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Abstract

Detection of moving objects such as vehicles in videos

acquired from an airborne camera is very useful for video

analytics applications. Using fast low power algorithms

for onboard moving object detection would also provide re-

gion of interest-based semantic information for scene con-

tent aware image compression. This would enable more ef-

ficient and flexible communication link utilization in low-

bandwidth airborne cloud computing networks. Despite re-

cent advances in both UAV or drone platforms and imaging

sensor technologies, vehicle detection from aerial video re-

mains challenging due to small object sizes, platform mo-

tion and camera jitter, obscurations, scene complexity and

degraded imaging conditions. This paper proposes an ef-

ficient moving vehicle detection pipeline which synergisti-

cally fuses both appearance and motion-based detections

in a complementary manner using deep learning combined

with flux tensor spatio-temporal filtering. Our proposed

multi-cue pipeline is able to detect moving vehicles with

high precision and recall, while filtering out false positives

such as parked vehicles, through intelligent fusion. Experi-

mental results show that incorporating contextual informa-

tion of moving vehicles enables high semantic compression

ratios of over 100:1 with high image fidelity, for better uti-

lization of limited bandwidth air-to-ground network links.

1. Introduction

Detection of moving vehicles in videos acquired from

an airborne camera is very useful for video analytics appli-

cations including traffic flow, urban planning, surveillance,

law enforcement and disaster response. With the recent ad-

vances in sensor technologies and airborne platforms such

as unmanned aerial vehicles (UAVs) or drones, there is a

growing need for robust video compression, summariza-

tion, and automated analysis tools. The focus of this paper

is detection and tracking of moving objects in aerial videos

for three types of tasks: (1) video compression to reduce

air-to-ground (UAV/drone to base station) and air-to-air (be-

tween drones) communication needs during real-time flight

operations; (2) video summarization to enable efficient in-

spection of static and dynamic scene content; and (3) se-

mantic video analytics to derive scene, event, and behav-

ior related actionable knowledge from rich but unstructured

video data mining.

Object detection is at the core of these video analyt-

ics tasks. Advances in deep learning methods, GPU tech-

nologies, and training data collected for recent AI chal-

lenges [26, 39, 24, 20] have led to significant performance

improvements in object detection accuracy and time effi-

ciency. Researchers have used motion-based [13, 14, 37]

or appearance-based approaches [8, 11] to address the chal-

lenges of object detection. Others have combined motion

and appearance-based approaches for more robust perfor-

mance [35, 18, 34]. Despite the improvements, particularly

on ground-based video analysis, moving object detection

remains a challenging task in wide area motion imagery

(WAMI) collected by drones. These videos are character-

ized by large camera motion, low frame rate, small ob-

ject sizes, oblique viewing angles, motion blur, parallax ef-

fects, shadow and illumination variations, background clut-

ter, partial or full occlusions from buildings, vegetation or

other structures, and appearance differences due to weather,

environment and seasonal variations.

This paper proposes a robust moving vehicle detec-

tion pipeline for wide area aerial surveillance videos by

combining complementary appearance and motion infor-

mation. Appearance-based detections are obtained using

YOLO (You Only Look Once) [32] deep learning based

object detection system trained with vehicle image patches

from aerial imagery. Motion detection is performed using
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Figure 1: Multi-cue moving vehicle detection pipeline using motion, appearance and shape information from detections at

different stages. In the first stage the aerial video is georegistered and stabilized using [7], in the second stage motion-based

flux detection is fused with appearance-based YOLO detections.

a robust 3D (2D + time) tensor-based approach extending

[28]. There are different sources of motion in an airborne

vehicle tracking scenario including: (i) motion of the drone

platform itself, (ii) motion of objects (e.g. vehicles and peo-

ple) in the scene, and (iii) motion induced by parallax due to

buildings and other tall structures in the scene. The platform

motion can be eliminated by applying an efficient video reg-

istration technique to stabilize the video frames. This step

is then followed by a motion detection algorithm to identify

moving objects for the purpose of tracking them. There are

several approaches in the literature for motion detection and

tracking. However many existing approaches result in enor-

mous amount of false positive detections, due to the spu-

rious motions caused by projection of different views (im-

ages acquired from different positions and viewing angles)

onto the dominant ground plane (the parallax phenomenon).

