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Figure 1: Overview of the proposed approach. An input RGB image goes through three different modules. Patch Generation

Module learns to generate image patches in a differentiable manner. The Saliency Prediction Module operates on every patch

and generates saliency feature maps. Finally, the Recurrent Attention Module aggregates the bag of features and iteratively

refines the complete segmentation map.

Abstract

Segmenting salient objects in an image is an important

vision task with ubiquitous applications. The problem be-

comes more challenging in the presence of a cluttered and

textured background, low resolution and/or low contrast

images. Even though existing algorithms perform well in

segmenting most of the object(s) of interest, they often end

up segmenting false positives due to resembling salient ob-

jects in the background. In this work, we tackle this prob-

lem by iteratively attending to image patches in a recurrent

fashion and subsequently enhancing the predicted segmen-

tation mask. Saliency features are estimated independently

for every image patch which are further combined using an

aggregation strategy based on a Convolutional Gated Re-

current Unit (ConvGRU) network. The proposed approach

works in an end-to-end manner, removing background noise

and false positives incrementally. Through extensive eval-

*Equal contribution

uation on various benchmark datasets, we show superior

performance to the existing approaches without any post-

processing.

1. Introduction

Saliency is an important aspect of human vision. It is

the phenomenon that allows our brain to focus on some

parts of a scene more than the rest of it. Thousands of

years of evolution has optimized our brain usage by focus-

ing only in the most important regions in our field of view

and ignore the rest of it. Indeed, even in computer vision,

saliency plays a huge role in many applications, including

what humans use it for - compressed representation [16, 20].

Saliency can be exploited to improve agent navigation in

the wild [10], image retrieval [5, 14, 17], content based ob-

ject re-targeting [8, 37], scene parsing [51], object detection

and segmentation [13, 32, 34] among many others. Due to

its vast applications in vision, saliency prediction is a well

established problem with decades of on-going research. De-
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spite the efforts, the problem still remains open due to fac-

tors like cluttered background, multiple instances of non-

salient objects, scattered salient regions, low contrast scene,

and the definition of saliency varying from application to

application.

Salient object detection (SOD) or segmentation is an im-

mediate extension of saliency prediction, as it requires a

precise pixel-wise segmentation of the object of interest in

the scene. This is a harder task than saliency prediction due

to the amount of precision required. We observe that back-

ground is the primary reason for poor segmentations. Lack

of a well-defined boundary between the salient object and

the background can make it very difficult for vision algo-

rithms to segregate objects accurately. Besides often being

similar to the foreground object, part of the background can

also contribute to saliency, which further affects the seg-

mentation performance due to false predictions. Cluttered

or texture-rich background is often the reason why saliency

models may focus on the background, failing to segment out

the true object of interest. All these challenges are inher-

ently associated to the task of salient object segmentation

from images in the wild.

In recent past, Convolutional Neural Networks (CNNs)

have shown impressive performance on this task, achieving

significant improvements over existing approaches, both in

speed and accuracy. Although existing approaches succeed

in segmenting out majority of the salient object(s), they of-

ten miss out on finer details and/or segment partly salient

background regions during the global optimization process.

We believe that individually attending to finer image regions

or regions separating object and background can refine the

overall segmentation mask. Since handcrafting such regions

is a very subjective and unscalable approach, we propose

to use a learnable module for estimating these region loca-

tions. We would also like to incorporate learned features

from a regionk for predicting the next regionk+1, whilst

maintaining the spatial context and improving the whole

saliency map. This symbiotic relationship can be best ex-

ploited using a recurrent network, where different regional

features can act as a temporal sequence. Such a strategy

could impart important foreground/background distinction

to the network along with fine object details that can be ag-

gregated and improved upon iteratively.

We also take inspiration from recent approaches for the

task of video object segmentation task. Motion patterns

in a scene, specifically the differences between the fore-

ground object motion and background motion may act as

an important cue to segregate foreground from background.

Moreover, the information flow within a temporal neighbor-

hood often improves the segmentation accuracy especially

in cases of occlusion and background clutter. Tokmakov et

al. [41] leveraged such temporal dynamics in the video via

feature aggregation using a gated recurrent network. Analo-

gously, different regions/patches might emulate this behav-

ior of spatio-temporal perturbations in a single image.

