained in the

previous section, embeddings learning is not based on an

explicit supervision. Instead, embeddings are envisioned as

a latent pixel-wise representation, trained to support a pixel-

wise association task, typically to group [15] or match [32]

pixels together. In the context of object detection, associa-

tive embedding has been applied with success in [15, 22]

to group pixels corresponding to a same object instance.

In these works, multiple hourglass-shaped networks are

stacked recursively in order to progressively refine the 1-D

embedding value that aims to differentiate object instances

in a given class. Our work differs from [22, 21] and [15] in

two main aspects.

First, and because we target real-time deployment, the

stacked hourglass architecture is replaced by an ICNet [38]

backbone, as illustrated in Figure 1. As stated in [38], ICNet

reaches 30 FPS for images of 1024×2048 pixels on one Ti-

tan X GPU card. We use ICNet because its multi-scale en-

coders, along with a spatial pyramidal pooling, give access

to a reasonably large receptive field (important to share em-

bedding information spatially) while preserving the oppor-

tunity to exploit high-resolution image signal locally (im-

portant for a fine characterization of the content).

Second, our work deals with the problem of associat-

ing pixels of players that are scattered across the whole im-

age. This is in contrast with the association of neighbor-

ing/connected pixels generally considered in traditional as-

sociation tasks [15, 22].

3.2. Network architecture

The ICNet network architecture has mostly been left un-

changed. Only the final convolution layer has been adapted

to provide D+1 channels. Those comprise 1 channel for se-

mantic segmentation, with a sigmoid activation, along with

D channels for embeddings with linear activation. Figure 1

presents the player segmentation channel in blue while the

D channels for embeddings are represented in orange. A

number of loss functions are combined to train the net-

work. Along with the multi-scale semantic segmentation

loss from [38], composed by L124, L24 and L4, we add

an embedding loss inspired by [22, 21, 15]. It comprises

two components, Lpull and Lpush, which respectively pull

teammates embeddings together and push opponents em-

beddings away from each other. Lpull and Lpush only ap-

ply to the finest resolution. We have defined all loss com-

ponents based on mean square distances.

L124, L24 and L4 losses are defined as:

Ls∈{124,24,4} =
1

HW

H×W∑

(i,j)

(m̂s
ij −ms

ij)
2 (1)

with H and W being the layer height and width, while m̂s

and ms respectively denote the predicted and ground-truth
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Figure 1: Overview of our architecture. ICNet [38] is used as backbone for following assets: pixel-wise segmentation,

combination of three scales to encode global and local features, fast ([38] reaches 30 FPS at 1024 × 2048 resolution). Its

last convolution is modified to output a segmentation mask along with vector embeddings in each pixel. We keep the multi-

scale supervision for the segmentation and add Lpush and Lpull to obtain similar embeddings in pixels of the same team and

distant embeddings for pixels of different teams. After network inference, a simple clustering algorithm can effectively split

in different teams the pixels from the segmentation mask m̂ according to their embeddings e.

player masks at scale s. Similarly, Lpull is formulated as:

Lpull =
1

HW

{1,2}∑

n

Mn∑

(i,j)

(tij − Tn)
2, (2)

where Tn is the mean of the embeddings tij predicted across

the pixels Mn of team n, i.e. Tn =
∑

(i,j)∈Mn

tij .

In [22], the push loss is expressed as a mean over pairs of

pixels of a cost function that is chosen to be high (low) when

pixels that are not supposed to receive the same embed-

ding have a similar (different) embedding. Recently, [21]

and [15] employed a ”margin-based penalty”, and wrote

that this is the most reliable formulation they tested. Hence,

we also adopt a margin-based penalty loss. Formally, Lpush

is defined similarly to Lpull, except that rather than penal-

izing embeddings that are far away from their centroid, it

penalizes embeddings that are too close from the centroid

of another team:

Lpush =
1

HW

{1,2}∑

n

Mn∑

(i,j)

max(0; 1− (tij − T3−n)
2) (3)

Our global objective function finally becomes:

L =λ124L124 + λ24L24 + λ4L4

+λpullLpull + λpushLpush

(4)

with the lambda loss factors having to be tuned (chosen val-

ues are explained in Section 3.3).