Classification of real moving objects from parallax induced

motions is a very challenging task in WAMI airborne video

analysis. In this paper, we introduce a novel pipeline, shown

in Figure 1, to identify true moving objects despite spurious

detections by fusing deep appearance-based object detec-

tion with spatio-temporal tensor-based motion detection.

Experiments on Albuquerque urban aerial video dataset

(ABQ) [1] show promising results for detection of not only

moving vehicles but also other scene building structures.

The paper is organized as follows. Section 2 describes the

details of the proposed pipeline, including main modules

for video stabilization, appearance and motion-based detec-

tions, and fusion. Section 3 presents the experimental re-

sults, evaluation methods, and discussion of semnatic com-

pression followed by conclusions.

2. Multi-Cue Moving Vehicle Detection

The proposed moving vehicle detection system, for

airborne WAMI, consists of four main modules: (1)

video stabilization, (2) tensor-based motion detection, (3)

appearance-based vehicle detection, and (4) decision fu-

sion. These modules combine computer vision methods

(stabilization and motion detection) with machine learning

approaches (deep learning for appearance-based detection)

and rely on complementary appearance and motion infor-

mation. Beyond moving vehicle detection, which is the

main focus of this paper, the proposed hybrid and multi-cue

system also helps in detection of other scene structures such

as high-rise buildings that is useful in scene understanding.

2.1. Video Stabilization Using Georegistration

Stabilization of sequential video frames is the primary

step in many moving object detection pipelines. Homogra-

phy is a common method to perform the inter-frame reg-

istration and jitter removal. It is often done by estimat-

ing a frame-to-frame (piece-wise) perspective transforma-

tion (homography) which maps points of an observed domi-

nant plane in the scene from one image’s retinal plane to an-

other. Although, the estimation-based methods for obtain-

ing homography transformations may work well for gen-

eral cases, it becomes very challenging in persistent air-

borne video (i.e. WAMI) and urban scenery [29]. This is

due to existence of high 3D buildings combined with di-

versity of the viewing angles causing high level of parallax

motion [38]. The conventional frame-to-frame homogra-

phy estimation methods in a long run are not robust enough

and often fail to smoothly stabilize the whole sequence of

frames without resulting in fragmentations [22].

In our experiments, assuming to have camera 3D poses

(location and orientation) available, a direct analytical ho-

mography model is derived. The camera 3D poses can be

obtained through different methods such as SLAM [33] or

efficient Bundle Adjustment [19, 3]. Fig. 2 shows a world

coordinate system W and a dominant ground plane π span-



Figure 2: A scene and its dominant ground plane π is observed

by an airborne camera while hovering over a scene and passing

through n way-points. Each image frame is projected using ho-

mography onto the scene dominant plane, π. The homographic

transformation of the images of a 3D point like X1, which lies

on plane π, all converge to an identical 2D point in π and are co-

incident to X1. Whereas, for an off-plane 3D point such as X2,

its corresponding homography transformations diverge and spread

over different locations on π. The diverged points create spurious

parallax motions, ∆′

2 . . .∆
′

n
, which can easily be picked up by a

motion detection algorithms. The magnitude of such spurious mo-

tions are proportional to the height of the 3D structure as well as

the platform motion (∆2 . . .∆n).

