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Abstract

In this paper, we propose a network that can accurately

infer normal vectors from a point cloud without sacrificing

inference speed. The key idea of our model is to introduce

a voxel structure to extract spatial features from a given

point cloud. Specifically, unlike the other existing methods

directly exploiting point clouds, our model leverages two

subnetworks called a “point network” and a “voxel net-

work”. The point network extracts local features of a sur-

face from a point cloud, whereas the voxel network trans-

forms the point cloud into voxels and encodes the spatial

features from them. The experimental results demonstrate

the effectiveness of our method.

1. Introduction

3D mesh reconstruction from point cloud [13, 3, 18] is

one of the most prominent problem in computer vision, and

used for a wide range of applications including robotics

[13, 1], augmented reality [38], and mixed reality [36].

Although many methods have been proposed to solve this

problem [3, 18, 28, 29], one of the most typical approaches

is to first estimate a normal vector of each point representing

the object surface, and then reconstruct the 3D mesh from

these normals [7, 34, 18]. If the normals of the point cloud

can be estimated with high accuracy, we can make use of

that information and obtain the 3D mesh of the object close

to the ground truth. In this study, we focus on the normal

estimation from the point cloud.

The estimation of the normal vectors mainly consists of

the following two steps: i) the “unoriented” normal estima-

tion step to roughly compute a normal vector from neigh-

bouring points, and ii) the alignment step to correct all the

unoriented ones so that these normals are consistent (i.e.,

all vectors face the outside of the surface). Our study deals

with both steps in an end-to-end manner. While a typical

approach to handle the former step was to exploit several

rule-based techniques [42, 22], which aim to improve the

Figure 1. Error of the estimated normal vector and inference time

of each method.

accuracy estimated by the method of Hoppe et al. [14], in

recent years, several data-driven approaches have been ap-

plied to the normal vector estimation [5, 33] in Computer

Graphics.

In the field of Computer Vision, using a common CNN

model for the point cloud such as PointNet [30] is consid-

ered to be effective to handle the normal estimation, how-

ever, the typical problem of this model is that they are not

suitable for encoding “spatial” structure of a point cloud

[31, 16, 20]. This spatial structure is significant in normal

estimation that needs to encode information in the vicin-

ity of the point. To cope with these problems, some meth-

ods have been proposed so far to encode spatial features

by making the PointNet a multi-layered one [31] or extend-

ing the data structure of the point cloud [16, 20]. However,

these inference speed are much slower than that of Point-

Net, as these methods directly add higher-order extensions

to the data structure. To reconstruct the 3D mesh at prac-

tical speed and with high accuracy, we needed to develop

a model for a point cloud that efficiently encode both local

and spatial information with a simpler approach.

Based on the above discussion, we propose a simple but

effective network for normal estimation that efficiently in-
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corporates local and spatial structures into the PointNet.

Our idea is to incorporate a voxel network that can effi-

ciently represent the spatial structure and its inference speed

is relatively fast. That is, by making use of both the point

network to extract the local features such as neighboring

points and the voxel network to extract spatial representa-

tion, our model efficiently encodes both structures.

The clear advantage of our model is that it can accu-

rately extract the both local and spatial features required for

the normal estimation without sacrificing the speed (Fig-

ure 1). In the experiments, we observed that our method not

only outperforms other existing methods in terms of the root

mean squared error, but its inference speed is equal or faster

than the major existing models dealing with point clouds. It

illustrates that our model could efficiently encode both the

local and the spatial structures.

The rest of this paper is organized as follows. In Sec-

tion 2, we review several studies related to our work. Sec-

tion 3 presents the detail of our network structure. The ex-

perimental results are presented in Section 4. Section 5 con-

cludes the paper.

2. Related work

2.1. Unoriented normal estimation in point clouds

A typical approach for estimating normal vectors from

a point cloud was to compute a tangential plane of each

3D point with Principal Component Analysis (PCA) of its

neighboring points [14]. After that, several studies have

been proposed to improve its accuracy by assuming more

complex shapes such as a sphere [12] and a quadratic sur-

face [8]. As a similar extension, there are also several stud-

ies that leverage a Delaunay triangulation [2, 10] for normal

estimation. However, it is known that the above methods are

vulnerable to an object including a pointed shape [4]. Al-

though some studies have been proposed to handle such an

intractable shape with some sophisticated algorithms such

as clustering [43, 24] and Randomized Hough Transform

[4], these methods are ineffective for the objects including

smooth surfaces because both methods perform discretiza-

tion using a kind of clustering.

