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Abstract

Transfer learning uses trained weights from a source

model as the initial weights for the training of a target

dataset. A well chosen source with a large number of la-

beled data leads to significant improvement in accuracy. We

demonstrate a technique that automatically labels large un-

labeled datasets so that they can train source models for

transfer learning. We experimentally evaluate this method,

using a baseline dataset of human-annotated ImageNet1K

labels, against five variations of this technique. We show

that the performance of these automatically trained models

come within 6% of baseline.

1. Introduction

In many domains, the task performance of deep learning

techniques is heavily dependent on the number of labeled

examples. Labeling examples require annotation by subject

matter experts, or crowds and are difficult and expensive to

acquire. This demand for large labeled datasets has inspired

alternative techniques, such as weak supervision or auto-

mated labeling, whose algorithms create plausible labels to

be used to guide supervised training on other tasks.

Transfer Learning [16] is a well established technique

to train a neural network. It uses trained weights from a

source model as the initial weights for the training of a tar-

get dataset. A well chosen source with a large number of

labeled data leads to significant improvement in accuracy.

In this work, we develop a content-aware model-

selection technique for transfer learning. We take an unla-

beled data point (here, an unlabeled image), and compute its

distance to the average response of a number of specialized

deep learning models, such as those trained for ”animal”,

”person”, or ”sport”. By applying this technique to an en-

semble of specialized models, we create a ”pseudolabel” for

each piece of unlabeled data consisting of the ordered list

of the domain-adapted model names (e.g., ”animal-plant-

building”), using this synthetic label we can then automati-

cally label large numbers of unlabeled images, and use them

to augment training data.

We describe five different methods of pseudo labeling

using the above principle and evaluate them using the Im-

ageNet1K [14] dataset. We compare the transfer learning

accuracy obtained for a set of target workloads on models

trained on the human annotated ImageNet1K labels against

models trained on pseudo labels obtained through our meth-

ods. We show that using our methods, one can obtain trans-

fer learning accuracies which come within 6% of the human

annotated labels.

2. Related Work

There are several well-established approaches that at-

tempt to automatically assign labels to unlabeled images.

For example, some use clusters of features to predict labels

[8], or augment image data with linguistic constraints from

sources such as WordNet [1, 9]. These approaches augment

tasks by pretraining models using larger unlabeled data-

sets. Pretraining approaches have also improved results

when attempting a target task for which there is a limited

amount of accurately labeled training data [11], by using

weakly labeled data, such as social media hashtags, which

are much more plentiful. However, effectiveness only ap-

pears to grow as the log of the image count. Further ap-

proaches use generative models such as GANs as in [13] to

explore and refine category boundaries between clusters of

data, which exploit the rich statistical structures of both real

and generated examples, sometimes augmented with labels

or linguistic constraints. All of these automatic approaches

use the structures present in large unlabeled datasets, to

extend the expressivity of known labels, and to augment

the raw size of training sets. More broadly, a variety of
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approaches attempt to learn a representation of a class of

data, and later use that representation in service of a target

task. For example, [7] clustered images in an embedding

space, and developed a meta-learner to find classifications

which distinguished various clusters within this embedding.

Later, demonstrating improved performance on classifica-

tion tasks not originally used. Other approaches to mapping

the feature space have used autoencoder [2].

Taken together these approaches suggests that there is

often rich and meaningful structure present in the data from

which useful features can be inferred.

From a practitioner’s perspective: these approaches

present a trade off: at one extreme, obtaining rich, appro-

priate, and novel labels from human annotators provides

the most expressive power and accuracy for novel exam-

ples, but it is also the most expensive. At the other extreme,

naively machine-labeling unlabeled data using pre-trained

models is quick and inexpensive, but augmenting data sets

with these labels is fraught. They are limited by the label set

of existing training, and they may simply reinforce biases or

unbalanced sets in previously collected data. The literature

discussed here attempts to find hybrid approaches that find

productive ways to leverage machine-learned distributions

of examples to find new ways of characterizing unlabeled

data. The current work presents a novel approach in this

domain.

3. Approach

We present our technique using a specific case study in-

volving images, and with source datasets created by verti-

cally partitioning ImageNet22K [3] along its distinct sub-

trees: animal, plant, weapon, tools, music, fungus, sport,

person, food, fruit, garment, building, nature, furniture, ve-

hicle, and fabric. These 16 subtrees were used since they

were easy to partition from Imagenet22K. However the

method could be used with a different number also. We

represent each such dataset by a single average feature vec-

tor. In this study, this vector is generated from the second

last layer of a reference VGG16 [15] model trained on Ima-

geNet1K, as shown in Figure 1, with the average taken over

all the images in the dataset. These 16 datasets and their

characteristics are shown in Table 1.