ning through its X and Y axes. The scene is observed by

an airborne camera and images are acquired by the sensor

in n way-points along the UAV trajectory. It is equivalent

of having n airborne cameras C1, C2 . . . Cn. To make the

notations succinct, we will omit the camera indices from

now on unless otherwise stated. The image homogeneous

coordinate of a 3D point X = [x y z]⊺ from the world ref-

erence system W projected on the image plane of camera C

is obtained as x̃ = K(RX+ t), where K is the calibration

matrix (intrinsics), R and t are respectively the rotation ma-

trix and translation vector from W to C. For a 3D point X

lying on π, its Z component is zero, resulting to

x̃ = K
[

r1 r2 t
]

πx̃ (1)

where r1, r2 and r3 are respectively the first, second and

third columns of R, and πx̃ = [x y 1]⊺ represents the

2D homogeneous coordinates of the 3D point X on π [17].

One can consider the term K[r1 r2 t] as a 3× 3 homogra-

phy transformation matrix which maps any 2D point from

π onto the camera image plane as: x̃ = Hπ→c
πx̃. Like-

wise, a homogeneous image point x̃ can be mapped on π as
πx̃ = Hc→π x̃, where Hc→π is the inverse of Hπ→c and is

equal to

Hc→π =
[

r1 r2 t
]

−1
K−1. (2)

Assuming T =
[

r1 r2 t
]

, f as the focal length in pixel,

and (u, v) as the camera image principal point, (2) after sim-

plification can be expressed as:

Hc→π =
1

λ
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(3)

where v =
[

u v f
]⊺

and λ is a scalar defined as λ = fr
⊺

3t,

and mij is the minor(i, j) of matrix T. Note that λ in (3)

can be omitted as a homography matrix is up-to-scale.

The introduced mathematical model for image stabiliza-

tion works well for stabilization of parts of the image which

lie on the ground dominant plane (on-the-plane). However

for off-the-plane points (any non-flat objects such as build-

ings, cars etc.), their homographic projections introduce sig-

nificant spurious motions, which can be very distractive for

motion detection algorithms. For example, in Fig. 2, con-

sider X2 as a 3D point which is off-the-plane. It is imaged

as x1
2, x2

2 and xn
2 on the image planes of cameras C1, C2

and Cn. Mapping them on π using homography transfor-

mations will result πx1
2, πx2

2 and πxn
2 . As illustrated in Fig.

2, these mapped points are all spread out on π. The mag-

nitude of divergence and the displacement between them

is a function of the platform motion, ∆2 . . .∆n, and the

height of the object (e.g. tall building). The spurious mo-

tions, ∆′

2 . . .∆
′

n, created from this phenomenon (Parallax),

are extremely likely to be picked up by motion detection

algorithms. In our pipeline, this type of spurious motions

(parallax induced) are filtered out by using building masks

obtained from a 3D model.

2.2. Tensorbased Motion Detection

This section describes the tensor-based motion detection

module used in the proposed multi-cue pipeline. Structure

tensors for images and video are a matrix representation of

partial derivative information [28]. They allow both orien-

tation estimation and image structure analysis with applica-

tions in image processing and computer vision. 2D structure

tensors have been widely used in edge/corner detection and

texture analysis, and 3D structure tensors have been used in

low-level motion estimation and segmentation [27, 25].

The 3D structure tensor matrix J(x) for the spatiotem-

poral volume centered at x can be written in matrix form,

without the positional terms shown, for clarity, as Eq. 4.

J =
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(4)

The elements of J (Eq. 4) incorporate information relat-

ing to local, spatial, or temporal gradients. The trace of the



structure tensor, trace(J) =
∫

Ω
||∇I||2dy incorporates

total gradient change information in space and time corre-

sponding to both moving and non-moving edges of the im-

age sequence, but fails to capture the nature of these gradi-

ent changes (i.e. spatial only versus temporal).

