
Generation of Ball Possession Statistics in Soccer using Minimum-Cost Flow

Network

Saikat Sarkar

University of Calcutta

Kolkata, India

to.saikatsarkar17@gmail.com

Amlan Chakrabarti

University of Calcutta

Kolkata, India

acakcs@caluniv.ac.in

Dipti Prasad Mukherjee

Indian Statistical Institute

Kolkata, India

dipti@isical.ac.in

Abstract

We present an automatic technique for calculating ball

possession statistics from the video of a soccer match. The

possession statistics is generated based on the number of

valid passes made by an individual team. A valid pass is

detected as a split or merge event of the ball with a player.

A pass starts when the ball splits from a player. A pass ends

when the ball merges with a player. We use a minimum-cost

flow network to model number of valid passes in the soccer

match. The ball and the players represent the nodes of the

network. Each edge of the network is associated with a cost

derived from the between-frame correspondences of the ball

and the players. The total flow through the network is op-

timized to track the number of valid passes. Experimental

results show that the accuracy of the proposed method is at

least 4% better than that of a similar approach.

1. Introduction

Ball possession statistics is a popular performance indi-

cator in a soccer match. Several studies show that posses-

sion percentages of the successful teams are higher com-

pared to the unsuccessful teams [2, 3, 4]. As an example,

the national team of Germany had the highest 56.71% av-

erage possession in the 2014 FIFA World Cup and was the

champion of the tournament [10]. All existing methods of

ball possession calculation are done manually [14]. One

such method, used by Deltatre [9] manually computes the

time duration for which a team has the ball.

The time based approach suffers from human error and

relies on the expertise of data loggers. Opta Sports, which

provides soccer statistics for the Premier League, calculates

ball possession based on the pass count of the teams [16].

They manually count the number of successful passes exe-

cuted by a team during the game. Then the possession of

Split Move Merge

Pass start Pass end

Figure 1. An example of a valid pass.

team i is calculated as follows.

Possession(team i) =
#V alid passes by team i

#V alid passes by both teams
,

(1)

where #V alid passes denotes the number of valid passes.

A pass is called valid if the pass is made between two dif-

ferent players of the same team. We count the success-

ful passes made by each team and generate the possession

statistics using (1). A visualization of a single pass between

two players of the same team is shown in Fig. 1.

Different approaches have been proposed for tracking

soccer ball and players [21, 15, 12], and for event detection

in a soccer match, such as shot on goal, penalty kick, offside

[22, 11]. But, very little attention has been paid till date to

generate ball possession statistics. In [23], the authors have

detected the pass event by analyzing the ball velocity curve.

Local minima or maxima in the ball velocity curve repre-

sents pass start or end event. Once a pass is detected, the

player nearest to the ball is used to get the information of

the team in possession of the ball. Based on the pass event,

the video is divided into a set of segments called touching

segments. The possession statistics of two teams is then

calculated by counting the number of touching segments of

the teams. A major limitation of the mentioned approach

is that the spatial coordinate of the soccer ball and players

has to be provided as input to the algorithm to work. Miss-

detection of passes arise when there is marginal change in

the velocity curve.

The objective of our work is to automatically calculate

ball possession statistics from a soccer video. We map the

pass detection process in a graph theoretic framework. We

build a minimum-cost network model to detect ball pass

event. For a pass start event the connected components rep-

resenting the ball and the player split from each other. In

case of a pass end event, connected components represent-

ing the ball and the player overlap each other and become

a single connected component. The minimum-cost network

detects if objects (ball and players) move, split or merge and

appear or disappear between two consecutive frames.

Minimum-cost network has been successfully applied in

visual object tracking under data association based tracking

framework [13, 19]. Under this framework, first, objects are

identified inside a frame. Then corresponding objects are

linked across the frames by solving a linearly constrained

optimization function.

The rest of the paper is organized as follows. In Sec-

tion 2, we discuss our proposed methodology including the

minimum-cost network model and the pass counting strat-

egy. Experimental results are shown in Section 3 followed

by conclusions in Section 4.

2. Proposed method

The block diagram of the proposed method is shown in

Fig. 2. The estimation of possession statistics starts from

Figure 2. Block diagram of our proposed method.

detecting the soccer ball and players. We have implemented

[20] to extract foreground connected components of a soc-

cer video frame.