Our Contributions: In this work, we propose an end-to-

end salient object detection architecture comprising of three

modules that a) learns what image regions to attend, b) ef-

fectively aggregates the learned features from regions, and

c) incrementally refines the overall segmentation in an inter-

pretable way. Patch Generation Module (PGM) learns and

crops the desired regions in a differentiable way, creating a

bag of images (including the input image). Saliency Predic-

tion Network (SPN) outputs the saliency features of each

image in the bag independently. Recurrent Attention Mod-

ule (RAM) combines these features using a novel aggrega-

tion strategy based on a pair of encoder-decoder Convolu-

tional GRUs. Through our intuitive approach, we achieve

state-of-the-art results on challenging SOD datasets.

2. Related Work

Given the ubiquity of the salient object segmentation

problem, a lot of approaches have been tried and tested in

the past literature. Earlier approaches mostly work on var-

ious low-level hand-crafted features in a data-independent

setup. Object and background priors [38], global regional

contrast [7, 23, 6] and boundary priors [7, 52] are some of

the different techniques that have been extensively studied.

A comprehensive survey of traditional techniques can be

found in [4].

Convolutional Neural Networks have been the status quo

for vision tasks in recent years, being present in all state-

of-the-art methods for Salient Object Detection as well.

DSS [19] is currently the best performing method on many

benchmark datasets. It is a VGG-based network, where the

authors use connections between the deeper and shallower

layers, and fuse them in a way similar to HED [44]. These

collective features have the ability to extract necessary high

level information, without losing spatial acuity.

In another work by Liu et al. [31], a coarse-to-fine net-

work is used to improve the features progressively. The au-

thors implement a recurrent structure to gradually increase

the spatial precision. Instead of using RNNs for interpola-

tion, we use it to segment the common object(s) from the

single image patches. Luo et al. [33] use a global segmenta-

tion branch, and various sub-branches at different levels to

extract local features, which are then combined in a separate

layer to refine the global prediction. Wang et al. [43] use a

pyramid pooling scheme to extract multi-scale features be-

fore the final prediction layer.

Another work that uses recurrent structure in their archi-

tecture is RAN [26], where they used one RNN to predict

segments from a local patch, and another RNN conditioned

on the first one that proposes the next region in the image to

focus on. This work is thematically the most similar to ours.

We differ in the approach as we do not use a decoder STN
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Figure 2: Patch Generation Module (PGM).

at the end to map the attended region back to input image.

We also employ Convolutional GRUs (ConvGRU) instead

of vanilla RNNs in our attention module which regresses

all regions in one step and incorporates the inverse spatial

mapping to input image within the module.

ConvGRU is an extension of a Gated Recurrent Unit [9]

which was introduced in [2]. A fully convolutional GRU

was used for video segmentation by Siam et al. [39]. A Con-

vGRU has been shown to perform well for a spatially struc-

tured task with fewer parameters than a traditional GRU.

In most of the other recent methods [49, 27, 42], we find

a common practice to combine the lower and higher level

features through convolution layers. Due to the lower level

features being very noisy, and containing all edges and tex-

ture information, these are often combined with the higher

level features and passed through convolution filters to sup-

press the noise. This preserves the stronger edge informa-

tion, such as the boundary information of the salient object

and the weaker noise signals are suppressed.

3. Method

We use a neural network based architecture comprising

of CNNs, GRUs and fully connected layers for our method.

The architecture is designed to be modular such that each

module can be used independently (Figure 1), demonstrat-

ing both simplicity and interpretability. We describe the

three modules in this section - a Patch Generation Module

(PGM), a Saliency Prediction Module (SPM) and a Recur-

rent Attention Module (RAM).

3.1. Patch Generation Module (PGM)

PGM takes an RGB image I0 of dimensions [H,W, 3] as

an input and generates N patches per image. It can be con-

sidered as a Multi-Spatial Transformer Network (STN) [21]

with a shared localization network barring N fully con-

nected layers (for each patch). The localization network is a

small neural network with some convolutional and/or fully

connected layers (Figure 2). For our experiments, we use 2
convolutional layers, each with 64 kernels of window size

7×7 and 5×5 respectively. Each Conv layer is followed by

a max pooling operation with a stride of 2. That is followed

by a fully connected layer that outputs a 256-dimensional

vector. The output is passed on to N fully connected layers.