The flux tensor [10, 9], characterizes temporal variations

in the optical flow field within a local 3D spatiotemporal

volume, and is our extension to 3D structure tensors de-

signed to detect only the moving structures without expen-

sive eigenvalue decompositions. In the proposed pipeline,

in order to prevent information loss due to isoluminance, we

define the color flux tensor, JFC(x), as an extension to the

regular flux tensor computed as follows:
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(5)

where the following partial derivative notation is used:

Ix = ∂I
∂x

, Iy = ∂I
∂y

, It =
∂I
∂t
,

Ixt =
∂2I
∂x∂t

, Iyt =
∂2I
∂y∂t

, Itt =
∂2I
∂t∂t

(6)

The elements of the flux tensor (Eq. 5) incorporate infor-

mation about temporal color gradient changes which leads

to efficient discrimination between stationary and moving

image features. The trace of the flux tensor matrix,

trace(JFC) =

∫

Ω

||
∂

∂t
∇I||2dy (7)

can be directly used to classify moving and non-moving re-

gions without expensive eigenvalue decompositions.

Both tensor formulations use spatio-temporal consis-

tency efficiently, thus produce less noisy and more spatially

coherent edge and motion evidence [27]. Use of tensor-

based edge and motion estimation also allows natural ex-

tension to color image processing by taking into account

vector nature of color data. Extending differential-based

operations to color images is hindered by the multi-channel

nature of color images. The derivatives in different channels

can point in opposite directions, hence cancellation might

occur by simple addition [36]. Use of tensor-based repre-

sentation prevents these cancellation effects.

In the proposed system, color flux tensor is used to iden-

tify motion blobs. Since this module is applied after video

stabilization module which compensates for camera mo-

tion, detected motion blobs predominantly correspond to

moving vehicles or parallax caused by high-rise buildings.

Both of these structures are of interest for video analyt-

ics. Moving vehicles to summarize dynamic content, par-

allax to summarize static content (buildings) captured by a

video. Unfortunately, while successful in detecting these

structures, tensor-based motion detection can not distin-

guish these structures from each other.

2.3. Appearancebased Vehicle Detection Using
Deep Learning

Recently, deep learning approaches have revolutionized

object detection. Faster R-CNN [15], YOLO [31], and

SSD [23] are some of the state-of-the-art object detection

methods. Deep learning-based object detectors can be di-

vided into two main categories: region proposal based de-

tectors (e.g. Faster R-CNN [15], R-CNN [16]), and single

shot detectors (e.g. YOLO [31], and SSD [23]), which do

not require a separate region proposal process, making them

more computationally efficient. For instance, instead of re-

gion proposals, YOLO divides the input image into a grid of

cells. Real-time moving object detection requires fast and

accurate processing. YOLOv3 [32], an extended version

of YOLO, is one of the fastest and most accurate object de-

tections networks. It has 53 convolutional layers trained on

Imagenet. Then, 53 more layers are stacked to give the full

106 convolutional layers. YOLOv3 performs detection at

three different scales by applying 1×1 detection kernels on

feature maps of three different sizes at three different layers

in the network. Detecting at different scales improves de-

tection of small objects compared to the previous versions.

The annotations for the ABQ dataset used for system test

and evaluation in this paper only included moving vehicles.

We chose not to train the network with this dataset since the

parked vehicles would be considered negative class sam-

ples harming the neuron weights during training. Instead

we used the Vehicle Detection in Aerial Imagery (VEDAI)

dataset [30] for transfer learning by fine tuning the pre-

trained YOLOv3 network. VEDAI dataset consists of 1200

satellite imagery collected during Spring 2012, over Utah,

USA. The image resolution is 12.5cm × 12.5cm per pixel.

The dataset consists of nine vehicle classes (truck, camping

car, tractor, boat, plane, pick-up, car, van and other). The

VEDAI dataset was used to train the appearance-based ve-

hicle detection network. Vehicle class in the proposed sys-

tem is formed by merging three of the VEDAI subclasses,

car, pick-up, and van, into a combined vehicle class. Figure

3 shows loss function for training and some sample image

patches for different vehicle types from the VEDAI dataset.

During training, we set up checkpoints and evaluated the

model on the ABQ frames to check the accuracy of training.