At inference, upsampling of last layer is inserted before

activation (respectively bilinear and nearest neighbor inter-

polations for segmentation and embedding channels). Then,

a clustering algorithm is required to group pixels in teams.

Fortunately, as observed in [22], the network does a great

job at separating the embeddings for distinct teams, so that

a simple and greedy method such as the one detailed in Al-

gorithm 1 is able to handle the clustering properly. As ap-

pears from the pseudocode, our naive clustering algorithm

relies on the assumption that a player pixel embedding sur-

rounded by similar embeddings is representative of its team

embedding. Given a team embedding vector, player pixels

are likely to be assigned to that team if their embedding lies

in a sphere of radius 1 around the team embedding. We

incorporate a refinement step in which we compute the cen-

troid of the selected pixels. Then, to resolve ambiguities,

player pixels are associated to the closest of the centroids.

3.3. Implementation details and hyperparameters

Our network is trained to extract players only, and to

estimate associative embeddings for team discrimination.

Referees and other non-player persons are part of the back-

ground class. Our work is based on the PyTorch ICNet im-

plementation [29]. Parameters have been empirically tuned.

For the training, we employ Adam optimizer [14]. Losses

factors defined in Equation 4 are: λ124 = 1 and λ24 =
λ4 = 0.4 as in original ICNet [38], λpull = λpush = 4
and are thus very different than in [22, 21, 38] because

our pull and push losses definitions are averaged over pix-

els rather than over instances. Our best found learning

rate is lr = 10−3, and has been implemented with the

”poly” learning rate decay taken from [39, 38, 36] and

their own sources. Compared to them, we apply the de-

cay by epochs instead of iterations, but we keep the same

power of 0.9. Hence, the learning rate at kth epoch is



Input : m̂ij the predicted segmentation mask

eij the predicted embedding in pixel (i,j)

Result: O ∈ [[0; 2]]H×W teams occupancy map (0 is

associated to the background)

N (i, j) neighborhood of pixel (i, j)

Vij ←
1

|N (i,j)|

∑
(k,l)∈N (i,j)‖eij − ekl‖

2
2

n← 0 the team counter

R ← S ← {(i, j) | m̂ij > 0.5} the pixels to cluster

O ← D1 ← D2 ← 0
H×W

whileR 6= {} and n < 2 do

n← n+ 1
(i, j)← argmin(i,j)∈R Vij

cn ← eij the centroid for team n

Mn ← {(i, j) ∈ R | ‖eij − cn‖
2
2 < 1}

cn ←
1

|Mn|

∑
(i,j)∈Mn

eij

Mn ← {(i, j) ∈ R | ‖eij − cn‖
2
2 < 1}

R ← R \Mn

for (i, j) ∈ S do

Dn(i, j)← ‖eij − cn‖
2
2

end

end

for (i, j) ∈ S do

if n = 1 then

O(i, j)← 1
else if n = 2 then

O(i, j)← argmin({D1(i, j);D2(i, j)}) + 1
end

end

Algorithm 1: Simple clustering algorithm of pixels in

the space of their associated embeddings. Up to two

centroids are searched and refined, from the observa-

tion that for a team, embeddings of neighbour pixels

can serve as initial prototype when they are similar.