After segmenting the background representing the soc-

cer field [20], we employ SVM to label the foreground con-

nected components. The classes are, (1) ball, (2) team A,

(3) team B and (4) other. We use multi-class SVM [5] with

RBF kernel as classifier. We use area, eccentricity and RGB

histogram as features for classification. A typical detection

pipeline is shown in Fig. 3. In the next section we describe

the detection of ball pass.

2.1. Detection of ball pass

We use the minimum-cost network model to detect the

ball pass event. In a traditional flow network based tracking

framework [17], between-frame objects are linked to track

individual objects. By enforcing the flow limit through the

edges of the network to be one, the paths or the flows going

through the network are guaranteed to be mutually exclu-

sive. In our case, pass event detection requires detection

Figure 3. Detection of the ball and players with team labels. The

ball is marked with yellow rectangle. Players of two teams are

marked with blue and red rectangles.

of connected components representing players and the ball.

These connected components split (for pass start) or merge

(for pass end) from previous frame to the current frame.

However, a single edge of the network can handle only one

such split or merge event. In addition, we augment the net-

work with appear and disappear nodes to detect suddenly

appearing or disappearing players or ball from the video.

Next we describe how to construct the flow network.

2.1.1 Construction of the network

We build a flow network from the objects detected in two

consecutive frames. Our objective is to correctly associate

the objects in previous frame to those in the current frame.

Our formulation does not require any prior assumptions on

the number of objects to be associated. Assuming there are

total d number of objects in the current frame and the previ-

ous frame, we send d amount of flow over the network. The

minimum cost solution provides a correct association of all

d objects across frames.

A flow network G = (V,E) is a directed acyclic graph

with V nodes and E edges. In our case, nodes of the net-

work represent detected foreground objects like players and

the ball. The edges of the network connect objects between

two consecutive frames. For consecutive frames L and R,

Each edge (u, v) ∈ E, u ∈ VL, v ∈ VR, has a non-negative

capacity t(u, v) ≥ 0. The nodes of the previous frame L is

represented by VL and the nodes of the current frame R is

represented by VR.

Apart from the capacity t(u, v), each edge has a real-

valued cost a(u, v) that denotes cost per unit flow in the

(u, v). The cost represents correspondence or similarity be-

tween u and v. The cost is minimum for correct association

between frames. If we send x(u, v) units of flow over edge

(u, v), we incur a cost of a(u, v)x(u, v).

Two vertices that are added in the flow network are the

source T+ and sink T−. The source vertex produces the

flow and the terminal vertex consumes the flow. The cost

flow problem can be formulated as the minimization prob-

lem of the product of cost and flow along the edges of the

network as [1],

Minimize
∑

(u,v)∈E

a(u, v)x(u, v), (2)

subject to,

∑

u∈V

x(u,w)−
∑

v∈V

x(w, v) = b(w), ∀w ∈ V.

The difference between all incoming flow from u to w and

all outgoing flow to v from w is equal to the flow require-

ment b(w). The flow requirement is greater than zero for

the source vertex, less than zero for the terminal vertex and

zero for all intermediate vertices, known as flow conserva-

tion constraint.

The decision variables in the minimum-cost flow prob-

lem is x(u, v), the flow over an edge (u, v). The problem

is to send d amount of flow from source to terminal ver-

tex in such a way that the total cost incurred by the flow is

minimized.

We now build the flow network based on the objects de-

tected. Let N1 objects be detected in the previous frame

L and N2 objects in the current frame R. Therefore, the

vanilla flow network has (N1 + N2) nodes. Each vertex

u ∈ VL is connected with every vertex v ∈ VR, directed

from u to v resulting in total N1N2 edges. Each of the

edges has a cost a(u, v) and capacity t(u, v) = 1. In ad-

dition, a source vertex T+ and a terminal vertex T− are

added to the network. Every vertex u in the previous frame

has an incoming edge from the source vertex T+ with cost

a(T+, u) = 0 and capacity t(T+, u) = 1. Similarly, every

vertex v in the current frame has an outgoing edge to the

terminal vertex T− with cost a(v, T−) = 0 and capacity

L1

L2

R1

R2

R3

T+ T-

0,1

0,1

0,1
0,1

0,1

a(L1, R1),1

a(L2, R3),1

Previous frame (L) Current frame (R)

Figure 4. An example of flow network constructed based on the

objects detected in two consecutive frames. For each edge, the

cost and capacity is written as (cost, capacity). The vertices in L

and R are marked in gray while the edges are in black color. The

source and the terminal vertices and associated edges are marked

with pink color.