Figure 3 illustrates training progress. The network started

to produce reasonable detections starting after 1500 itera-

tions. At each checkpoint we evaluated the accuracy using

recall metric (Eq. 9), which is the ratio of the number of true

detected objects to the total number of ground-truth objects

in the dataset.

Once the YOLOv3 CNN was trained using the VEDAI



Figure 3: Loss and average loss for appearance training

phase in YOLOv3. The red dots on the curve correspond

to recall values listed in the lower right sub-figure. Sample

vehicle class subimages for car, pick-up truck and van (3 of

9) VEDAI categories are shown in upper right.

labeled dataset, then we used our ABQ dataset for testing.

ABQ WAMI was collected by TransparentSky from an air-

craft with on-board GPS and IMU measurements using a

circular flight pattern over downtown Albuquerque, NM.

Moving vehicles in a subset of 200 cropped frames from

the image sequence were manually annotated for testing.

Parked vehicles were not marked in this labeled ground-

truth. ABQ and VEDAI datasets are visually similar in term

of object size, scale, and camera viewing angle. Since the

images are 2000× 2000 pixels, we divided each frame into

16 non-overlapping 500 × 500 patches for higher accuracy

in testing the YOLO vehicle detection network.

2.4. Robust MultiCue Moving Vehicle Detection

The goal of the fusion-based multi-cue vehicle decision

module is to fuse complementary information from two in-

herently different approaches to allow semantic classifica-

tion of motion blobs, filter spurious detections, and boost

overall vehicle detection accuracy. Tensor-based motion de-

tection produces spatio-temporally coherent motion detec-

tion results robust to illumination changes and soft shad-

ows due to its use of gradient based information. How-

ever, since the method relies on motion, it detects not only

moving vehicles but also changes due to motion parallax

caused by buildings. Appearance-based detection on the

other hand returns only vehicles or other regions with ap-

pearances similar to vehicles, whether they are moving or

stationary (i.e. parked cars). Stationary cars unnecessarily

burden follow-up processes such as communication, track-

ing, and activity analysis. Unlike ground-based images,

where objects with larger support regions have distinct ap-

pearance features, WAAS imagery consists of much smaller

objects with less distinct features. When trained and tested

on these smaller, less distinct objects, false-positives are

also most likely compared to their counterparts in ground-

based, higher resolution surveillance videos. Table 1 lists

Table 1: Fusion procedure for detecting moving vehicles and

parallax-based buildings by combining motion (M) and appear-

ance (A) information (see Figure 1).

Motion

(Flux)

Appearance

(Vehicle CNN)

Size Detection Category

1 1 any Moving vehicle

0 1 any Stationary vehicle or

False (obj) detection

1 0 small Other moving object

or False (motion) de-

tection

1 0 large Motion parallax-

based buildings

the detection categories in the proposed system. Figure 5

illustrates motion-based and appearance-based detection re-

sults and fusion outputs for a sample frame.

During the fusion process, beside the moving and sta-

tionary vehicle category masks, an explicit building cate-

gory mask is first generated as

MaskBuilding = MaskFlux ∩ (1−MaskY OLO) (8)

Building mask is then refined by first size based filtering

to remove potential false detections, then by morphologi-

cal operations, connected component labeling, and bound-

ing box fitting (Figure 4). While single instance of build-

ing roof-top detection is enough to filter-out false vehi-

cle detections. Aggregation of building roof-top detections

in time, produces very valuable information regarding 3D

scene structure, since spread of the detection instances is

directly correlated with building height.

3. Experimental results

The proposed moving vehicle detection system was

tested and evaluated on ABQ aerial urban imagery dataset

collected using an aircraft with on-board IMU and GPS sen-

sors flying 1.5 km above ground level of downtown Albu-

querque, NM. Imaging was done at frame rate of 4Hz and

2.6 km orbit radius. This dataset contains 1071 raw ultra

high resolution images (6400× 4400) with nominal ground

resolution of 25cm. Ground-truth for the dataset consists of

manually marked bounding boxes and track ids for all the

moving vehicles (139 vehicle tracks in total) in 2000×2000
image patches extracted from 200 consecutive frames.