Each of these datasets was first split into four equal

and disjoint partitions. One partition was used for feature-

vector calculation while one was used for validation of tar-

get model during finetuning. One-tenth of the third parti-

tion was used to create a transfer learning target. For ex-

ample, the fabric hierarchy has about 160K images. This

was split into four equal partitions of about 40K each. The

average feature vector for fabric was calculated using data

of that size, whereas the target model was fine-tuned with

one-tenth of data (∼4K) taken from one of the other parti-

tions. The smaller target datasets is reflective of real transfer

Dataset Images Classes

sport 200692 170

tool 175095 317

fruit 185091 307

fabric 159110 232

building 193928 240

furniture 195052 187

garment 214172 252

music 137770 156

nature 192255 241

weapon 102946 138

person 1203512 2880

plant 2224817 4040

tree 562555 995

fungus 135919 299

food 999470 1500

animal 2783256 3796

Table 1: 16 datasets used in our evaluation created us-

ing Imagenet22K vertical partitions; 11 of these (shown in

bold) are also used to create target datasets for finetuning.

Details on how these datasets were partitioned for disjoint

source and target tasks are in the text.

learning tasks.

To label a new image, we first calculate its own feature

vector, then compute the distance between it and each of

the representatives of the datasets; in this study, we use the

Kullback-Leibler (KL) divergence [10], after appropriate

normalization. We have experimented with other measures

like Jensen Shannon (JS) and Euclidean also and the results

were similar. For the purpose of this paper we will be us-

ing the KL divergence measure for the distances. These 16

distances are then used to determine the synthetic label.

Observe that for discrete probability distributions, p and

q, KL divergence is a measure of the difference between and

is defined as

DKL(p, q) =
∑

i

p(i)log

(

p(i)

q(i)

)

.

This is an asymmetric measure as DKL(p, q) 6= DKL(q, p).
We are using KL divergence like measure to quantify the

difference between two feature vectors. Since KL diver-

gence is defined over probability distributions, we need to

appropriately normalize the feature vectors before calcu-

lating the KL divergence. For every unlabeled image that

comes in, we calculate the KL divergence of the feature vec-

tor of the image from those of the datasets we possess, as

shown in Figure 2. This distance measure is then used for

labeling purposes as described in Section 4

An interesting analogy of our approach for (pseudo) la-

beling an image is with the ”Blind men and an elephant”
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Figure 1: Feature extraction using VGG16 ImageNet1K trained model

Figure 2: KL divergence calculation between target image

and sources

parable where a group of blind men (who have never learnt

about an elephant) try to categorize an elephant just by

touching it and then relating it to something that they al-

ready know. As illustrated in the cartoon in Figure 3 cat-

egorization of an elephant include tree, wall, snake, rope,

fan, and spear. Basically by touching and feeling an ele-

phant the blind men are measuring its closeness to things

known by them. Our approach, also measures the closeness

of an unknown image (in feature space) to existing known

categories, and then generates label for it.

4. Labeling Methods

Generating rich pseudo labels from models trained on

distributional similar data involves a trade off between an

expressive, long label, and a generalizable, short label.

Longer labels carry more information about similarity be-

tween previous models and the target image, and differences

between the previously trained models could be critical for

properly labeling new examples. For example, a novel set of

data including pictures of household objects might be well

described by combining the labels of tools, fabric, furniture.

To this end we propose two main methods for assign-

ing psuedolabels: selecting the N ”nearest” (Nearest-N),

Figure 3: Blind men and an elephant parable cartoon

(source unknown).

and ”closest, farthest, max area” (CFA) as depicted in Fig-

ure 4. Using the former strategy should produce a label

that has the most detailed information about positively cor-

related features, this corresponds to the smallest possible

bounding hypertriangle, and is most useful in cases where

previous models capture the domains features well. How-

ever, domains that possess substantial differences from pre-

vious data might be better defined by the magnitude and

direction of such a difference. For example, the ”flower”

dataset shares some features with ”plants,” but is perhaps

better defined by statements such as ”flowers are very un-

like furniture.” In other, ambiguous cases, negative features

may be necessary to distinguish between overlapping cases:

a suit of armor might have similarities with the body shapes

of people, but could be contrasted with these categories by

its dissimilarity with ”sports,” a category otherwise close to
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Figure 4: A) This figure shows the similarities between the

distributions of 16 existing image models projected into 2d

space. B) Projecting a novel data category (”boxing”) into

this space, and psuedolabeling by nearest 3. C) Psuedola-

beling this same novel category by CFA.

