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Abstract

With the upgrade of remote sensing technology, object

detection in remote sensing imagery becomes a critical but

also challenging problem in the field of computer vision. To

deal with highly complex background and extreme variation

of object scales, we propose to learn a novel object-wise se-

mantic representation for boosting the performance of de-

tection task in remote sensing imagery. An enhanced fea-

ture pyramid network is first designed to better extract hi-

erarchical discriminative visual features. To suppress back-

ground clutter as well as better estimate proposals, next we

specifically introduce a semantic segmentation module to

guide horizontal proposals detection. Finally, a ROI mod-

ule which can fuses multiple-level features is proposed to

further promote object detection performance for both hor-

izontal and rotate bounding boxes. With the proposed ap-

proach, we achieve 79.5% mAP and 76.6% mAP in hori-

zontal bounding boxes (HBB) and oriented bounding boxes

(OBB) tasks of DOTA-v1.5 dataset, which takes the first and

second place in the DOAI2019 challenge1, respectively.

1. Introduction

In the past few years, the object detection task in re-

mote sensing (RS) imagery, which refers to detecting se-

mantic objects of certain categories, has enabled various

high-level applications, such as meteorological observation,

urban road construction, surface migration analysis, natural

disaster management, etc. However, since the otherness in

aspects of posture and altitude when remote sensing satel-

∗Corresponding author: Zhen Cui (zhen.cui@njust.edu.cn).
1https://captain-whu.github.io/DOAI2019/results.html

lites are recording the images, objects in aerial images often

own some specific characteristics of their own, such as huge

variation in scales, arbitrariness of arrangement orientation,

high complexity of background information. In view of the

above complex situations, object detection task has recently

emerged as a fundamental yet challenging problem in the

field of remote sensing.

Depend on the powerful feature learning ability, convo-

lutional neural networks (CNNs) have achieved great suc-

cess in multiple visual tasks among recent years, such as

classification [1, 14, 24], segmentation [16, 13, 12], track-

ing [2, 3, 18], as well as detection [23, 6, 11, 28, 26]. In

terms of the detection task, Girshick et al. utilize a CNN-

based two-stage network structure R-CNN [20] to obtain

satisfactory detection results. Following R-CNN, several

region-based detectors such as Fast R-CNN [19], Faster R-

CNN [23], R-FCN [6] are proposed to further improve the

efficiency and performance of detectors. Recently, Lin et

al. propose Feature Pyramid Networks (FPN) [26] to fuse

features from multiple stages so as to improve detection re-

sults of multi-scale objects. RetinaNet [27] is subsequently

present to deal with the class imbalance of samples during

training. Cai et al. take the idea of cascade and introduce

a multi-stage detector named Cascade R-CNN [35] to pro-

duce more accurate bounding boxes. Different from these

two-stage detectors, other regression-based methods (e.g.,

SSD [28], YOLO [11, 9, 10]) take detection as a regres-

sion problem and predict objects’ bounding boxes directly

just through a single CNN structure. More recently, some

algorithms spring up to complete detection tasks in a key-

point manner, e.g., Law et al. propose a novel and effective

approach CornerNet [5], where detects an object bounding

box as the top-left corner and bottom-right corner using a

single network. Zhou et al. come up with CenterNet [32]
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Figure 1. The illustration of our proposed object detection framework. The enhanced FPN (a) is designed to increase the feature discrim-

inability of feature pyramid network by incorporating a sub inception block. Next, we estimate the box-wise mask and learn the semantic

feature of the whole image by a semantic segmentation module (b). The produced mask is used to spatially weight the feature of FPN

for the prediction of horizontal proposals (c) following the spirit of RPN. To further regress objects accurately, including labels and hori-

zontal/rotate locations (e), we fuse multi-branch features by using ROI Pooling (d), including FPN features, semantic feature and original

image. The entire network can be trained and test in an end-to-end way.

to regress size, 3D location, orientation and even pose only

based on the center points.

Although substantial results have been achieved by

these detection algorithms mentioned above in the natural

scene [25, 17], it still remains some challenges when apply-

ing these methods to complete detection task in RS imagery

directly, due to the more complex background and extreme

variation of scales and postures. To solve these problems,

researchers attempt to resort existing successful CNN-based

frameworks for feature extraction and further designing new

effective architectures [30, 21, 31, 7, 29] for detecting ob-

jects in RS imagery.