The results are quantitatively evaluated in terms of de-

tection measures recall, precision (Eq. 9), and F-measure

(Eq. 10), where GT, DT, and TP denote ground-truth, de-

tection, and true prediction objects respectively.

Recall =
#TP

#GT
; Precision =

#TP

#DT
(9)



Figure 4: Building roof-top detection using flux-based motion parallax response. (a) Building parallax response, obtained

fusing Flux tensor-based motion and YOLO-based vehicle appearance cues, overlaid on the original frame, (b) building roof-

top bounding boxes for a single frame, obtained by post-processing output in (a), (c) per frame building roof-top detections

aggregated in time where light blue indicates earlier instances, and red indicates later instances in the image sequence.

a b c

d e f
Figure 5: Intermediate results and the final result after applying the pipeline. a) Raw data, b) Motion mask overlaid on flux

tensor motion based detection. c) Appearance mask overlaid on the raw frame, the red overlaid masks represent all predicted

vehicles(moved and parked) in the scene. d) Appearance-motion fusion result, some false positive appears on the top of the

buildings. e) Buildings mask. f) The final result after filter out false positives on the top of buildings.



Table 2: Precision, recall, and F-measure (in percent) for dif-

ferent stages of the proposed multi-cue moving vehicle detection

pipeline. Fusion of motion, vehicle detection and building parallax

visual cues yields the highest F-measure.

Detection type Precision Recall F-measure

Motion (Flux tensor) 26.91 72.56 39.26

Vehicle Appearance (YOLO) 9.37 83.15 16.85

Flux + YOLO 53.09 71.53 60.94

Flux + YOLO + Building 69.70 70.53 70.12

Fmeasure = 2×
Recall × Precision

Recall + Precision
(10)

Table 3: Data transfer bandwidth cost measured using different

degrees of semantic compression. The columns are the motion de-

tection method, the image types (original image or RGB motion

mask), data size in megabytes (MB) and the semantic compres-

sion ratio compared to lossless PNG rate. Mask images have RGB

values for motion regions (ROIs) and zero for background pixels.

Motion Detection Cues Image Type Size SCR

Original video (Uncompressed) 200 × RGBRaw 2400

Original video (PNG, Lossless) 200 × RGBPNG 1070 2.2:1

Motion Flux tensor 1 × RGBPNG 6.0

(JPEG, Q=75) 199 × RGBMask 19.7 42:1

Vehicle Appearance YOLO 1 × RGBPNG 6.0

(JPEG, Q=75) 199 × RGBMask 24.1 36:1

Flux + YOLO 1 × RGBPNG 6.0

(JPEG, Q=75) 199 × RGBMask 13.0 56:1

Flux + YOLO + Building 1 × RGBPNG 6.0

(JPEG, Q=75) 199 × RGBMask 10.3 66:1

Table 2 shows detection performance for different mov-

ing vehicle detection approaches. Motion-only (Flux ten-

sor) detections are shown in Figure 5b and Figure 5e. Low

precision value (26.9%) for these results are mainly due to

false detections caused by motion parallax associated with

high-rise buildings. Appearance-only using CNN-based de-

tections (YOLOv3) are shown in Figure 5c. While, best

recall is obtained by this approach, even lower precision

(9.4%) is obtained because of the parked vehicles. Com-

bining appearance and motion-based object detections gen-

erates promising results (Figure 5d), since parked vehicles

get filtered out thanks to the motion mask from the flux ten-

sor. Some false positives still remain due to vehicles parked

on building roof tops. Explicit building detection through

motion and appearance clues as described in Section 2.4,

and use of it to further filter vehicles parked on roof tops

(Flux + YOLO + Building method) results in the best pre-

cision (69.7%) and F-measure (70.1%) values.