L1

L2

R1

R2

R3

T+ T-

0,1

0,1

0,10,1

0,1

a(A, R1),1
A

0, |R|

D
a(L2, D),1

0, |L|
0, |L|

Figure 5. The flow network with the appear vertex A and the disap-

pear vertex D. The appear vertex and associated edges are marked

with blue. The disappear vertex and associated edges are marked

with orange.

t(v, T−) = 1. A simple flow network with N1 = 2 and

N2 = 3 is shown in Fig. 4.

The basic network architecture proposed above needs to

be augmented for reasons described next. The first modi-

fication is due to appearance (disappearance) of the player

and/or ball in (from) a frame. The second modification is

due to split or merge of connected components. These are

detailed next.

2.1.2 Appearing and disappearing objects

The players and the ball may appear in or disappear from

the frame. To incorporate this scenario, appear vertex A

and disappear vertex D are introduced in the network. To

consider the possibility that an object may suddenly appear

in R, all of the N2 vertices in R are connected to the ap-

pear vertex A in L. Each of these edges connecting A and

v ∈ VR has a cost a(A, v ∈ VR) with unit capacity. An

edge from the source vertex to the appear vertex with cost

a(T+, A) = 0 and capacity t(T+, A) = |R|, is added for

flow conservation, where |R| denotes total number of nodes

in frame R. The capacity of the edge t(T+, A) is set as |R|
as appear vertex has |R| number of outgoing edges to R.

Analogously, the disappear vertex D has an edge from

each of the N1 vertices of frame L. This means that each

object in the previous frame L may disappear in the next

frame. Each of these edges connecting u ∈ VL with D

has a cost a(u ∈ VL, D) with unit capacity. An edge from

D to the terminal vertex with cost a(D,T−) = 0 and ca-

pacity t(D,T−) = |L| is added. The capacity of the edge

t(D,T−) is set to |L| as the disappear vertex has |L| in-

coming edges from L. An edge from A to D with zero cost

and capacity t(A,D) = |L| is added to preserve the flow

conservation constraint of the network. The modified net-

work with appear and disappear vertices is shown in Fig. 5.

Next we detail merge and split of connected components.

2.1.3 Splitting and merging of objects

To model splitting and merging of objects, split vertices S

and merge vertices M are introduced in the network. Each

split vertex has one incoming edge from each of the L ver-

tices and two outgoing edges to two nodes ofR. Each of the

outgoing edge of split node has zero cost and unit capacity.

The incoming edge has cost a(u, Sv1,v2), v1, v2 ∈ VR and

unit capacity. There will be total N2C2 split vertices for N2

number of objects in the current frame.

Similarly, any two connected components of L may

merge. Therefore, each merge vertex has two incoming

edges from two nodes of the L and one outgoing edge to

each node of R. Each of the incoming edges of M has

zero cost and unit capacity. The outgoing edge has cost

a(Mu1,u2, v), u1, u2 ∈ VL and unit capacity. For simplic-

ity, we consider that only two objects can be merged at a

time. For N1 number of objects in the previous frame, there

will be total N1C2 merge vertices.

Merge vertices violate the flow conservation constraint

because each M node has two incoming and one outgoing

edges. So, an outgoing edge from each vertex of M to the

disappear vertex D is added with zero cost and unit capac-

ity. Similarly an incoming edge from appearance vertex A

is added to every split vertices S with zero cost and unit ca-

pacity. The extended network with split and merge vertices

is shown in Fig. 6.

A constraint is needed to make sure that exactly two units

flow to and from split and merge vertices when these ver-

tices are part of the solution. This is called edge coupling

constraint [17]. Edge coupling ensures that the flow through

a split (or merge) vertex is either 0 or 2. To ensure all of

the objects on the previous and current frame are part of

the solution, the flow requirement d of the network is set to

d = N1 +N2.