Recently, Boulch and Marlet [5] proposed a method for

improving the accuracy of normal vectors by computing

Hough space [4] with CNN. However, we argue that it has

the same problem of [4] since this method also uses the

Hough transformation.

2.2. Consistent normal orientation in point clouds

To obtain consistent normal vectors, after applying the

above methods we usually need to perform another filter

that aligns all the normals to be consistent because some

estimated vectors face inside the object surface. There are

roughly two approaches to align normal vectors: i) a geo-

metric approach and ii) a volumetric approach.

The geometric approach iteratively aligns neighboring

points so that all of the normal vectors of these points are

consistent [14, 42, 12, 15, 22]. For example, Hoppe et al.

[14] proposed a method that first selects a specific point as

a “seed”, and iteratively corrects the estimated normals of

neighboring points with Minimum Spanning Tree (MST).

Schertler et al. [33] formulated this problem as a kind of

energy minimization problem, and efficiently aligned nor-

mal vectors with some minimization methods instead of the

MST. As other methods that do not leverage the MST, a

method with an adaptive spherical cover scheme [23], and

a method that combines Laplacian smoothing and visibility

voting [6] have been proposed.

The volume-based approach exploits volumetric repre-

sentation such as a signed distance function [44, 26, 17, 27,

11] and estimates whether a normal vector of a point faces

inward or outward. These methods are known to be robust

against outliers, however, its computational cost is generally

higher than surface-based ones.

2.3. Deep neural network

Deep Neural Networks (DNNs) have recently shown

outstanding performance in various 3D recognition tasks

such as RGB-D object recognition [25] and semantic seg-

mentation with point clouds [30]. The problem in the 3D

object recognition using DNN is how to represent a data

structure for efficiently solving the problem. Although a

naive approach is to represent its 3D shapes by voxels, it has

a disadvantage that its accuracy generally depends on the

“resolution” of voxels, and increase in resolution causes a

significant increase in computational cost. Several methods

have been proposed to reduce this computational cost with

an octree [32, 40], however, they are directly inapplicable

to the normal vector estimation from point clouds because

each point needs to be stored in a single leaf.

The existing models which are most similar to our pro-

posed one are to directly regard a set of 3D points as an in-

put of DNN [30, 31, 35]. Although these sophisticated mod-

els can efficiently solve a semantic segmentation problem

that requires global information such as object categories, it

is still unclear whether these are also effective for the nor-

mal estimation problem that needs both local and spatial

features.

3. Model

This section describes our proposed model. As shown

in Figure 2, our model consists of two subnetworks called

the point network and the voxel network. We respectively

introduce the detail of these networks in Section 3.1 and

Section 3.2, and describe the method for integrating these

feature vectors in Section 3.3. As another application of our

network, we also explain a method to remove the noise from

the point cloud in Section 3.5.
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Figure 2. Illustration of our proposed network. It consists of two subnetworks called the point network and the voxel network. The point

network extracts local features corresponding to the local shape of an object, whereas the voxel network first transforms a point cloud into

voxels, and extracts spatial features with a 3D U-Net. These two different feature vectors are combined into one vector, and transformed

into a normal vector by a learnable network. MLP(c1, c2, c3) denotes the three-layer perceptron where the numbers of the channels in the

input, the middle, the last layers are c1, c2, and c3, respectively. In the MLP we applied the batch normalization and the ReLU after linear

transformation except for the last layer.

3.1. Point network

The point network is a variant of PointNet [30] and fo-

cuses on efficiently extracting local features from a given

point cloud. Similar to the PointNet, the point network is a

function that receives normalized N three-dimensional co-

ordinates denoted by x ∈ [−1, 1]N×3, and returns a set of

feature vectors with L elements (hlocal ∈ R
N×L) that rep-

resents local shapes of a surface.