Embeddings similarity in the neighborhood of pixel

(i, j), N (i, j), is called Vij . After that, points are clus-

tered according to their embedding vector’s distance to

centroids mapped in Dn arrays.

lr.(1 − k
max

)power, with max = 200 denoting the total

number of epochs, and lr being the base learning rate de-

fined above. All but last layers of ICNet are initialized

with pretrained Cityscapes ([8]) weights from [38], but a

full training is done as the point of view adopted for sport

field coverage is too different from the frontal point of

view considered by cars in Cityscapes. Minibatch size is

16 and batch-normalization is applied. Neither weight de-

cay regularization, nor dropout are added, but the following

random data augmentation is considered: mirror flipping,

central rotation of maximum 10 degrees, scaling such that

min(width, height) = random([ 23 ,
3
2 ]) × 512, color jitter in

the perceptually uniform CIE L*C*h color space fixed to

L ±10, C ±7 and h ±30 degrees, to keep natural colors.

We trained the network on crops of 512 × 512 pixels, lo-

cated randomly in scaled images. Validation is performed

on 512 × 512 pixels patches, extracted from images scaled

such as its min(width, height) equals 512. For each model,

we select the parameters of the best epoch according to a

validation score defined as the mean of intersection over

union of the two teams, between prediction and our approxi-

mate reference masks. Inference for testing is done on court

images downsampled to 1024×512 and padded to preserve

the aspect ratio.

In our implementation, we adopted 5-D embeddings,

mainly because more dimensions a priori get more ability to

capture/encode visual team characteristics unambiguously.

We expect this ability to become especially useful when the

receptive field does not cover the whole scene. In that case,

the embedding prediction in one pixel may not be able to

rely on a teammate appearance or on the absence of colli-

sion with an opponent embedding when those players are

far and disconnected from the pixel of interest. The embed-

dings have thus to be consistent across the scene, despite

their relatively local receptive field. In other words, they

have to capture local team characteristics unambiguously.

In practice, ICNet builds a global receptive field, and our

trials provided similar results with 1- to 5-D embeddings.

4. Experimental validation

To assess our method, this section first introduces an

original dataset, and associated evaluation metrics. It then

runs a K-fold cross-validation procedure, and compares the

performance of our associative embedding team discrimina-

tion, with a conventional color histogram clustering, applied

on top of instance segmentation.

4.1. Dataset characteristics

To demonstrate our solution, we have considered a pro-

prietary basketball dataset. It involves a large variety of

games and sport halls: images come from 40 different

games and 27 different arenas. Images show innumer-

able situations: occlusions between teammates and/or op-

ponents, regular player distribution, absence or presence

of all the players, images from training sessions and pro-

fessional games with public, various game actions, still

and moving players, presence of referees, managers, mas-

cots, dynamic led advertisements, photographers or other

humans, various lighting conditions, different image sizes

(smaller dimension is generally close or superior to 1000

pixels). This dataset is composed of 648 images covering a

bit more than half of the sport field. Each player has been

manually annotated. Annotations considered in our work

include a team label (Team A vs. Team B), and an approxi-

mate player mask. This mask has been derived from manual



annotation of head, pelvis, and feet. It consists in seven el-

lipses approximately covering the head, the body (between

head and pelvis), the pelvis, the legs (between pelvis and

each foot), and the feet. Occlusions between ellipses of

players located at different depth has been taken into ac-

count. Similarly to [7], our experiments reveal that the net-

work can learn despite the coarseness of the masks. Players

size in images feeding the network (scaling strategy in Sec-

tion 3.3) is around 25× 75± 15 pixels.

4.2. Evaluation metrics

Our network enables player segmentation, as well as

team discrimination. Evaluation metrics should thus reflect

whether players have been properly detected, and whether

teammates have received the same team label. Therefore,

we consider the following counters and metrics, to be com-

puted on a set of test images:

• Nmiss: Number of missing players

• Ncorr: Number of correct team associations

• Nerr: Number of incorrect team associations

• Missed players rate,

Rmiss =
Nmiss

Ncorr +Nerr +Nmiss

(5)

• Correct team assignments rate,

RCTA =
Ncorr

Ncorr +Nerr

(6)

We now explain how the outputs of our network, namely

the player segmentation mask and the map of team labels

derived from the embeddings clusters, are turned into those

evaluation metrics1. Given a reference segmentation mask

and a team label for each player instance, a simple major-

ity vote strategy is adopted. A player is considered to be

detected when the majority of pixels in the player instance

segmentation mask are part of the segmentation mask pre-

dicted by the network. In that case, the majority label ob-

served in the instance mask defines the team of the player.