The N unshared FC layers regress to 4N outputs, repre-

senting N [x1, y1, x2, y2] normalized image co-ordinates to

crop.

Unlike a conventional spatial transformer network, we

do not regress the parameters for a generic affine transfor-

mation. To specifically preserve the spatial appearance of

the salient object, we use image crops. Image crops have

proven to be good ‘perturbations’ for an iterative refinement

task [12]. Even though affine perturbations add more de-

grees of freedom, they are well suited for an image-level

classification task where preserving the spatial structure is

less important. We further validated this experimentally and

found the supervisory signal to be too weak to train the com-

plete STN.

Spatial context is another important cue for good detec-

tion. Without a spatial context, the saliency features gen-

erated might not be optimal. Thus, we explicitly enforce

x2 − x1 ≥ ǫ and y2 − y1 ≥ ǫ, where ǫ is the percentage

of image to crop. This also gives a good initialization to

the model due to the lack of direct supervision on the crop

parameters. We empirically choose ǫ = 0.6 for our experi-

ments as it is a good trade-off between the amount of zoom

we want for a patch and the amount of overlap that could

provide a good association of spatial context for our recur-

rent module.

The generated 4N crop parameters are used to crop I0
and resized to fixed dimensions [H,W, 3] through a differ-

entiable grid sampling layer. The N generated patches are

passed along with I0, the full image, as a batch of (N + 1)

images ([I0, I1, . . . , IN ]) to the next module.

3.2. Saliency Prediction Module (SPM)

SPM is the primary saliency feature extractor in our ar-

chitecture. We base our SPM network on the segmen-

tation branch of Saliency Unified [25], which is a modi-

fied VGG-16 [40] network that achieved impressive results

in saliency prediction task. The convolutional part of the

original VGG-16 network makes the input image 1/32 of

the original size, which makes the task of spatially local-

izing the objects imprecise. To overcome this, the final

two convolution layers of VGG-16 (Conv4 and Conv5)

are replaced with dilated convolutional layers [48]. Dilated

convolutions span a bigger field of view while effectively

preserving the spatial resolution and maintaining the same
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Figure 3: Saliency Prediction Module
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Figure 4: Recurrent Attention Module (RAM). The Con-

vGRUs in RAM have been unrolled for visualization.

number of parameters. Unlike [25], we introduce only one

additional convolution layer abstraction after the Conv5
layer. Inception modules are used to fuse features from dif-

ferent layers at multiple scales. The network finally outputs

a 512-dimensional feature blob at 1/8 resolution of the orig-

inal image.

A batch of (N + 1) 512-dimensional feature maps

([F0, F1, . . . , FN ]), corresponding to the (N + 1) image

patches is generated and then passed on to the next mod-

ule.

3.3. Recurrent Attention Module (RAM)

The task of RAM is to aggregate the learned bag of fea-

tures from the previous module in a semantically coherent

manner and improve the final segmentation map. RAM is

implemented as two Convolutional GRUs [3] in an encoder-

decoder style. A ConvGRU has fewer parameters than a

traditional GRU and performs well on spatially structured

data.

A ConvGRU is comprised of convolutional layers as op-

posed to fully connected layers in a traditional GRU. The

function of hidden units is identical to the normal GRU and

can be represented as:

zt = σg(Wz ∗ xt + Uz ∗ ht−1 + bz), (1)

rt = σg(Wr ∗ xt + Ur ∗ ht−1 + br), (2)

ht = (1−zt)⊙ht−1+zt⊙σh(Wh∗xt+Uh∗(rt⊙ht−1)+bh),
(3)

where ∗ represents the convolution operation, zt is the up-

date gate and rt is the reset gate. Unlike LSTM [18], GRU

has only two gates and no internal state. W,U, b are the

training parameters of the GRU, and xt and ht are input

and output activation blobs respectively.

Figure 4 depicts a simplistic view and workflow of RAM.

We use convolution filters of size 5 × 5 for the GRUs,

slightly larger than the size of filters in SPM (3 × 3). This

helps the ConvGRUs to learn a distinction between back-

ground and foreground regions at 1/8 scale as a 5 × 5 fil-

ter will mostly see the background and foreground together.