We explain the detail of the point network. Let xi ∈
[−1, 1]3 denote i-th element of x, and {x1

i , . . . , x
k
i } be a set

of nearest k points from point i. Using this notation, l-th
element of the output hlocal

i,l can be represented by

hlocal
i,l = max

j=1,...,k
{f(xj

i − xi)}l, (1)

where f : R3 7→ R
L is a learnable function that maps the

3D coordinate into the L-dimensional feature vector, and

{·}l is the l-th element of the vector in the braces. In the im-

plementation, we set k = 32, and defined f by a three-layer

perceptron consisting of batch normalization functions and

rectified linear units.

Unlike the PointNet that applies the global max-pooling

function against all the points to encode the local features,

our point network computes its maximum value only from

neighboring points of a certain point. Although this algo-

rithm itself is similar to that in PointNet++ [31], which also

encodes local features with neighboring points, their ap-

proach and ours differ in the following two points. Firstly,

before computing local features, the PointNet++ samples

some representative points from a point cloud, whereas our

network does not perform such sampling process to support

sudden change between adjacent normal vectors. Secondly,

while PointNet++ repeats both of sampling and feature ex-

traction multiple times to extract spatial features from the

point cloud, our network does not need to repeat it multi-

ple times because it delegates the task of extracting spatial

features to the voxel network. This can simplify not only

the configuration of the point network, but also has another

advantage that the inference speed significantly improves.

The detail of this effect will be shown in Section 4.5.

3.2. Voxel network

The normal estimation with the point network often pro-

duces inconsistent results because the point network only

encodes local features. We compensate this shortcoming by

introducing the voxel network.

Unlike the point network that directly exploits the 3D

points, the voxel network (1) transforms all the points into

voxels, (2) extracts spatial feature vectors with 3D CNN,

and (3) converts them into points that contain these features.

We describe the detail of these steps in the following.

Firstly, the voxel network projects normalized N three-

dimensional points into voxels each of which contains a bi-

nary value. These voxels are mathematically expressed as

xvoxels ∈ {0, 1}D×D×D, where D denotes the resolution of

the voxel. In the experiments we set D = 32. Each voxel

represents whether any points are included or not, i.e., if

any points in a point cloud are included in a voxel, its value

is equal to one. After that, the voxel network memorizes

correspondence between a voxel and stored points.

Next, it extracts the spatial features with 3D U-Net [9],
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which is a standard model for semantic segmentation of 3D

models. The 3D U-Net is expressed by two networks called

an encoder and a decoder; the encoder extracts the spatial

features of voxels while lowering the resolution, whereas

the decoder reconstructs voxels with the same resolution by

gradually increasing it from the feature maps obtained by

the encoder. After that, we have a set of voxels denoted by

hvoxels ∈ R
D×D×D×M , where M is the dimension of the

feature vector in a voxel.

Finally, with the correspondence table, the voxel net-

work transforms these voxels into N points containing M -

dimensional feature vectors. For simplicity, we represent

these points by hspatial ∈ R
N×M . The network configura-

tion of the voxel network is exactly the same as the original

one [9] except we set the number of channels in the initial

layer to one and that in the final layer to 64.

3.3. Integration

The above two feature vectors computed by the point and

the voxel networks are finally combined into one vector, and

transformed into a normalized vector with another network.

We call this network integration network. The integration

network consists of a three-layer perceptron represented as

MLP(128, 64, 3); it first takes this feature vector as an input

and returns unnormalized 3D vector representing a normal.

By performing this process for all the points and normalize

them, we finally have a set of normalized vectors denoted

by y ∈ R
N×3. Note that although the integration network

itself does not consider the relationship between neighbor-

ing points, such relations are already taken into account by

both the point and the voxel networks.

3.4. Loss function

In the training of the whole network, we employ the L1

norm (a.k.a. Mean Absolute Error) defined by

L =
1

N × 3

N
∑

i=1

∥n̂i − ni∥1, (2)

where ni and n̂i denotes the i-th normal vector and its

ground truth, respectively.

Note that the main reason we have mainly employed

the L1 norm is to reconstruct the object containing a sharp

shape. We will describe these experimental analyses in Sec-

tion 4.6.

3.5. Denoising

The point cloud retrieved from the sensor contains some

noise. Although a straightforward approach to deal with

this problem is to directly estimate the normal vectors from

the point cloud with noise, there is another method that ex-

plicitly inserts the process of removing noise into the whole

process, i.e., first estimates the “clean” 3D points from the

point cloud, and then obtains these normal vectors. In this

section, we describe the detail of the latter model.