Semantic Video Compression Beside detection mea-

sures, we have evaluated the proposed systems in terms of

semantic video compression performance. Video compres-

sion becomes a very important task during real-time surveil-

lance scenarios where limited communication bandwidth

and/or on-board storage greatly restricts air-to-ground and

air-to-air communications. Efficient handling of video in-

formation is important to ensure optimum storage, smoother

videos transmission, fast and reliable video processing. For

considerably reduced communication cost, we propose to

transmit the scene information as follows. The first frame

(or another representative frame) from the video is sent

from source to destination as a compressed RGB image to

represent static content of the scene. Moving vehicle de-

tection is performed on the source platform using one of

the proposed methods. Detections are then used to gen-

erate mask ROI frames with RGB values for foreground

detections, and background pixels set to zero. Follow-

ing one representative frame, for the remaining frames,

only changes are encoded using mask frames (encoding dy-

namic content of the scene) and transmitted from source

to destination. Figure 6 illustrates encoding and decod-

ing processes at source and destination platforms respec-

tively. The data transfer requirements are shown in Ta-

ble 3 along with the associated semantic compression rate

for each method. Combining motion cues enables transmis-

sion at higher compression ratios at the same JPEG quality

factor. The extracted RGB video frames after georegistra-

tion for ABQ are 2000× 2000 for the region of interest and

total 2.4GB uncompressed. Mask images have RGB val-

ues for motion regions and zero for background pixels. In

the proposed semantic compression method, the first frame

in the sequence is transmitted as a full color frame using

lossless PNG compression (LZ77 dictionary with Huffman

coding), to accurately encode scene structures. For the re-

maining abstract frames, ROIs or masks encoding only the

changed objects are transmitted using semantic compres-

sion ratios of 66:1, greatly reducing the network bandwidth

requirements. When the first baseframe does not need to

be transmitted, for visualizing moving objects on a map for

example, then even higher compression ratios of over 100:1

can be achieved compared to lossless PNG, or 240:1 com-

pared to the uncompressed video stream.

4. Conclusions

Object detection is the first step in many advance com-

puter vision applications including multi-object tracking [4,

5, 6], video summarization [12, 21], and activity behaviour

understanding [2]. An efficient moving vehicle detection

approach from airborne videos was proposed in this pa-

per. We showed that superior performance scores are ob-

tained when a deep learning detection method, YOLO, is

fused with a motion based detection algorithm, Flux ten-

sor, in a complementary scheme. While all moving and

static vehicles are detected by YOLO, fusion of its results

with flux tensor as a motion-based detection algorithm al-

lows to considerably eliminate the amount of false alarms.
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Figure 6: Semantic compression at the source, onboard an aerial platform, using object detection and embedded processing.

Reconstruction of video frames, at the destination, using a base frame combined with semantic information about moving

objects (i.e. ROIs) encoded as an abstract or semantic frame that is transmitted in a highly compressed format to the base

station from the airborne platform.

Our proposed method produced superior results once ap-

plied on different challenging vehicle detection datasets. In

addition to vehicle detection and tracking applications, the

multi-cue approach provides context-based motion blobs

for high semantic compression ratios of 100:1, which of-

fers a promising approach to reduce the volume of video

data that would need to transmitted between a UAV and

a ground station. In addition to the aforementioned prod-

ucts, more information regarding building structures in the

scene, their locations, footprints, and heights can be ex-

ploited (as a byproduct) from our pipeline, which could

be helpful in situations such as handling occlusions caused

by building in airborne videos. Future work will investi-

gate improving multi-object tracking by incorporating re-

sults obtained using the proposed moving vehicle detec-

tion system, Flux+YOLO+Building method with our multi-

object tracker described in [5]. This would provide even

a higher level of semantic knowledge for achieving greater

video compression ratios.
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