”person.” Thus, we contrast the Nearest-N metric with the

CFA metric, which corresponds to the largest bounding hy-

pertriangle.

To label an image, we encode its relative positions with

respect to some subset of the known labeled datasets. To

better explain the technique, we will use ImageNet1K as a

source of images and ground truth labels. ImageNet1K has

1000 labels; the number of images/label is almost uniform;

but the labels broadly fall under few broad categories like

animals, vehicles, food, musical instruments, garment, fur-

niture, buildings etc. About 446 out of 1000 labels (∼ 45%)

belong to animals while the other top categories are vehi-

cles (5.2%), food (2.2%), musical instruments (2.1%) and

garment (2.1%). The distribution of number of labels for

different categories has a long tail as shown in Figure 5.

4.1. NearestN labels

Our first labeling methods choose labels to be the names

of the N source datasets which were the closest to the im-

age. We concatenate those names together, in order of

closeness. Thus, the Nearest-3 method generates labels like

”tree-animal-fungus”. With 16 source datasets, the Nearest-

3 approach yields 16x15x14 = 3360 possible pseudolabels;

Figure 5: Distribution of labels in ImageNet1K for top 20

categories in decreasing number of labels

in our study with the 1.3M images from ImageNet1K, each

label had a mean of 381 images and a standard deviation

of 1503. In a similar fashion, the Nearest-2 and Nearest-1

pseudolabels were also computed, with 240 and 16 possible

labels, respectively. (We found no benefits above Nearest-

3.) Figure 6a shows the distribution of images for the

Nearest-3 method. The high peaks on the right are unsur-

prisingly related to animals.

4.2. Uniform clustering

Our fourth method exploited all 16 distances. We first

fixed the order of the 16 source datasets, forming a 16-

dimensional coordinate system, so that each image could

be viewed as a vector in the resulting 16-dimensional sim-

plex of all possible positive distances to them. All of the

unlabeled images were then k-means clustered within this

space; we used 240 cluster centers to imitate the size of the

Nearest-2 space. These resultant clusters could not be ex-

pected to be of uniform size, so a second round of splitting

and merging, based on relative distances, balanced the clus-

ter membership to be nearly uniform (see Figure 6b), with

an average of 1000 images per cluster, and a standard de-

viation was 193. The ”names” of these final clusters were

used as the pseudolabels.

4.3. Closest, Farthest, Max Area (CFA)

Our fifth method accommodates those incoming datasets

that are characterized by a wide variety of low-level image

features. These labels were again devised as a sequence of

three source names, but chosen to span the 16-dimensional

space as widely as possible. The first source dataset was the

closest one, and the second was the farthest one. The third

was chosen from the remaining 14 to maximize the area

of the resulting triangle in 16-space, computed via Heron’s

formula. This method not only captures what an image is

about (positive description) but also what it is not like (neg-

125



(a)

(b)

(c)

Figure 6: Distribution of images per label in pseudo-

labeled datasets (a) Nearest-3 (b) Uniform Clustering (c)

CFA

ative description). In practice, this method only resulted

in about 200 labels, with an average of about 6300 images

per label, and with a very high standard deviation of about

17000 (see Figure 6c).

As an example, consider the two images, armor suit and

elephant, in Figure 7, taken from ImageNet1K. Table 2

shows the KL divergence of these two images from the 16

clusters. The nearest cluster (Nearest-1) for the armor suit

image is music. This is possibly due to the brass and metal-

lic textures of the photo, similar to that seen in brass mu-

sic instruments. The Nearest-2 and Nearest-3 labels are

(music-weapon) and (music-weapon-person) respectively.

Figure 7: Pseudolabels assigned to example images from

ImageNet1K

cluster armor suit elephant

sport 2.086 [A] 1.872

tool 1.947 2.004

fruit 2.379 1.818

fabric 2.016 1.805

building 2.007 1.745

furniture 1.947 2.085

garment 1.888 1.817

music 1.783 [1] 1.983

nature 2.480 1.590

weapon 1.787 [2] 1.898

person 1.842 [3] 1.840

plant 2.532 1.664

tree 2.517 1.473 [1]

fungus 2.475 [F] 1.507 [3, A]

food 2.062 2.126 [F]

animal 2.080 1.498 [2]

Table 2: KL divergence of body armour and elephant with

source datasets; the datasets which are nearest first [1], sec-

ond [2], and third [3] and the farthest [F] and area maximiz-

ing dataset [A] are marked.