In the general object detection algorithms, some post-

processing methods may be adopted to improve detection

precision such as non-maximum suppression (NMS) be-

fore outputting the final locations of objects. During NMS

processing, bounding boxes whose Intersection-over-Union

(IoU) are higher than threshold will be removed. But,

it is not suitable for detection task in RS imagery, since

these dense rotate objects (e.g., vehicles in the parking lots)

will have very high IoU if taking the conventional NMS,

and then are going to be over-suppressed, so many objects

which could have precise localization will be discarded.

While, another alternative way is to detect skew bounding

boxes which including one extra rotation angle based on

horizontal boxes for RS imagery, using rotate NMS [8] as

the post-processing method. Inspired by arbitrary-oriented

text detection model RRPN [8], many methods [30, 36, 21]

adopt rotate region proposals via skew anchors to better

match rotate ground-truth (GT) bounding boxes of RS im-

ages. Although these skew anchors can obtain a good cov-

erage with rotate objects, the computational burden will

greatly increase since each pixel may generate dozens or

even hundreds proposals. Another alternative solution is

to regress the coordinates of rotate bounding boxes from

coarse horizontal region proposals, like R2CNN [34], which

can not only make use of the context information in hori-

zontal regions but also reduce model parameters to a certain

extent.

Generally speaking, scales of objects in aerial images are

quite inconsistent, for example, scale difference between

the vehicle and playground may be dozens or even hundreds

of times, so we can’t directly do detection task in single

level features. A common practice is to utilize FPN [26]

to extract multi-scale convolutional features. For exam-

ple, Azimi et al. propose a joint image cascade and feature

pyramid network (ICN) [21] to fuse multi-scale semantic

features from multi-images. Yang et al. extend FPN [26]

with dense connections layer by layer to construct dense

feature pyramid network (R-DFPN) [30]. Although they

improve the performances of results to some extent, pyra-

midal features may be influenced by noise since the com-

plex background of RS images. Recently, many works have

proved that object detection and segmentation are two re-

lated tasks, and joint training of these two tasks is effec-

tive for both subtasks. For example, Mask R-CNN [13] ex-

tends Faster R-CNN [23] by adding a parallel segmentation

branch for predicting an object mask. MaskLab [15] pre-

dicts instance masks by combining semantic and direction

outputs. HTC [12] makes use of the mask information flow

and spatial contexts feature to improve the detection and

segmentation prediction. All these methods utilize object-

wise bounding boxes and mask annotations [25] to improve

the learning ability of network. However, in most cases,

there are no precise mask annotations of objects in RS im-

ages. Which is fortunate, in RS images, since the particular
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Figure 2. The enhanced feature pyramid network (eFPN).

characteristics of bird’s eye view and rotate bounding boxes,

there is no or little occlusion between objects. Therefore,

box-wise segmentation can also be used to assist detection

task in RS imagery.

In this work, we propose a semantic segmentation guided

objection detection framework to boost the performance of

detection task in remote sensing images. First, we design

an enhanced feature pyramid network to better extract hi-

erarchical discriminative visual features. Second, to sup-

press background information and meantime better estimate

proposals, we introduce a semantic segmentation module

to guide horizontal proposals generation. The segmenta-

tion module produces the object mask and semantic feature

for next horizontal proposal estimation and final object de-

tection respectively. In the end, we design a multiple-level

fusion based ROI module to predict object labels and cor-

responding bounding boxes. Based on the proposed frame-

work above, we achieve the performance of 79.5% mAP

and 76.6% mAP in horizontal bounding boxes (HBB) and

oriented bounding boxes (OBB) tasks of DOTA-v1.5 [4]

dataset, which takes the first and second place in the

ODAI2019 challenge, respectively.

2. The Proposed Method

2.1. Overview

Fig. 1 shows the proposed framework based on object-

wise semantic representation. Given a remote sensing im-

age as input, we design an enhanced FPN to better learn

these discriminative features of objects with different ap-

pearance variations. The detail is introduced in Section 2.2.

Next, we introduce the semantic segmentation module (Sec-

tion 2.3) to obtain the object semantic information, which

contains the box-wise mask and semantic feature. The mask

is used to guide the generation of horizontal proposals and

the semantic feature is used to be fused in ROI pooling for

more accurate estimation of bounding boxes. Finally, we

design the multiple-level fusion based ROI module (Sec-

tion 2.4) to learn more distinguishing features of objects.