While the architecture is not exactly an encoder-decoder,

2 GRUs are used to make the learned representations co-

dependent similar to what an encoder-decoder setup does.

Since the 2nd GRU directly outputs the saliency maps, it

acts like a decoder. Furthermore, this specific architecture

allows us to avoid the need for an inverse spatial transformer

as the one used in [26]. We finish the network with a 1× 1
convolution filter to scale the output of the decoder GRU to

get the final pixel-wise predictions.

We order the incoming (N + 1) feature maps such that

the input image feature map is fed first into the module (Fig-

ures 1, 4). This is done to ensure that RAM gets to learn the

complete spatial context first. The task is then reduced to

learning spatial associations of incoming feature maps and

predict a saliency map for each recurrent step. Every fea-

ture map Fk, where k ∈ [0, N ] is iteratively fed into RAM

where the decoder GRU outputs a saliency map Predk. We

enforce the iterative improvement criterion by weighing the

loss for Predk+1 more than the loss for Predk. Refer to

next section (Sec 3.4) for more details.

3.4. Implementation

The initial layers of Saliency Prediction Module are ini-

tialized using pre-trained ImageNet weights of VGG-16.

Rest of the its layers are initialized with Xavier initializa-

tion scheme [15]. PGM and RAM are also both initialized

using the same scheme. The training is carried out in a step-

wise manner. We first train SPM for object segmentation
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using the training datasets. Since the proposed SPM (Fig-

ure 3) only outputs a feature blob, we add 3 convolutional

layers after it that decode and predict a saliency map. We

use this prediction to fully train SPM. We minimize the loss

function -

L = λ1LossCE + λ2LossIOU , (4)

where LossCE is the standard sigmoid cross-entropy loss

and LossIOU is an IOU-based loss described in [36]. λ1

and λ2 are kept as 1.0. We use a batch size of 10 and opti-

mize it using Adam [24] with a learning rate of 1e−5. We

decrease the learning rate step-wise based on the validation

performance. We train it for 10 epochs.

We then take out the added convolutional layers from

SPM and plug the 512-dimensional feature blob to RAM.

We also plug in PGM by placing it before SPM so that it

outputs (N + 1) patches for input image I0. These are then

passed on to SPM as a batch. We use a batch size of 1 in

this complete setup. We freeze SPM layers during the train-

ing. We optimize the whole network on an exponentially

weighted loss on RAM’s outputs-

L =
1

kN+1

N∑

i=0

ki+1LossCEi
, (5)

where i ∈ [0, N ] and value of k is chosen to be 2.

LossCEi
is the sigmoid cross-entropy loss between Predi

and ground truth label. The described loss gives more

weight to every i+ 1th prediction compared to ith as de-

scribed in Section 3.3. Adam optimizer is used with a learn-

ing rate of 1e−4 for PGM and 5e−6 for the RAM. This setup

is trained for 10 epochs. We further fine-tune the complete

network end-to-end for 5 epochs. We use N = 4 for our

experiments.

During testing, we adopt the same approach as our train-

ing mechanism. For a single image, we get (N + 1) predic-

tions from RAM. We resize the predictions to the original

image size using bilinear interpolation. We use Pred5 (pre-

diction after seeing all patches) for our final performance

evaluations.

4. Experiments

4.1. Datasets

We use the Pascal VOC-2012 [11] and MSRA10K [1]

datasets for training our model and ECSSD [45], HKU-

IS [28], DUT-OMRON [46] and PASCAL-S [30] for evalu-

ation. 300 random images from the training dataset are used

for validation.

PASCAL-VOC 2012. Pascal-VOC dataset has semantic

segmentations of 20 object classes. We convert these into

binary segmentation maps and use for our task. This dataset

has scenes containing complex background and multiple

salient objects in the scene.

MSRA10K. This dataset contains 10000 image-label pairs

of salient objects in varied scenes.

DUT-OMRON. This dataset consists of 5168 high quality

images featuring one or more salient objects and relatively

complex background.

ECSSD. ECSSD contains 1000 images of natural scenes,

often comprising semantically meaningful and complex

structures to segment.

HKU-IS. This dataset contains 4447 images with high-

quality object annotations. Many images include multiple

disconnected objects or objects touching the image bound-

ary.

PASCAL-S. PASCAL-S is the testing subset of 850 images

from the PASCAL VOC dataset.