The cost and capacity of different types of edges of the

network is summarized in the Table 1. Determination of

L1

L2

R1

R2

R3

T+ T-

0,1

0,1

0,10,1

0,1

A

0, |R|

D

0, |L|

0, |L|

S1,2 S1,3 S2,3

M1,2

0,10,1
0,1

0,1
0,1

0,1

a(L1, S1,2), 1

a(M1,2, R3), 1

d=|L|+|R|

a(L2, R3), 1

a(L2, D), 1

a(A, R1), 1

Figure 6. Extended flow network with split and merge vertices.

The split vertices and associated edges are marked with green. The

merge vertices and associated edges are marked with brown. Flow

requirement of the network is d.

cost of the edges is described in the next section.

Table 1. Summarization of cost and capacity of different edges of

the network.

Edge Cost Capacity Remarks

T+ → VL 0 1 -

T+ → A 0 |R| Node A is connected with |R|
objects in the current frame (R)

VL → VR a(VL, VR) 1 -

A→ VR a(A, VR) 1 -

A→ Sv1,v2 0 1 -

A→ D 0 |L| To preserve the flow conserva-

tion constraint of the network

VL → Sv1,v2 a(VL, Sv1,v2) 1 -

VL →Mu1,u2 0 1 -

Mu1,u2 → VR a(Mu1,u2, VR) 1 -

Mu1,u2 → D 0 1 -

VR → T− 0 1 -

D → T− 0 |L| Node D is connected with |L|
objects in the previous frame

2.1.4 Calculation of association costs

We want the edge costs to be low for correct associations

between connected components of two consecutive frames.

Also, we are trying to minimize the overall cost of the net-

work. The cost of an edge has three components, the color

similarity component ρ, the distance component δ and the

angular displacement component θ as detailed next.

Assume an object u in frame L is defined using a bound-

ing box. The histogram hu of u is obtained by concate-

nating the histograms of equal length red, green, and blue

channels of the object. The concatenated histogram hu has

ν number of bins. The histogram is normalized by dividing

count in each bin by sum of all bins of the histogram. The

color similarity component ρ between objects u in frame L

and v in frame R is defined as difference between hu and

hv as follows,

ρ(u, v) =
∑

ν

|hu − hv|. (3)

Assume the center location of the bounding box of u is

(ux, uy). The distance component between u and v is de-

fined as,

δ(u, v) =

√

||(ux, uy)− (vx, vy)||2

max(c, r)
, (4)

where c is the width and r is the height of the frame. Nat-

urally, the correct association between u and v should have

minimum displacement between two consecutive frames.

Finally, the angular displacement between u and v is

given by,

θ(u, v) = 1−
(ux, uy) · (vx, vy)

||(ux, uy)||||(vx, vy)||
. (5)

We assume that the direction of movement of an object is

consistent between frames. The between-frame associa-

tions are penalized if the cosine of angle between the po-

sition vectors increases.

Association cost We now calculate the cost of each

between-frame association. This cost includes cost due to

color similarity, between-frame distance and angular dis-

placement. The total cost of association of u with v is cal-

culated as,

a(u, v) = ρ(u, v) + λ1δ(u, v) + λ2θ(u, v), (6)

where λ1 and λ1 are two scaling parameters.

Splitting and merging cost To calculate splitting cost, an

object in the previous frame is associated with two objects

on the current frame. The cost of associating u1 with v1
and v2 is calculated as average of the total association cost

between u1 and v1 and u1 and v2.

a(u1, (v1, v2) =
a(u1, v1) + a(u1, v2)

2
. (7)

Similarly, the cost of merging u1 and u2 with v1 is cal-

culated as,

a((u1, u2), v1) =
a(u1, v1) + a(u2, v1)

2
. (8)

Appearance and disappearance cost When an object

appears, it is present in the current frame and absent from

the previous frame. When an object disappears, it is ab-

sent from the present frame but was present in the previous

frame. Note that the appear node A and the disappear node

D are dummy nodes for which we do not have any defined

bounding boxes. So we cannot calculate ρ, δ, θ for the pairs

(A, v) and (u,D). We calculate the appearance and disap-

pearance cost based on how far the object is from image

border. If the frame has width c and height r, then the cost

of appearance of an object v is calculated as,

a(A, v) =
min(vx, vy, (c− vx), (r − vy))

max(c, r)
. (9)