The loss function is introduced in Section 2.5.
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Figure 3. The semantic segmentation module.

2.2. Enhanced FPN

Since its simplicity and effectiveness, FPN [26] has

became a common approach to fuse multi-scale features.

However, objects in RS images often own irregular shape

or scale, which is difficult to get robust representations. In

order to obtain multi-scale features of different receptive

fields, we design an enhanced FPN (eFPN for short) by in-

troducing a sub inception block into the FPN lateral con-

nections to promote the representation ability.

As described in Fig. 2, the encoded and decoded features

are integrated into the enhanced feature by one inception

block. Concretely, we take the conventional FPN [26] as

the infrastructure as shown in Fig. 1. Given the encoded

feature map Ck and the decoded map Pk+1, we take a sub

inception block to enhance them and then combine into the

new feature map Pk as shown in Fig. 2. The feature map

Ck is first transformed into the 256-channel feature by us-

ing the 1 × 1 convolutional layer as in FPN [26]. Next we

take a multi-branch inception process, which transforms the

256-channel feature into four 64-channel features at each

branch network. In the sub inception block, we adopt the

deformable convolution [33], since we think the deformable

convolution can deal well with the geometric particularity

of objects in RS images. Also, we add one shortcut in our

inception block to reserve the original feature maps. The

concrete operations of the multi-branch block can be ob-

served in Fig. 2. After passing four-branch network, the

produced features are concatenated into 256-channel fea-

ture. Finally, we summarize the concatenate feature from

encode layer and the upsampled feature from the decode

layer to construct the final feature Pk.

2.3. Semantic Segmentation­Guided RPN

Some excellent works integrate detection and segmen-

tation tasks into a single network (e.g., Mask R-CNN[13],

MaskLab [15], HTC [12]), and considerable results have

been achieved on both tasks. Inspired by these works, we

introduce the segmentation idea into RPN to build a seman-

tic segmentation-guided RPN(sRPN for short), so that those

background clutter can be suppressed as much as possible.

Since there are no precise mask annotations of objects in
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RS images, so we just use the masks generated from rotate

bounding boxes as substitutes.

The semantic segmentation module is shown in Fig. 3.

The multi-level FPN features are first normalized into the

same spatial size (i.e., the spatial size of the P2 level) by tak-

ing the simple upsample and downsample operations, and

then are summarized into a new feature. In [12], the final

output level is P3 whose stride is 8, but we find 8 is too big

so as to many objects which are too small (like small vehi-

cles) will not be detected, so we choose the P2 level with

stride 4, experiments shows that it is a appropriate trade-off

between computation and performance. The ensemble fea-

ture actually covers the information of different layer fea-

ture of objects, and thus can benefit the prediction of region

proposals. Next, we take atrous spatial pyramid pooling

(ASPP) [16] to generate the semantic representation, which

can better encode global context and well boost the perfor-

mance. For ASPP, we follow the original paper setting [16],

which take four parallel atrous convolutions, 1 × 1, 3 × 3
with rate = 6, 3 × 3 with rate = 12 and 3 × 3 with rate =

18, we find the original setting has already met our require-

ments. Feature from ASPP module is used to generate the

box-wise mask and the semantic feature by employing the

two separate 1×1 convolution operations with the channel 1

and 256 correspondingly, the sigmoid activation is attached

to the first convolutional layer. For supervision, the mask

output is upsampled to the same scale as the GT mask.

In the next steps, we downsample the learnt mask to the

P3 ∼ P6 level (P6 is produced as in FPN [26]) and multi-

ply them to corresponding RPN head features as shown in

Fig. 1, guiding RPN to estimate horizontal region propos-

als. The semantic feature is sent into the next stage of ROI

pooling for more accurate box regression.

2.4. Multiple­level Fusion based ROI Module

Previous work [19, 23, 13, 26] has adopted the ROI

pooling (align) [19, 13] operation to produce the proposal-

related features with the same output size. Most works [23,

26] only utilize a single level feature map, but due to the ex-

treme variation of object scales in RS images, single level

feature map is not enough to satisfy the task. In PANet [22],

adaptive feature pooling is proposed to fuse pooled features

from all levels of FPN [26] by element-wise max or sum op-

erations, which can improve the segmentation performance

to a certain degree. Here, we also design the multiple-level

fusion based ROI (fROI for short) module to simultaneously

fuse those pyramid features from all multiple scales, origi-

nal image and the pixel-level segmentation features.