As we described above, this network consists of the

two subnetworks: the initial network for denoising and

the second network for normal estimation. The initial net-

work takes N 3D points with perturbation noise (x + ϵ ∈
[−1, 1]N×3) as an input, and returns a tensor correspond-

ing to the estimated perturbation noise (ϵ). The network

structure of the initial network is the same as the net-

work for normal estimation. For the training, we simply

employ the mean squared error represented by Lnoise =
(
∑

i ∥ϵ̂i − ϵi∥
2
2

)

/(3N) , where ϵ̂i denotes the perturbation

noise. After estimating the perturbation noise, we finally

have the normal vectors by passing the corrected points to

the network for the normal estimation.

4. Experiments

This section describes the experimental results of our

method. The existing methods we used for the comparative

experiments are the following. We selected an Orientation-

Benefit Normal Estimation (OBNE) [22] and HoughCNN

[5] as existing methods for unoriented normal estimation

(see Section 1). Regarding the alignment step, we selected

a “multi-source orientation propagation with visibility vot-

ing” (MMSTV) algorithm [22] and an energy minimization

method with Markov Random Field Optimization (MRFO)

[33]. The PointNet [30] and PointNet++ [31] were used

as the representative methods using point clouds. That

is, we compared our method with the existing six meth-

ods denoted by “OBNE + MMSTV”, “OBNE + MRFO”,

“HoughCNN + MMSTV”, “HoughCNN + MRFO”, “Point-

Net”, and “PointNet++”.

In this section, we refer to our model consisting of the

point network and the voxel network as “Ours (point +

voxel)” or simply “Ours”. In contrast, “Ours (point only)”

and“Ours (voxel only)” respectively mean our network only

using the point network and that just using the voxel net-

work.

4.1. The setting of the experiments

4.1.1 Dataset

We used the two datasets called ModelNet40 [41] and

SHREC15 [21] for the experiments.

• ModelNet40: a 3D dataset consisting of 12,311 CAD

models, which contain many artificial objects includ-

ing pointed shapes. Each object belongs to 40 different

categories such as airplane and bookshelf. As with the

original dataset, we used 9,843 models as the training

samples and 2,468 models as the test samples. Since

some models have normals facing the inside of the ob-

ject, we collected them with a method by Takayama et

al. [37].
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• SHREC15: a dataset containing 1,200 non-rigid 3D

models with 60 labels such as camel and hand. Unlike

the ModelNet40 this dataset contains many smooth

surfaces rather than the sharp shapes. Each category

contains one basic 3D shapes and different 20 shapes

obtained by deforming its joint angle. Note that we

used this dataset for testing only.

We created a set of point clouds of the above datasets by

uniformly sampling N points from the surface of each ob-

ject. To create a normal vector from a 3D point, we re-

garded a normal vector on a mesh as that on a 3D point. All

the samples in the dataset were properly normalized so that

its mean is zero and all the points are in a unit ball. In the

testing, we set the number of the points N to 10,000. The

number of points used in training will be shown later.

4.1.2 Data augumentation

In training, we used a data augmentation method consist-

ing of the following two ways: random rotation of points,

and random sampling of points. Specifically, in the latter

method, we randomly sampled N points1 without overlap

from a point cloud and regarded them as an input of each

model. Note that in the training of the PointNet++, we did

not use the above random sampling and used a fixed num-

ber of points 10,000. We believe that this is an advantageous

setting for the PointNet++ since it is equivalent to the num-

ber of samples used for the testing.

Note that regarding the experiments of Section 4.3, in ad-

dition to the above two methods, we also employed another

data augmentation algorithm which adds a Gaussian noise

with a standard deviation σ. Regarding the value of σ, we

followed the other existing methods [22, 24, 4, 5]. Specif-

ically, letting d be the average of distances from a point to

the nearest point, we can represent σ as σ = R× d.

In training, we randomly determined the intensity of the

perturbation noise R within a range of 0% to 200%. Dur-

ing the test, we respectively set its intensity R to 0%, 40%,

80%, 120%, 160%, and evaluated the robustness of each

model against the noise.

4.1.3 Training configuration

We used Chainer [39] in the implementation of our network.

The network was trained for 100 epochs using the Adam

optimizer [19] with α = 0.001, and a batch size of 4. The

training took about 60 hours with a single Tesla P100.