In practice, since our ground-truth mask only provides a

rough approximation of the actual player instance silhou-

ette, we resort to the part of the instance mask that is the

most relevant for team classification, i.e. to the two ellipses

that respectively cover the body and the pelvis area. Since

pixels that are in the central part of the body and pelvis el-

lipses are less likely to be part of the background, only the

pixels that are sufficiently close to the main principal axis of

1Since accurate ground truth segmentation masks are not available from

the dataset (see Section 4.1), the segmentation quality can not be assessed

based on conventional intersection over union metrics.

Fold 1 .. 3 4 5 .. 9 10

Train 516 518 520 518

Val 66 64 64 66

Test 66 66 64 64

Table 1: Splits of the dataset used for cross-game valida-

tion. Each column corresponds to one (set of) folds, and

lines define the number of training/validation/test samples.

Validation and test sets contain the images from 4 games.

the body/pelvis shape are considered. (A distance threshold

equal to one third of the maximal distance between ellipse

border and principal axis has been adopted. Changing this

threshold does not impact significantly the results.)

4.3. Results

In order to validate the proposed team discrimination

method with available data, we consider a K-fold cross-

validation framework. It partitions the 648-images dataset

into K disjoint subsets, named folds. Each K-fold itera-

tion preserves one fold for the test, and use the other folds

for training and validation. Average and standard deviation

metrics can then be computed based on the K iterations of

the training/testing procedure. In our case, ten folds of ap-

proximately equal size have been considered. Moreover,

to assess whether the model generalizes properly on new

games and new arenas, we construct the folds so that each

fold contains images from distinct games and/or arenas.

Table 1 lists cross-game folds characteristics, and Table 2

cross-arena folds characteristics.

To estimate the value to give to our results, we com-

pare them to a baseline reference. Since most previous

methods recognize teams based on color histograms [10,

18, 31], generally after team-specific training, we com-

pare associative embeddings to a method that collects color

histograms on player instances, before clustering them

into two sets. In practice, as for the associative em-

bedding evaluation, only the player pixels that are suffi-

ciently close to the body/pelvis principal axis are consid-

ered to build the histogram in RGB, with 8 bins per dimen-

sion (512-dimensional histogram). Adopted clustering is

the [26] implementation of variational inference algorithm

with a Dirichlet process prior [4], to fit at max two gaussians

representing our two clusters (two teams). This method

has the advantage of being able to automatically reduce the

number of prototypes, it is useful when less than two teams

are visible in an image.

Results of cross-game validation are presented in Ta-

ble 3, while cross-validation on sport halls is presented in

Table 4. Standard deviations are low, demonstrating the

weak dependence to a specific set of training data. Rate of

missing detections is about 11%, which is an acceptable rate



Fold 1 2 .. 5 6 7 8 .. 9 10

Train 514 516 518 522 524 518

Val 66 66 64 62 62 68

Test 68 66 66 64 62 62

Table 2: Splits of the dataset used for cross-arena valida-

tion. Each column corresponds to one (set of) folds, and

lines define the number of training/validation/test samples.

Validation and test sets contain the images from 2 or 3 halls.

Method Rmiss RCTA

Associative Embedding
0.11 ± 0.04

0.91 ± 0.04

Color Histogram 0.62 ± 0.02

Table 3: Evaluation measures on cross-game K-fold: mean

and standard deviation of missed player detection and of

correct team assignment rates, for 10 folds.