As shown in Fig. 4. First of all, we utilize ROI pool-

ing (align) [19, 13] operation to get pooled features of each

proposal on pyramid features of all levels, semantic feature,

as well as the original image that has been normalized. For

each horizontal region proposal generated by sRPN, both

the pooled features from pyramid network and the pixel-

level guidance information of semantic segmentation are

sent to one shared fully-connected (fc) layer, while fea-

tures pooled from original image are processed by another

fc layer to convert to the eigen-space the same as what are

afore-mentioned (1024-channel). Then, we add up these

features and utilize one extra fc layer to generate the final

proposal-related features. At last, we predict objects’ loca-

tion and classification for both OBB and HBB tasks simul-

taneously via fc layers as the work [23] does using more

distinguishing proposal-related features. The feature aggre-

gation operation can be represented as Eqn. (1).

Fbox =

5
∑

k=2

fc1(ρ(Pk, B)) + fc1(ρ(Fseg, B))

+ fc2(ρ(Inorm, B))

(1)

The fc1 and fc2 are two fc layers mentioned above. Pk is

the k-th level pyramid feature. Fseg and Inorm represent the

semantic feature and normalized original image. B stands

for the horizontal region proposals set outputted by sRPN.

ρ means the ROI pooling (align) operation.

2.5. Loss Functions

As in Faster R-CNN [23], we minimize the multi-task

loss:

L = λ1

1

Ncls

∑

i

Lcls(pi, p
∗

i )

+ λ2

1

Nreg−r

∑

i

p∗iLreg−r(ri, r
∗

i )

+ λ3

1

Nreg−h

∑

i

p∗iLreg−h(hi, h
∗

i )

+ λ4

1

Nseg

∑

i

∑

j

Lseg(si,j , s
∗

i,j)

(2)

where, p∗i represents the GT label of objects, pi stands for

the predicted probability of classification, r∗i and h∗

i repre-



sent the coordinate vectors of GT for OBB and HBB tasks,

ri and hi represent the predicted coordinate vectors, si,j
means the predicted mask score location and s∗i,j represents

the GT labels of segmentation task. The first term Lcls in

Eqn. (2) is classification loss function which is cross en-

tropy, Lreg−r and Lreg−h are location loss functions for

OBB and HBB tasks respectively and each one is smooth

L1 loss defined in [19]. For the segmentation-branch loss

Lseg , we use the focal loss[27]. The hyper-parameters λ1,

λ2, λ3 and λ4 are balance factors of four loss terms. We set

λ1 = λ2 = λ3 = λ4 = 1 for all experiments in this paper.

In addition, for the coordinate vectors mentioned above,

we use the following method to perform bounding box re-

gression:

tx = (x− xa)/wa, ty = (y − ya)/ha

tw = log(w/wa), th = log(h/ha)

tθ = θ − θa

(3)

t∗x = (x∗
− xa)/wa, t

∗

y = (y∗ − ya)/ha

t∗w = log(w∗/wa), t
∗

h = log(h∗/ha)

t∗θ = θ∗ − θa

(4)

We regress the center (x, y) and the size (h,w) of bounding

box for both tasks, and one extra angle θ for OBB task, the

definition of θ is the same as in OpenCV which is converted

into radian with the range of
[

−

π

2
, 0
)

. In Eqn. (3) and (4),

variables x, xa and x∗ are for the predicted box, anchor box

and GT box respectively (likewise for y, w, h, θ).

3. Experiments

In this section, we first introduce the datasets on which

we evaluate our proposed object detection framework,

then describe the implementation details of our proposed

method, and finally show the achieved performance to-

gether with some analysis.

3.1. Datasets and Settings

To comprehensively evaluate the performance of our

proposed detection framework, we conduct experiments on

DOTA-v1.0 2 and DOTA-v1.5 3 (this challenge) [4], and

two tasks named OBB and HBB are involved for testing the

performance. The evaluation protocol for both tasks fol-

lows the PASCAL VOC benchmark [17], which uses mean

Average Precision( mAP) as the primary metric. The IoU

calculation on the OBB task takes the intersection over the

union area of two polygons.