4.1.4 Comparative methods

We implemented the PointNet for the semantic segmenta-

tion with Chainer. In the implementation of the PointNet++,

1
N is randomly determined with a discrete uniform distribution from

4,000 to 16,000

Table 1. The RMSE and the PGP of the existing and our methods.

Method
ModelNet40 SHREC15

RMSE PGP RMSE PGP

OBNE + MMSTV [22] 0.574 0.456 0.187 0.719

OBNE [22] + MRFO [33] 0.606 0.434 0.171 0.718

HoughCNN [5] + MMSTV [22] 0.611 0.530 0.367 0.444

HoughCNN [5] + MRFO [33] 0.598 0.541 0.268 0.462

PointNet [30] 0.582 0.210 0.468 0.121

PointNet++ [31] 0.451 0.712 0.220 0.728

Ours (point only) 0.513 0.596 0.437 0.648

Ours (voxel only) 0.533 0.447 0.328 0.292

Ours (point + voxel) 0.372 0.708 0.161 0.787

we retrieved the code for the semantic segmentation from

their project page, replaced the number of channels in the

initial and final layer to three, and used them for the ex-

periments. As with the above methods, we also retrieved

codes of the OBNE, the MMSTV, the HoughCNN, and the

MRFO from their project pages. Note that we appropriately

optimized the parameters of the existing methods as much

as possible to improve the accuracy (see our supplementary

material for details).

4.2. Normal estimation from point cloud

4.2.1 Quantitative results

We evaluated the existing methods and ours with the normal

vector estimation from the ModelNet40 and the SHREC15.

In the quantitative evaluation, we employed the two metrics

called Root Mean Squared Error (RMSE) and Proportion of

Good Points (PGP).

The Root Mean Squared Error (RMSE) is a standard

metric for quantitatively evaluating the performance. In

these experiments, the RMSE can be defined as RMSE =
√

(
∑

i |n̂i − ni|2) /(3N). Since it is known that the RMSE

is not robust to the large error, the most effective method to

reduce the RMSE is that the direction of the normal faces

the outside of the object as much as possible. It means that

considering spatial features of an object is much significant

to reduce the RMSE. On the other hand, we argue that it is

unsuitable when the object contains a pointed shape since

the RMSE is a vulnerable metric to outliers.

The PGP [5] is another metric aiming to address this

problem and can be defined by the proportion of points in

which every angle between the estimated normal and its

ground truth is smaller than threshold τ . Even if the es-

timated normal faces outside of the object, this metric re-

gards it as a “failure” when the error exceeds the thresh-

old. It means that considering local features on the surface

is much significant to increase the PGP. We employed the

PGP as another metric and set τ to 10◦ (that is the same as

the value in [5, 24]).

Table 1 shows the experimental results of the RMSE and

the PGP. It is interesting to see that while the RMSE of the
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PointNet was comparable to others, its PGP score was sig-

nificantly lower than those of the other models. These re-

sults show that although the PointNet is suitable for encod-

ing global features, it is not sufficient for extracting local

and spatial features. We consider it is mainly due to the

effect of the global max-pooling layer.

In contrast, the PointNet++, which is an improved

version of PointNet, outperformed other existing models.

Specifically, the PGP score of the ModelNet40 achieved by

the PointNet++ was slightly larger than that of ours. Al-

though it seems to indicate that the PointNet++ success-

fully extracted the both the local and the spatial features, its

RMSE was significantly lower than ours. We will describe

its reason in Section 4.2.2.

It is also interesting to see that our network only contain-

ing the point network outperformed some existing methods.

In the case where the network can use local features only,

although it can correctly estimate the normals perpendicu-

lar to the surface, it cannot detect whether the normal faces

the outside of the object. For this reason, it seems that the

PGP obtained by the point network has an upper limit of

0.5. We consider the reason why it could achieve the value

higher than 0.5 is that the point network statistically esti-

mated the direction of the normal by the curvature of the

surface. We can also see that the PGP of the voxel network

in the SHREC15 was relatively lower than those of other

methods even though its RMSE was superior. It implies

that the voxel network failed to accurately estimate normal

vectors due to the discretization by introducing voxels.