Method Rmiss RCTA

Associative Embedding
0.11 ± 0.06

0.91 ± 0.03

Color Histogram 0.63 ± 0.02

Table 4: Evaluation measures on cross-arena K-fold: mean

and standard deviation of missed player detection and of

correct team assignment rates, for 10 folds.

considering our backbone is the real-time ICNet model [38]

with arduous indoor basketball images. It could probably be

improved with a finer tuning of hyperparameters, as well as

more accurate segmentation masks and a formulation that

involves a class for referees (see failure cases analysis be-

low). More recent and effective improved segmentation net-

works could also be considered as long as they are compat-

ible with associative embedding.

In Figure 2, we observe that players are generally well

detected but roughly segmented, probably due to our ap-

proximate training masks. However, segmentation masks

are very clean compared to the background-subtracted fore-

ground masks derived for such kind of scenes (see for ex-

ample [24]). Therefore, they could advantageously replace

those masks in algorithms using camera calibration to detect

individual players from the segmentation mask [1, 5, 9].

In terms of team assignment, [17] mentions that they

can not achieve good cross-game team assignment without

fine-tuning. In comparison, our method reaches more than

90% of correct team assignments while testing on games

and sport halls that are not seen during training. The base-

line Bayesian color histogram clustering only reaches 62%

of correct team assignments, which confirms that the team

assignment task in the context of indoor sport is extremely

difficult, as described in Section 1. We get near identical

results for cross-arena evaluation.

Qualitative results are shown in Figure 2. As written in

Section 3.3, we intend to extract players only, excluding ref-

erees and other humans. Images belong to testing folds,

meaning that they originate from games or arenas not seen

during training. Teams masks are drawn in red and blue.

The first five rows in Figure 2 illustrate how well the

proposed method can deal with indoor basketball condi-

tions. Players in fast movement and low contrast are de-

tected and well grouped in teams. Occlusions, led adver-

tisements, and artificial lighting are not a major problem.

Associative embedding has a low sensitivity to high color

similarities between background and foreground. Specific

treacherous scenes with players of only one team and some

other humans are correctly handled.

We estimate to 10% of the number of annotated players,

the quantity of isolated regions that could fit humans, ex-

tracted in addition to reference instances. These detections

come from referees and other unwanted persons on or close

to the ground, and in certain cases from scenery elements.

In basketball, the proportion of the number of referees re-

lated to the players is from 20 to 30% (we usually count 2

or 3 referees in a complete field, while players are 5 + 5).

Thus, it is interesting to see that our FCN trained on play-

ers generally avoids referees and other people. However,

this is a challenging task, as can be seen in the two promi-

nent failure cases shown in the last two rows of Figure 2,

where referees shirts or pants are visually similar to a team.

In the first example, a referee is detected as a player and

included in a team (referee on the right, under the basket),

and a player is filtered from predicted player class probably

because it is seen as a referee by the network (background

player in side of a referee). In the second example, the dark

pants of a referee and a coach in the back of the court are

assimilated to the team in black. This sample also presents

a severe occlusion implying four players; inside and around

this area, detection is inaccurate and team assignment of the

orange player mixed with black teammates is lost.

5. Conclusion

Associative embedding is considered to address the team

assignment problem in team sport competitions. It offers

the advantage of discriminating teams in sport scenes, with-

out requiring an unpractical per-game training. Promis-

ing results are obtained on a challenging basketball dataset,

with few tuning and only approximate player mask annota-

tions. In this work, the embeddings come with a player seg-

mentation mask from a relatively simple multi-scale CNN,

rather than the stacked hourglass network considered in pre-

vious works [15, 21, 22]. Our work could be extended to

support instance segmentation, by using either instance em-

beddings [22] or projective geometry [1, 5, 9]. Future in-

vestigations of interest include the explicit recognition of

referees, a deeper analysis of the embeddings distribution

and a more careful weighting of losses [13].



Figure 2: Team discrimination with associative embedding. From left to right: test image, zoomed reference masks and

prediction. The first five rows present success cases, while the last two show failure cases. From top to bottom: running

players; strong shadows; occlusions; court and teams share the same colors; only one team; confusion between players and

referees; extreme occlusions. Please refer to the numerical version of the paper for the colors and ability to zoom on details.
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