DOTA-v1.0 is the largest dataset for object detection in

aerial images at present, it contains 2806 aerial images rang-

ing in size from 800×800 to 4000×4000 pixels including

2http://captain.whu.edu.cn/DOTAweb/index.html
3https://captain-whu.github.io/DOAI2019/index.html

objects of 15 categories with 188282 instances in total. It is

split into training (1/2), validation (1/6) and testing (1/3)

sets.

DOTA-v1.5, a upgraded version of DOTA-v1.0, has been

employed for performance evaluation in Detecting Objects

in Aerial Images Challenge 2019 (DOAI2019), where the

images are mainly collected from the Google Earth, satel-

lite JL-1, and satellite GF-2 of the China Centre for Re-

sources Satellite Data and Application. DOTA-v1.5 con-

tains 0.4 million annotated object instances in total which

are labeled into 16 categories. Comparing with DOTA-

v1.0, the categories of DOTA-v1.5 are extended by adding

the category of container crane. Moreover, many object in-

stances in rather small scales, e.g. objects about or below

10 pixels, are additionally annotated in DOTA-v1.5, which

makes the detection tasks much more challenging.

We employ the pretraining model ResNet101 [14] (as de-

fault) to initialize our network. We train the model for total

12 epochs with batch size 4 on 4 Tesla P40 GPUs (effec-

tive minibatch is 16). The learning rate is 0.02 and decrease

it by 0.1 after 9 and 11 epochs. Also, the weight decay is

0.0001 and momentum is 0.9. For both training and test-

ing, we split images into the blocks of 1024×1024 with the

overlap of 512 pixels using the official development kit. We

also employ the multi-scale for both training and testing,

we firstly resize all images by 1.5× and 0.5× factors before

splitting, then take these split subimages together with the

original split ones as expanded training set. During testing,

we use the same ratios to resize and split the images, and

combine outputs using R-NMS [8] as the final results.

3.2. Comparisons with State­of­the­art Methods

We firstly compare our proposed approach on DOTA-

v1.5 [4] dataset by the DOAI2019, the compared results

of both HBB and OBB detection tasks have been shown

in Table 1 and Table 2, where only the first five position

scores are provided. The detailed results can be seen in

https://captain-whu.github.io/DOAI2019/results.html. We

(named “pca lab”) take the first and second places in the

HBB and OBB tasks, respectively. We obtain 79.5% mAP

of HBB task, which is 0.3% higher than the second place

(i.e., 79.5% vs USTC 79.2%), and 1.1% better than the third

place (i.e., 79.5% vs AICyber 78.4%). For example, the

mAP performance of HBB task in several classes can signif-

icantly outperform other methods: 86.6% vs USTC 85.6%

for “BD” category, 65.7% vs USTC 59.6% for “Brige” cat-

egory, 84.1% vs AICyber 82.9% for “Harbor” category. We

further evaluate our method in more challenging OBB task

of DOTA-v1.5 dataset, and obtain the 76.6% mAP per-

formance. When compared with all other four state-of-

the-art methods, our performance of OBB task is lower

1.7% than the method on the first place, but we can sig-

nificantly outperform other three methods, such as 0.9%



Table 1. Results comparison of HBB task on DOTA-v1.5 dataset (this challenge). Only the top five methods are provided here.

Method mAP(%) Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor SP HC CC

Ours 79.5 88.3 86.6 65.7 79.8 74.6 79.4 88.1 90.9 85.4 84.2 73.9 77.4 84.1 81.1 76.1 57.1

USTC 79.2 89.3 85.6 59.6 80.9 75.2 81.1 89.6 90.8 85.9 85.7 69.5 76.3 81.7 81.8 76.5 57.1

AICyber 78.4 89.2 85.6 64.4 74.1 77.4 81.5 89.6 90.8 85.7 86.0 69.8 76.3 82.9 82.9 74.6 44

wonderwall 76.4 87.7 83.9 54.7 77.6 74.3 74.9 89.0 90.9 85.5 84.4 66.2 74.0 78.1 80.9 69.8 50.2

czh 76.2 88.0 85.0 64.4 73.5 72.7 80.3 88.4 90.8 85.4 83.6 62.9 70.0 81.1 80.6 74.1 39.1

Table 2. Results comparison of OBB task on DOTA-v1.5 dataset (this challenge). Only the top five methods are provided here.