Similarly the cost of disappearance of an object u is calcu-

lated as,

a(u,D) =
min(ux, uy, (c− ux), (r − uy))

max(c, r)
. (10)

2.1.5 Solving the cost flow problem using linear pro-

gramming

The minimum-cost flow problem described in (2) can be

solved using a linear programming problem. An incidence

Figure 7. The incidence matrix Γ of Fig. 6. Blank entries represent

zero.

matrix Γ is used to represent the flow network. The inci-

dence matrix has the size |V |× |E| where each column cor-

responds to an edge and each row corresponds to a vertex

of the flow network as shown in Fig. 7. The entry in a col-

umn corresponding to the start of the edge is set to +1, and

the end of the edge is set to -1. Rest of the entries are zero.

First column of Γ in Fig. 7 represents the edge (T+, L1) of

Fig. 6.

The incidence matrix representation of the network has

no restriction on selecting exactly zero or two edges of the

split (or merge) vertices. In order to enforce the edge cou-

pling constraint, the incidence matrix is modified similar to

[17], known as coupled edge incidence matrix. The matrix

I in Fig. 8 represents the coupled edge incidence matrix of

the network shown in Fig. 6. In the coupled edge incidence

matrix, the incoming and outgoing edges of split and merge

vertices are combined into a single column.

For example, the columns 4, 6, 18 and 30 of Fig. 7 are

coupled into the column 4 of I in Fig. 8. The combined

column has four non-zero entries, two +1 (row 2 and 4 of

column 4) for starting of incoming edges and two -1 (row

5 and 7 of column 4) represent ending of outgoing edges of

a split (or merge) vertex. Split and merge vertices are no

longer required and removed from the coupled-edge inci-

dence matrix of Fig. 8.

Using the coupled-edge incidence matrix I , finding the

optimal matches corresponds to finding a subset of columns

in the matrix such that the cost of these columns are min-

imized. This can be represented as an integer linear pro-

gramming (ILP) problem as,

Minimize
x

a
T
x, subject to : Ix = b, 0 ≤ x ≤ t, (11)

where, a is the vector of costs of size |E| × 1. Each ai ∈ a

represents the cost of an edge i that we have calculated in

the previous section. Cost of a will be derived from (6)

to (10). The vector b is of size |V | × 1 and represents flow

requirement of the vertices. Flow requirement at source ver-

tex is +d and at terminal vertex is −d. Flow requirement is

zero for all other vertices. The vector x of size |E| × 1 is

Figure 8. Integer linear programming formulation of Fig. 6. The

flow requirement of the network is d = 5. Non-zero entries in the

optimal solution x
∗ (marked with green) represent the edges that

are part of the solution.

the solution vector whose coefficients represent amount of

flow passed through the corresponding edge. The vector t

of size |E| × 1 represents capacity of each individual edge

of the network.

The integer linear programming based solution of Fig. 6

is shown in Fig. 9. The optimal solution x
∗ of the prob-

lem can be found using linear programming [1]. The vector

x
∗ represents optimal flow over each edge of the network.

The solution would never turn to an inconsistent state like

unbounded solution or no solution because of the flow re-

quirement d and the flow capacity t of the network [17].

2.2. Counting of passes and generation of possession
statistics

A non-zero entry xi ∈ x
∗ represents that the edge i is

part of the solution. Now, an edge of the coupled edge in-

cidence matrix I that connects u ∈ VL to v ∈ VR indicates

object u moves to v in the current frame. The split event is

L1

L2

R1

R2

R3

T+ T-

1

1

A

D

S2,3

d=5

1

1

1

1
1

22

3

1

1

1

Figure 9. The solution of Fig. 6. L1 moves to R1 and L2 splits into

R2 and R3. Edge values represent calculated flow on each edge.

detected when we get a coupled edge that connects a vertex

u from previous frame to v1 and v2 of the current frame.

The coupled edge in column 9 of I connects L2 to R2 and

R3, which denotes L2 splits to R2 and R3. Similarly, find-

ing an edge that connects u1, u2 from previous frame to v of

current frame indicates merge event. Appearance (or disap-

pearance) event is detected on getting an edge that connects

object A to v (or u to D).