In contrast, the label for CFA is music-fungus-sport. So

for this image, fungus is the source which is most unlike it,

and sport maximizes the area of the triangle defined by the

third source.

Similarly, for the elephant image, the Nearest-3 label is

tree-animal-fungus, and the CFA label is tree-food-fungus.

The Nearest-2 and Nearest-1 labels are tree-animal and tree,

respectively. Tree qualified as nearest since they have the

same rough texture, shape of trunk and color. Apart from

this, the image has trees in them. Food was determined to

be the furthest from the image with most negative features.

Those will include color, shape, texture. Fungus, which was

the largest area selection, tends to have some features from

both the trees and food. They are seen a lot among trees and

greenery and are as colorful and textured like food items.
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Figure 8: Pseudolabels assigned to elephant image of ImageNet1K

The pseudolabels for elephant image can be visually ana-

lyzed in Figure 8.

5. Experimental Evaluation

Experiment 1 Using techniques described in Section 4,

we first created five pseudo-labeled datasets for the im-

ages in ImageNet1K, as shown in Table 3. We then trained

ResNet27 using each of these pseudo-labeled datasets, cre-

ating base models for further transfer learning. For all our

experiments we used ResNet27 as residual networks [6]

are considered state of the art in image classification. The

choice of ResNet27, in particular, was dictated by it being

easy to train while being big enough for the sizes of datasets

being used for the experiments.

We also created two baseline models, one using

the vanilla ImageNet1K dataset of images and human-

annotated labels, and a second by assigning random la-

bels to the ImageNet1K images. For perspective, Table 3

shows the accuracy of these seven base models, but since

we are interested in the transferability of representations

from these base models to a target domain, their absolute

accuracy is not the important measure. For target, we used

12 datasets; 11 of these created from Imagenet22K (refer to

Section 3 for details) plus ”flowers” dataset [12]. Then, for

each of 12 candidate target datasets, we fine-tuned and cal-

culated the transfer learning accuracy of each of the 7 base

models; each of these 84 experiments were carried out with

the same hyperparameters.

As shown in Table 3, the accuracy obtained with Vanilla

as the base model can serve as an upper-bound on trans-

fer learning accuracy for experiments using Nearest-N, Uni-

form, and CFA base models. Similarly, Random can provide

a lower bound. Table 4 shows that Nearest-3 gives the best

accuracy for 8 out of 12 datasets. For two datasets, Nearest-

2 performs slightly better than Nearest-3, while Uniform

and CFA perform best for person and flowers datasets.

dataset labels images/label accuracy

mean std-dev

Nearest-1 16 80073 79325 78.74%

Nearest-2 240 5338 10146 55.75%

Nearest-3 3360 381 1503 37.07%

Uniform 1144 1119 193 33.49%

CFA 201 6373 17648 81.01%

Random 1000 1200 0 0.08 %

Vanilla 1000 1200 0 67.14%

Table 3: Characteristics of different base model datasets,

and their accuracy

Experiment 2 To capture the performance of pseudo-

labeled vs. human-labeled datasets, we define in the usual

way the relative error of transfer learning accuracy between

a pseudo-labeled dataset, i, and the Vanilla base model, v,

as: Erri = (1− accuracyi/accuracyv)× 100%. For each

target dataset, we also calculate their KL divergence with

respect to ImageNet1K, as defined in Section 3.

Figures 9a and 9b show plots of Erri for 12 different

target datasets. The average value of Erri is 17.2%, with

minimum and maximum being 6.1% and 26.3%. Thus, us-

ing base models trained with automatically generated la-

bels, transfer learning accuracy is on average only 17.2%
worse when compared to base models trained using human

labeled images. Further, the error shrinks when the diver-

gence increases. This implies that when the base dataset is

far away in feature space, the transferability of representa-

tions is less sensitive to noise in the labels.