Method mAP(%) Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor SP HC CC

USTC 78.3 89.2 85.3 57.3 80.9 73.9 81.3 89.5 90.8 85.9 85.6 69.5 76.7 76.3 76.0 77.8 57.3

Ours 76.6 88.2 86.4 59.4 80.0 68.1 75.6 87.2 90.9 85.3 84.1 73.8 77.5 76.4 73.7 69.5 49.6

czh 75.7 89.0 83.2 54.5 73.8 72.6 80.3 89.3 90.8 84.4 85.0 68.7 75.3 74.2 74.4 73.4 42.1

AICyber 74.7 88.4 85.4 56.7 74.4 63.9 72.7 87.9 90.9 86.3 85.0 68.9 76.0 74.1 72.9 73.4 37.9

zzzzzq 73.5 82.1 84.9 56.0 80.0 66.1 78.1 87.8 90.8 83.1 84.2 64.8 73.7 77.5 72.4 77.4 18.0

Table 3. Ablation study of components.

BaseLine eFPN sRPN fROI Ensemble mAP@OBB(%) mAP@HBB(%)

X – – – – 72.4 75.6

X X 72.8 75.9

X X X 73.2 76.3

X X X 73.8 77.2

X X X X 74.9 77.9

X X X X X 76.6 79.5

over “czh”, 1.9% over “AICyber” and 3.1% over “zzzzzq”

method. Moreover, for several categories of DOTA-v1.5

dataset, we can also achieve better performance than the

method “USTC” on the first place, e.g., 86.4% vs 85.3%

on “BD” category, 59.4% vs 57.3% on “Brige” category,

73.8% vs 69.5% on “SBF” category, 77.5% vs 76.7% on

“RA” category. It demonstrates that the proposed object de-

tection method can perform very well on both the HBB and

OBB tasks in the RS imagery, and the proposed object-wise

semantic representation method can boost the performance

of the location regression and category recognition.

Besides, we also conduct experiments on the origi-

nal DOTA-v1.0 [4] dataset with both OBB and HBB

tasks, where the results are shown in Table 5 and Ta-

ble 6. All results on DOTA-v1.0 are based on single model

(ResNet101 [14] as backbone). For OBB task, our method

gets 76.36% mAP which outperforms all published meth-

ods in Table 5. For HBB task, our method achieves the

best performance among all published methods in Table 5

with 78.79% mAP. For all categories, our method obtains

the best performance.

3.3. Ablation Analysis

To evaluate each module, we summarize some compar-

isons in Table 3, where eFPN, sRPN and fROI are re-

spectively corresponded to the enhanced FPN, the seman-

tic segmentation-guided RPN and the multiple-level fusion

based ROI module. ”ensemble” means that we combine

the three results from ResNet101 [14], ResNeXt101 [24]

and mdcn-ResNet101 [33], by employing these as the back-

bone network. Our baseline is Faster R-CNN [23] based on

FPN [26] which is extended for rotational regression task.

Table 4. Computational complexity analysis.

Method Image Memory (GB) Training (s/iter) Testing (FPS)

Faster R-CNN [26] 1333×800 9.74 0.32 4.3

Faster R-CNN 1024×1024 9.50 0.29 4.5

Baseline 1024×1024 11.48 0.39 3.7

Our method 1024×1024 13.95 0.56 3.3

All results are evaluated in DOTA-v1.5 dataset. From this

table, we can have several observations.

i) Enhanced feature pyramid network. eFPN slightly

improves the performance compared the baseline, for OBB

and HBB tasks, we can see the increment are 0.4% and

0.3% respectively. Due to the baseline is already strong so

the improvements are slight.

ii) Semantic segmentation-guided RPN. In comparison

with the baseline, sRPN also has a relative improvements

too, which may be attributed to the segmentation informa-

tion. The relative increase are about 0.4% for both tasks.

iii) Multiple-level fusion based ROI module. The per-

formance gain from fROI is relative large due to the inte-

gration of multiple-level features, which could compensate

some information for objects with different scales, gaining

about 1% for these two tasks.

iv) Ensemble. The ensemble of different networks can

further the performance due to some certain compensation

on feature information To a certain extent. In a word, all

modules play some roles in boost the final performance of

object detection. Besides, some visualization results of hor-

izontal and oriented bounding box of our detector could be

found in Fig. 5.