Now, if we get any solution that involves splitting or

merging of a player and the ball, we say a pass event has

occurred. We maintain unique id for each individual ob-

ject moving across the frames. If an object moves from one

frame to the next frame, the id get unchanged. For appear-

ance of a new object and splitting or merging of two objects,

a new id is assigned. As mentioned earlier, a pass start event

followed by a pass end event is considered as a single pass.

The pass is valid if both the players are of the same team

but their ids are different. We then follow (1) to keep tab on

Algorithm 1: Generation of possession statistics

Input : Frames of soccer video.

Output: Possession statistics of two teams.

1 Initialize pass count A = 0

2 Initialize pass count B = 0

3 while Video read not complete do

4 Read the current frame and the previous frame

5 Construct the cost flow network as in Section 2.1.1

6 Convert the graph to an coupled edge incidence

matrix I as in Section 2.1.5

7 Get x∗ by solving (11) using ILP

8 Find an edge xi ∈ x∗ such that xi is non-zero and

the ball is split from or merged with a player p

through xi
9 if split==TRUE then

10 Set pass status = ’pass start’

11 Set l = p

12 end

13 if merge==TRUE then

14 if pass status is ’pass start’ then

15 if Team label of p and l is ’A’ then

16 pass count A += 1

17 end

18 if Team label of p and l is ’B’ then

19 pass count B += 1

20 end

21 end

22 Set pass status = ’pass end’

23 end

24 end

25 Generate possession statistics by pass count A and

pass count B using (1);

(a) Frame 21 (b) Frame 24 (c) Frame 45

(d) Frame 73 (e) Frame 75 (f) Frame 111

Figure 10. Text above each object represents the id of the object followed by event status. At frame 24 a merge event of the ball (id=1) with

the player (id=13) is initiated. This denotes a pass end event. The merged objects (id=21) split at frame 45. This is starting of a new pass.

The pass ends at frame number 73. A new pass starts at frame 75 and ends at frame 111. Frames are cropped for better visualization.

ball possession statistics.

The overall procedure of generation of ball possession

statistics is summarized in Algorithm 1. Fig. 10 represents

visualization of pass detection process on a frame sequence.

A split event of a player and the ball happens at frame 45

followed by merge event at frame 73. This split followed by

merge denotes a valid pass for the team marked in red.

3. Experimental results

To evaluate the performance of our model, we experi-

ment with different broadcast soccer video clips available

at YouTube [6, 7, 8]. The videos are encoded in mp4 format

with 1280x720 resolution and 25 frame rate per second. We

have reported the results of 8 long and medium shot video

clips in this paper. Each of the clips is about 8-10 minutes

duration.

Figure 11. Classification result.

For offline training of the classifier, we have manually

marked the ball, players with team label and other objects

in video frames. We then train SVM based object classi-

fier with the labeled objects. We use 25000 images of each

category for training. The classification results for 3-fold

cross validation is shown in Fig. 11. We find the highest

classification accuracy for the ball class.

To validate the ball possession stat result of our method,

we have prepared ground truth. We mark each frame of the

clip with tuple {0, A, B}, where A denotes that the ball is

in possession of team A. Similarly, B denotes that the ball

is with team B and 0 indicates the situation when the ball is

not in control of any team. For each of the video clips, we

Figure 12. Plot of association accuracy for different values of λ1

and λ2.

calculate the possession statistics by manually counting the

passes.

The accuracy of association of objects between consecu-

tive frames for different values of λ1 and λ2 in (6) is shown

in Fig. 12. The plot of Fig. 12 shows that the highest asso-

ciation accuracy is obtained for λ1 = 0.87 and λ2 = 0.63,

which we have used for our experiments. We experimen-

tally set the bin size ν = 150 for the concatenated his-

tograms in (3).

Table 2. Comparison of pass count.

Videos Ground Truth Our method [23]

A B A B A B

Video 1 72 18 78 29 91 35

Video 2 39 32 21 42 50 44

Video 3 34 46 54 33 23 53

Video 4 37 64 37 79 43 55

Video 5 23 54 29 68 31 76

Video 6 32 36 28 41 44 18

Video 7 61 19 76 24 73 39

Video 8 29 36 29 54 25 58

Table 2 represents comparison of the pass count of our

method with ground truth data and the method proposed by

[23]. Pass count for [23] is generated by analyzing the ball

velocity curve drawn from known ball positions. Columns

A and B in Table 2 represent pass count for team A and

team B respectively. Table 3 presents comparison of the

ball possession statistics of different methods. The posses-

sion statistics is calculated based on obtained pass count as

listed in Table 2. Table 4 shows the average error of pass

Table 3. Comparison of possession stat.