4.2. Evaluation metrics

One of the evaluation metrics for the image dataset is

Mean Absolute Error or MAE. The MAE computes the av-

erage pixel percent error. It is computed as:

MAE =
1

M ×N

∑

i,j

|G(xij)− P (xij)| (6)

where xij is the input image of width and height M and N,

G(·) and P (·) are the ground truth mask and predicted mask

of the input image respectively.

The other metric is Fβ score, which is a weighted ra-

tio of the Recall and Precisions. The recall is computed

as TP/(TP + FN) and the precision is computed as

TP/(TP + FP ). Here TP , FP and FN hold their usual

meanings of True Positive, False Positive and False Neg-

ative predictions respectively. Then Fβ score can then be

computed as:

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision+Recall
, (7)

where β2 = 0.3 to weigh precision more than recall

rate [47]. This is done in accordance with the number of

negative examples (non-salient pixels) typically being much

bigger than the number of positive examples (salient object

pixels) while evaluating SOD models. Hence, Fβ score is a

good indicator of an algorithm’s detection performance [4].

We compare against the maximum Fβ scores of all other

approaches.

4.3. Comparison with existing approaches

In Table 1, we compare the quantitative performance

of various state-of-the-art methods with ours based on the

aforementioned evaluation criteria. We compare against

DSS [19], DCL [29], DHS [31], Amulet [49], SRM [43],
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Methods
DUT-OMRON HKU-IS ECSSD PASCAL-S

MAE max.Fβ MAE max.Fβ MAE max.Fβ MAE max.Fβ

BSCA [35] - - 0.175 0.719 0.182 0.758 0.223 0.667

DRFI [22] - - 0.145 0.777 0.164 0.786 0.207 0.698

RFCN [42] - - 0.079 0.892 0.107 0.890 0.118 0.837

DHS [31] - - 0.053 0.890 0.059 0.907 0.094 0.829

DCL [29] 0.084 0.733 0.054 0.892 - - 0.113 0.815

UCF [50] 0.080 0.726 0.074 0.886 0.078 0.911 0.126 0.828

Amulet [49] 0.074 0.741 0.052 0.895 0.059 0.915 0.098 0.837

SRM [43] 0.069 0.707 0.046 0.874 0.056 0.892 - -

NLDF [33] 0.085 0.724 0.060 0.874 0.075 0.886 0.108 0.804

DSS* [19] 0.068 0.736 0.039 0.913 0.052 0.916 0.080 0.830

Ours 0.066 0.751 0.054 0.915 0.063 0.921 0.083 0.846

Table 1: Quantitative comparison with other state-of-the-art methods on various datasets. Top two results are in bold numbers.

UCF [50], RFCN [42] and two non-deep methods -

DRFI [22] and BSCA [35].

Our method consistently gets top Fβ scores, implying a

greater precision in the predicted map. The high precision

showcases its effectiveness on suppressing false positives in

cluttered backgrounds and partly salient objects. Metrics of

other methods have either been reported by the respective

authors or have been computed by us using available pre-

dictions/weights. For a fair comparison, we use the scores

obtained without post-processing for all methods.

In Figure 5, we compare the qualitative results of the

aforementioned methods with ours. We show results for a

set of images with varying difficulties:

Cluttered background. Row 1 contains a textured back-

ground, making algorithms prone to background noise.

Shadows in background. Rows 2 and 4 include images

with object shadows. While every method performs well on

Row 4, our method is able to suppress much of the ‘shadow

saliency’ in background of Row 2 that is easily thresholded

during inference.

Low contrast. Row 7 contains an image with low contrast

between object and background. We are able to segment

better with fewer false positives than others.

Multiple Objects. Rows 5, 6, 7 and 10 contain multiple

foreground objects. 6 and 10 contains multiple salient ob-

jects whereas 5 and 7 have only a single salient object. Our

algorithm performs very well in these scenarios.

Complex foreground. Row 12 contains a complex salient

object where most other algorithms create holes in the pre-

diction. Our method is able to better understand the regional

and global context.

Object within an object. Row 9 contains an interesting

image which contains an image of a bird (with sharp con-

trast) within a poster (salient object). Our method is the

*DSS also employs a CRF post-processing step.