In addition, we also do provide the computational com-

plexity analysis of our method, as shown in Table 4. For

analysis, we train the models with batch size 4 on 2 Tesla

P40 GPUs (effective minibatch is 8) with learning rate 0.01.

In Table 4, the Faster R-CNN [23] is based on FPN [26],

and is trained on COCO dataset [25] with the same learning

rate strategy, the image is resized such that its shorter side

has 800 pixels and 1333 for longer side. For comparison,

we also conduct experiments on COCO dataset by resizing

images to 1024 × 1024 pixels. According to these exper-



Table 5. Results comparison of OBB task on DOTA-v1.0 dataset

Method mAP(%) Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor SP HC

SSD[28] 10.59 39.83 9.09 0.64 13.18 0.26 0.39 1.11 16.24 27.57 9.23 27.16 9.09 3.03 1.05 1.01

YOLOv2[9] 21.39 39.57 20.29 36.58 23.42 8.85 2.09 4.82 44.34 38.25 34.65 16.02 37.62 47.23 25.50 7.45

R-FCN[6] 26.79 37.80 38.21 3.64 37.26 6.74 2.60 5.59 22.85 46.93 66.04 33.37 47.15 10.60 25.19 17.96

FR-H[23] 36.29 47.16 61.00 9.80 51.74 14.87 12.80 6.88 56.26 59.97 57.32 47.83 48.70 8.23 37.25 23.05

FR-O[23] 52.93 79.09 69.12 17.17 63.49 34.20 37.16 36.20 89.19 69.60 58.96 49.40 52.52 46.69 44.80 46.30

Azimi et al.[21] 68.20 81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20

Ding et al.[7] 69.56 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67

R2CNN++[31] 71.16 89.66 81.22 45.50 75.10 68.27 60.17 66.83 90.90 80.69 86.15 64.05 63.48 65.34 68.01 62.05

Ours 76.36 90.41 85.21 55.00 78.27 76.19 72.19 82.14 90.70 87.22 86.87 66.62 68.43 75.43 72.70 57.99

Table 6. Results comparison of HBB task on DOTA-v1.0 dataset

Method mAP(%) Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor SP HC

SSD[28] 10.94 44.74 11.21 6.22 6.91 2.00 10.24 11.34 15.59 12.56 17.94 14.73 4.55 4.55 0.53 1.01

YOLOv2[9] 39.20 76.90 33.87 22.73 34.88 38.73 32.02 52.37 61.65 48.54 33.91 29.27 36.83 36.44 38.26 11.61

R-FCN[6] 47.24 79.33 44.26 36.58 53.53 39.38 34.15 47.29 45.66 47.74 65.84 37.92 44.23 47.23 50.64 34.90

FR-H[23] 60.46 80.32 77.55 32.86 68.13 53.66 52.49 50.04 90.41 75.05 59.59 57.00 49.81 61.69 56.46 41.85

Azimi et al.[21] 72.50 90.00 77.70 53.40 73.30 73.50 65.00 78.20 90.80 79.10 84.80 57.20 62.10 73.50 70.20 58.10

R2CNN++[31] 75.35 90.18 81.88 55.30 73.29 72.09 77.65 78.06 90.91 82.44 86.39 64.53 63.45 75.77 78.21 60.11

Ours 78.79 90.41 85.77 61.94 78.18 77.00 79.94 84.03 90.88 87.30 86.92 67.78 68.76 82.10 80.44 60.43

Figure 5. Some detected examples on DOTA-v1.5 dataset of our method about both OBB and HBB tasks. The first row shows the results

of HBB task while the second row corresponds to OBB task.

iments, we can see that our method would use about 20%

more GPU memory than baseline. However, the final results

suggest the cost is worth it.

4. Conclusion

In this paper, the segmentation guided object detection

network was proposed to deal with the object detection

tasks in remote sensing imagery. To learn multi-scale fea-

tures describing objects in various scales, we revised FPN

as the enhanced version to generate feature maps of multiple

receptive fields. Moreover, considering to guide the rough

horizontal region proposals with object-level context infor-

mation, a semantic segmentation module was specifically

designed to generate box-wise masks providing object-level

guidance information for the RPN. Finally, a multiple-level

fusion based ROI module was proposed for learning object-

wise semantic representation base on previously obtained

features. Extensive experiments on DOTA-v1.0 and DOTA-

v1.5 datasets verified the effectiveness of our proposed ob-

ject detection in remote sensing imagery.
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