Videos Ground Truth Our method [23]

A B A B A B

(%) (%) (%) (%) (%) (%)

Video 1 80 20 73 27 72 28

Video 2 55 45 33 67 53 47

Video 3 43 57 62 38 30 70

Video 4 37 63 32 68 44 56

Video 5 30 70 30 70 29 71

Video 6 47 53 41 59 71 29

Video 7 76 24 76 24 65 35

Video 8 45 55 35 65 30 70

count as well as of possession statistics. The error is cal-

culated by comparing the detected result with ground truth

information. We have experimentally found that incorrect

detection of ball has higher impact than the incorrect detec-

tion of a player for calculating possession stat.

3.1. Analysis of computational complexity

Given N1 number of objects in the previous frame and

N2 number of objects in the current frame, we create

Table 4. Comparison of error of pass count and possession stat.

Method Pass count error (%)
Possession statistics

error (%)

Team A Team B Team A Team B

Proposed method 7.6 21.3 17.7 19.3

[23] 16.2 23.9 20.6 24.8

N1 +N2 number of vertices and N1N2 edges. Adding the

source and terminal vertices increase the number of vertices

by 2 and number of edges by N1 + N2. When the appear

and disappear vertices are added to the network, the num-

ber of vertices are increased by 2 and edges are increased

by N1 +N2 + 3. Adding the split and merge vertices does

not increase the rows of coupled edge incidence matrix I ,

but increase the columns by N1 ×
N2 C2 +N2 ×

N1 C2.

The coupled edge incidence matrix has total z = (N1 +
N2 + 2 + 2) rows and η = ((N1N2) + (N1 + N2) +
(N1 + N2 + 3) + (N1 ×N2 C2 + N2 ×N1 C2)) columns.

Columns of the incidence matrix represent the variable xi
and rows represent constraints. Therefore, we have total η

variables and z constraints in the ILP. Solving an ILP prob-

lem is considered NP-Complete. The ILP in (11) can be

solved with runtime complexity O((ηQ)z+1) [18], where

Q = η(zα2z+1) and xi takes values between 0 to α. Fore-

ground object detection using binary connected component

analysis requires β = O((rc)2) operations, where c and

r are the width and height of the input image respectively.

Runtime complexity of applying our method on a video of

length ψ is O(ψβ(ηQ)z+1).

The proposed method takes 3.43 seconds on an average

to process a pair of frames with an unoptimized MATLAB

R2018a code on a PC with Intel i5 2.3 GHz processor, 8 GB

of RAM and Windows 10 operating system.

4. Conclusions

We propose a method to automatically generate ball pos-

session statistics in broadcast soccer video. Experimental

results show that our method is promising and efficient. We

have optimized network flow model using an appropriate

cost function. The cost function may be improved incorpo-

rating motion vector of the ball and players. Unsupervised

team labeling may be explored instead of currently imple-

mented SVM classification. In future we plan to integrate

the results of ball possession stat of close shot video frames

with the results of long and medium shot soccer video. Ef-

fects of other situations on ball possession stat like effect

of long pass, dribbling, off-side, different shots and play

breaks need to be analyzed using an augmented flow net-

work model. The optimization of objective function and its

implementation also need a closer look for real-time result.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows:

theory, algorithms and applications. Prentice Hall, 1993.

[2] J. A. Araya and P. Larkin. Key performance variables be-

tween the top 10 and bottom 10 teams in the english pre-

mier league 2012/13 season. Human Movement, Health and

Coach Education (HMHCE), 2:17–29, 2013.

[3] P. S. Bradley, C. Lago-Peñas, E. Rey, and A. Gomez Diaz.

The effect of high and low percentage ball possession on

physical and technical profiles in english fa premier league

soccer matches. Journal of Sports Sciences, 31(12):1261–

1270, 2013.