Module MAE (↓) max.Fβ (↑)

SPM 0.080 0.870

SPM + RAM (Epoch 2) 0.0692 0.9193

PGM + SPM + RAM (Epoch 2) 0.0662 0.9196

SPM + RAM (Epoch 5) 0.0661 0.9205

PGM + SPM + RAM (Epoch 5) 0.0623 0.9204

Table 2: Incremental performance gains for different mod-

ules on ECSSD

only method that does not fail by trying to segregating these

two objects.

4.4. Method Analysis

We analyze our network’s performance by evaluating

component-wise and step-wise results. The results shed

light on our design choices and incremental gains. The eval-

uation metrics have been described in Section 4.2.

To better quantify the role of every module in our ar-

chitecture, we do a component-wise performance analysis

on ECSSD dataset (Table 2). We first compute the re-

sults using just SPM with added convolutional layers as

described in Section 3.4. We can easily evaluate its per-

formance independently since it is trained first. We then

plug in RAM to SPM’s 512-dimensional features and do

an inference on trained SPM and RAM by only evaluat-

ing on Pred0. We see an immediate performance boost

with this setting. While this could just be attributed to in-

crease in model complexity, we argue that the initial setup

with SPM + 3 layers also has similar complexity. This ob-

servation shows that RAM not only predicts a better out-

put for every Predk+1(k ∈ [0, N − 1]), but also improves

Predi(i ∈ [0, k]) in the process. We do a final evaluation

by allowing a forward pass through all three modules.

In a recurrent network, we should ideally see perfor-
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Image GT Ours DSS Amulet DHS UCF NLDF

Figure 5: Qualitative comparison with various state-of-the-art approaches on some challenging images from ECSSD [45].

Most of the images where we perform better are the ones where global spatial context is important to distinguish between

foreground and background.

mance improvements for every iterative step. To verify this,

we evaluate the predicted saliency maps computed at every

kth step and compare the results in Table 3. We evaluate re-

sults after 2nd and 5th(final) epoch. For both the readings,

we observe that the Fβ scores do not vary much across the

(N + 1) predictions. Higher Fβ does not imply a lower
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Input Pred1 Pred2 Pred3 Pred4 Pred5 GT
Figure 6: Recurrent step-wise qualitative performance analysis. We observe that Pred1 captures a lot of ‘pseudo’ salient

objects. As we go from left to right, we see a clear reduction in number of false positives that arise from background.

Predk (Epoch 2) MAE (↓) Fβ (↑)

k = 1 0.0692 0.9193

k = 2 0.0687 0.9196

k = 3 0.0666 0.9197

k = 4 0.0669 0.9197

k = 5 0.0662 0.9196

Predk (Epoch 5) MAE (↓) Fβ (↑)

k = 1 0.0661 0.9205

k = 2 0.0637 0.9210

k = 3 0.0629 0.9208

k = 4 0.0625 0.9206

k = 5 0.0623 0.9204

Table 3: Quantitative performance comparison of N predic-

tions from the Recurrent Attention Module on ECSSD

MAE [4]. Often, a decrease in MAE also leads to a de-

crease in Fβ . Thus, an important observation is the gradual

decrease in MAE as we increase k. A decrease in MAE

while maintaining the Fβ scores affirms that RAM reduces

the false positives incrementally without losing precision.

Qualitatively, we observed that visible differences in

saliency maps are more noticeable during the initial epochs.

Hence, we show the (N + 1) predicted maps after the 1st

epoch in Figure 6. We can clearly notice the suppression of

false positives in background for every subsequent predic-

tion.

5. Conclusion

We present an intuitive, scalable and effective approach

for detecting salient objects in a scene. Our approach is

modular, resulting in interpretable results. We propose a

Patch Generation Module, a Saliency Prediction Module

and a Recurrent Attention Module that work in tandem to

improve overall object segmentation by generating image

patches, their corresponding feature maps and effectively

aggregating them. Through our quantitative and qualitative

performance on benchmark datasets, we show the impor-

tance of region-wise attention in saliency prediction. An

easy and important extension to our work could be a dy-

namic improvement of predictions based on the number of

allowed patches. This can reduce the inference time signif-

icantly for an accuracy trade-off. In future, we would also

like to test our method’s effectiveness on the task of video

object segmentation in an unsupervised setting.
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