Table 1 also shows that the result of our network with

both the point and the voxel networks outperformed other

models except for the PGP of PointNet++. It indicates that

our network could efficiently encode both the local and the

spatial features by introducing the two different networks.

4.2.2 Qualitative results

We also visualized the angle between the estimated normal

vector and the ground truth. Figure 3 shows the visualiza-

tion result of five objects retrieved from the test samples in

the ModelNet40 and the SHREC15. As with our method, it

seems that the PointNet++ encoded both the local and the

spatial features, however, we can also see that some nor-

mal vectors estimated by the PointNet++ faced inside of the

object. As we can see in the results of the SHREC15 (the

right two columns in Figure 3), this problem occurred when

the surface is concave, and this problem could not be solved

without encoding the spatial features more appropriately.

4.3. Normal estimation from noisy point cloud

4.3.1 Quantitative results

Many 3D points obtained by a sensor include some noises.

We evaluated the robustness of the proposed model by
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Figure 3. Visualization of normal vectors estimated by five differ-

ent methods. The angle of the error vector is projected to hue in

HSV color space. The blue color shows that the vector is vertical

to the object surface and its direction faces outside, whereas the

red color indicates that the vector is perpendicular but its direction

is opposite. Light blue, orange, and green colors mean that the

vector is not vertical.

adding artificial noise to the point cloud and estimated these

normal vectors.

In terms of our model, we employed the two methods to

estimate normal vectors from a point cloud with noise. The

former is a model that directly calculates the normal vec-

tors in an end-to-end manner, and the latter is a model that

first estimates 3D points without noise, and then computes

normal vectors from these points with another network con-

sisting of the point and the voxel networks. In this section,

we refer to the latter as “Ours (+denoising)”.

To confirm the robustness against the intensity of noise,

we trained our two models and the existing models while

adding perturbation noise drawn from a Gaussian distribu-

tion with a standard deviation σ (see Section 4.1 for details).

Figure 4 shows the relation between the RMSE, the PGP,

and the intensity of the perturbation noise. We can see that

the PointNet++ and our method (the point and the voxel

networks) were relatively robust to perturbation noise since

they can encode both features. It also reveals that the per-
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Figure 4. The PGP and the RMSE curves w.r.t. the intensity of

perturbation noise.

formance of the PointNet, which mainly encodes the global

features, was worse than those of others. This implies that

leveraging both of the local and the spatial features is signif-

icant for normal estimation from the point cloud including

noise.

Figure 4 also shows that compared with our model only

using a single network, the RMSE of our method using two

networks significantly decreased by 32% and its PGP also

increased by 33%. We describe this reason in the supple-

mentary material.

4.4. Application to Surface Reconstruction

We also show the results of the surface reconstruction

from the point clouds in Figure 5. Specifically, we esti-

mated the normal vectors with several methods including

ours and then obtained the 3D surface of an object by ap-

plying a Screened Poisson Reconstruction [18], a de facto

standard algorithm for estimating the 3D surface from the

normal vectors of 3D points. From the aspect of the experi-

mental result with a chair, the PointNet generated noisy 3D

surfaces, and a part of the surface created by the PointNet++

bulges unnaturally. Although the result with cow looks like

that every method can precisely estimate the 3D surfaces, it

can be seen that the surfaces of toes, horns, and ears gen-

erated by the existing methods also slightly bulge. In par-

ticular, the PointNet++ could not precisely estimate several

parts such as the ears and the belly. These results indicate

that while the existing methods often failed to precisely in-

fer the 3D surfaces because the estimation result of the nor-

mal vectors was not so accurate, the proposed method was

able to estimate the 3D mesh close to the ground truth.

4.5. Inference Time

To compare the inference time in each method, we mea-

sured the average time per sample with 1,200 models in

the SHREC15. The results are shown in Table 2. Note

that in this table, our model includes time to convert the

point cloud to the voxels and time required for its inverse

transform. We can see that the PointNet++ consumed more

time than the PointNet. It is due to the internal structure

of the PointNet++, which iteratively performs the process-

ing of the PointNet. In contrast, the computational cost of
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Figure 5. The 3D reconstruction from the estimated normal vec-

tors. “ground truth” means the 3D mesh reconstructed from the

ground truth vectors.

Table 2. The inference time of the existing and our methods.