[4] J. Castellano, D. Casamichana, and C. Lago. The use of

match statistics that discriminate between successful and un-

successful soccer teams. Journal of human kinetics, 31:137–

147, 2012.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: A library for

support vector machines. ACM Transactions on Intelli-

gent Systems and Technology, 2:27:1–27:27, 2011. Soft-

ware available at http://www.csie.ntu.edu.tw/

˜cjlin/libsvm.

[6] Dataset1. https://www.youtube.com/watch?v=

7uHGd7yNm6I. [Online; accessed 13-March-2019].

[7] Dataset2. https://www.youtube.com/watch?v=

cC18Y--L-7w. [Online; accessed 13-March-2019].

[8] Dataset3. https://www.youtube.com/watch?v=

GGhhbMOp6yY. [Online; accessed 13-March-2019].

[9] H. Glasser. The Problem With Possession: The Inside

Story of Soccers Most Controversial Stat. http://

www.slate.com/blogs/the_spot/2014/06/27/

soccer_possession_the_inside_story_of_

the_game_s_most_controversial_stat.html.

[Online; accessed 13-March-2019].

[10] K. GÖRAL. Passing success percentages and ball posses-

sion rates of successful teams in 2014 fifa world cup. In-

ternational Journal of Science Culture and Sport (IntJSCS),

3(1):86–95, 2015.

[11] H. Jiang, Y. Lu, and J. Xue. Automatic soccer video event

detection based on a deep neural network combined cnn and

rnn. In Tools with Artificial Intelligence (ICTAI), 2016 IEEE

28th International Conference on, pages 490–494. IEEE,

2016.

[12] P. R. Kamble, A. G. Keskar, and K. M. Bhurchandi. Ball

tracking in sports: a survey. Artificial Intelligence Review,

pages 1–51, 2017.

[13] L. Leal-Taixé, G. Pons-Moll, and B. Rosenhahn. Everybody

needs somebody: Modeling social and grouping behavior on

a linear programming multiple people tracker. In Computer

Vision Workshops (ICCV Workshops), 2011 IEEE Interna-

tional Conference on, pages 120–127. IEEE, 2011.

[14] D. Link and M. Hoernig. Individual ball possession in soccer.

PloS one, 12(7):e0179953, 2017.

[15] M. Manafifard, H. Ebadi, and H. A. Moghaddam. A survey

on player tracking in soccer videos. Computer Vision and

Image Understanding, 159:19–46, 2017.

[16] B. Optasports. A Ball Possessed. http:

//www.optasports.com/news-area/

blog-a-ball-possessed.aspx, 2011. [Online;

accessed 13-March-2019].

[17] D. Padfield, J. Rittscher, and B. Roysam. Coupled minimum-

cost flow cell tracking for high-throughput quantitative anal-

ysis. Medical image analysis, 15(4):650–668, 2011.

[18] C. H. Papadimitriou. On the complexity of integer program-

ming. Journal of the ACM (JACM), 28(4):765–768, 1981.

[19] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Globally-

optimal greedy algorithms for tracking a variable num-

ber of objects. In Computer Vision and Pattern Recogni-

tion (CVPR), 2011 IEEE Conference on, pages 1201–1208.

IEEE, 2011.

[20] U. Rao and U. C. Pati. A novel algorithm for detection

of soccer ball and player. In In Communications and Sig-

nal Processing (ICCSP), 2015 International Conference on,

pages 344–348, 2015.

[21] S. Sanyal, A. Kundu, and D. P. Mukherjee. On the (soc-

cer) ball. In Proceedings of the Tenth Indian Conference on

Computer Vision, Graphics and Image Processing, page 53.

ACM, 2016.

[22] M. Tavassolipour, M. Karimian, and S. Kasaei. Event de-

tection and summarization in soccer videos using bayesian

network and copula. IEEE Transactions on circuits and sys-

tems for video technology, 24(2):291–304, 2014.

[23] X. Yu, H. W. Leong, J.-H. Lim, Q. Tian, and Z. Jiang. Team

possession analysis for broadcast soccer video based on ball

trajectory. In Information, Communications and Signal Pro-

cessing, 2003 and Fourth Pacific Rim Conference on Mul-

timedia. Proceedings of the 2003 Joint Conference of the

Fourth International Conference on, volume 3, pages 1811–

1815. IEEE, 2003.