6. Observations

The experimental results in Table 4 indicates that the

transferability from a given dataset is proportional to the

quality of the labels. The human annotated ImageNet1k la-

bels are of high quality and helps the model trained on it
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Base → Pseudo-labeled Imagenet1K

Target ↓ Nearest-1 Nearest-2 Nearest-3 CFA Uniform Random Vanilla

music 42.98% 43.60 % 43.86% 42.87 % 43.71% 1.57% 47.19%

tool 38.79% 39.12% 39.44% 39.40% 39.39% 1.24% 42.65%

weapon 29.51% 30.24% 30.21% 29.46% 29.92% 2.09% 32.25%

fungus 21.28% 21.96% 22.16% 21.78% 21.88% 1.60% 23.59%

flowers 75.94% 74.90% 72.88% 76.64% 72.36% 0.43% 85.13%

sport 28.68% 30.46% 30.76% 30.01% 30.74% 0.98% 37.37%

person 6.87% 7.25% 7.89% 7.29% 8.05% 0.12% 10.12%

food 8.58% 9.21% 9.62% 9.19% 9.36% 0.13% 12.52%

fruit 18.53% 19.53% 19.12% 19.05% 18.54% 0.82% 25.95%

garment 16.84% 17.30% 18.05% 17.29% 17.61% 0.68% 24.48%

animal 15.40% 17.54% 18.46% 17.31% 18.40% 0.10% 24.87%

plant 10.46% 11.27% 11.69% 11.14% 11.47% 0.08% 15.34%

Table 4: Transfer learning accuracy for different target datasets; best accuracy shown in bold.

(a)

(b)

Figure 9: Relative error between pseudo-labels and Vanilla,

vs. divergence, for 12 target datasets (a) Nearest-3 (b) CFA

learning fine details including for basic features like colors,

textures, shapes etc. This then gets transferred during trans-

fer learning.

It is also seen that in general, having coarser labels (like

Nearest-1) means the base model does not need to learn

much to be able to differentiate between labels. This then

becomes an hindrance for transferabilty. With more deeper

labels (like Nearest-3), the base model learns to differentiate

on specific features and all that knowledge helps in transfer-

abilty. Thus although the top-1 accuracy as seen in Table 3

for Nearest-1 is higher than Nearest-2 or Nearest-3, it did

not learn as much to achieve it, and that was an hindrance.

In these experiments we have used 16 different special-

ized models/datasets as anchor points. The diversity of

these datasets does influence the quality of pseudo labels

produced. A set of datasets which cover as much of the

high dimensional feature space as possible would produce

better pseudo labels. For example, from Figure 4, a diverse

dataset set which has (plants, weapons, garments, building)

would provide better label coverage than (plant, tree, fun-

gus, fruit).

Our method, for every image in the target dataset, re-

quires the KL divergence calculation for M feature vector

pairs where M is the number of source datasets. In our ex-

periments it is 16. To determine the nearest N labels, these

M divergence numbers need to be sorted and the bottom

N need to be picked. To determine the CFA labels, the

top 1 and bottom 1 from the sorted list needs to be picked.

Then Heron’s formula is applied to determine the third label

which maximizes area. This requires M − 2 area calcula-

tions. Then to pick the the label maximizing the area, an

additional M − 2 comparisons are needed.

In our work we have only looked at feature vectors

from the second last layer of reference convolutional neu-

ral network (CNN). A recent work [5] has shown that fea-

tures from all the layers of a CNN can potentially be used

for knowledge representation. This study implies devising

pseudo labeling techniques exploiting representations not

just from a single layer but multitude of convolutional lay-

ers in a CNN.

The results we reported did not involve any exploration

of learning rate to improve transfer learning accuracy. It has

been shown empirically in [4] that appropriate selection of

learning rates for differ layers of a CNN during finetuning
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can significantly improve the accuracy. It will be interesting

to investigate the possible improvements in transferability

of pseudo labeled datasets by selecting the right learning

rates during finetuning.

7. Conclusion

We have shown that generation of content-aware pseu-

dolabels can provide transfer performance approaching that

of human labels, and that models trained on psuedolabels

can be used as source models for transfer learning. The

automated approach presented here suggests that the in-

ternal representations of content models trained on spe-

cialized datasets contain some descriptive features of those

datasets. By treating each of these specialized representa-

tions as a ”word” in a longer ”sentence” that describes a

category of images, we can create labels such as a ”music-

weapon-person” to describe a suit of armor, or a ”tree-

animal-fungus” to describe an elephant. These rich labels

capture features of these objects such as visual informa-

tion about the materials they are made out of, that better

describe the contents than reliance on a single label would

produce. Using multiple, content-aware models to achieve

greater descriptive power may be a valuable future avenue

of research.
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