OBNE OBNE HoughCNN HoughCNN

Method +MMSTV +MRFO +MMSTV +MRFO

msec/model 9643 5392 20743 16392

Method PointNet PointNet++ Ours

msec/model 25.8 243 33.4

our model was much lower than that of PointNet++ be-

cause it performs the operation like PointNet only once.

Although this inference time was slightly slower than the

PointNet, considering the RMSE and the PGP, it reveals that

our method has a clear advantage over the existing ones.
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Table 3. The RMSE of ModelNet40 for each combination of k and

D.
❍

❍
❍

❍❍
k

D
8 16 32 64

8 0.457 0.422 0.410 0.413

16 0.439 0.408 0.377 0.395

32 0.433 0.391 0.377 0.388

64 0.424 0.397 0.378 0.424

4.6. Experiments on the change of parameters

4.6.1 Effect of voxel resolution and number of nearest

neighbors

To see the effectiveness of the voxel resolution and the num-

ber of nearest neighbors, we changed the voxel resolution D
to 8, 16, 32, 64, the number of nearest neighbors k to 8, 16,

32, 64, and measured RMSE for each parameter. Note that

the other parameter settings are equal to Section 4.2. The

results are shown in Table 3. It indicates that increasing the

resolution of a voxel is more significant than increasing the

value of k to accurately estimate normals. However, it also

means that setting very large k and D will adversely affect

the overall accuracy.

4.6.2 Comparison between loss functions

We also conduct additional experiments with different loss

functions. Specifically, in this experiments we introduced

four loss functions called L1 norm, L2 norm, Mean of

Angles between normals (MA), Mean Square of Angles

(MSA), and measured these performances. Note that in

the above experiments, to measure the robustness of the

loss functions against three-dimensional rotation, we ran-

domly rotated the point clouds of the test samples in evalu-

ation phase. Thus, in Section 4.2.2 we randomly rotated the

training samples but did not perform it in the testing one,

whereas in these experiments we applied random rotation

to both samples. This is to measure the the performance

when using loss functions dealing with angles such as MA

and MSA.

These results are shown in Table 4. It illustrates that

regarding the RMSE and the PGP10, the performances of

L1 and L2 norms were almost the same, whereas the value

of PGP05 using L2 norm was significantly lower than L1

norm. We also observed that when estimating the surface

of a sharp object with L2 norm, the reconstructed surface

became relatively smooth. For these reasons, we concluded

that introducing the L1 norm is effective for the normal es-

timation of objects including sharp shapes.

Interestingly, even when using loss functions with angles

directly, these performances are almost the same as those

of Lp norms. This means that minimizing the angle di-

rectly does not significantly affect the actual performance

improvement. We also observed that even if we rotated to

Table 4. The RMSE and the PGP(τ = 5◦, 10◦) of rotated Model-

Net40 for each loss function.
P
P
P
P
P
PP

metric

loss
L1 L2 MA MSA

RMSE 0.374 0.365 0.365 0.400

PGP10 0.699 0.660 0.696 0.454

PGP05 0.557 0.447 0.564 0.215

OBNE PointNet PointNet++ Ours

+MRFO

Figure 6. The visualization result of the models with a curtain in

the ModelNet40.

the test samples, its performance is nearly the same as on

that does not apply 3D rotation (see Table 1). It shows that

our model has acquired robustness against rotation.

4.7. Discussion

Although our proposed model outperformed the other

existing models in both the ModelNet40 and the SHREC15,

the above results indicate that it was not able to success-

fully estimate the normals of several objects. For example,

in shapes where the curvature of the surface changes con-

tinuously (e.g., curtain in Figure 6), the existing methods

outperformed our method. We consider this is because that

the machine learning-based methods like including ours in-

ferred normal vectors from the statistical information of cur-

vature. Although this leads to more accurate normal estima-

tion in many cases, it also means that inference using prior

rarely fails. It could be improved by increasing the number

of samples used for the training; the number of the train-

ing samples corresponding to “curtain” is only 138, and it

is not so large as the number of samples. It indicates that

the proposed method is significantly affected by the train-

ing samples.

5. Conclusion

We proposed a model that exploits two subnetworks

called the point network and the voxel network, and esti-

mates the normal vectors from a given point cloud. This

model can not only precisely infer the normals compared

with the other methods, but its inference speed is compara-

ble to the PointNet.
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