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Abstract

Convolutional Neural Networks (CNNs) trained with the

Softmax loss are widely used classification models for sev-

eral vision tasks. Typically, a learnable transformation (i.e.

the classifier) is placed at the end of such models return-

ing class scores that are further normalized into probabil-

ities by Softmax. This learnable transformation has a fun-

damental role in determining the network internal feature

representation.

In this work we show how to extract from CNNs fea-

tures with the properties of maximum inter-class separa-

bility and maximum intra-class compactness by setting the

parameters of the classifier transformation as not train-

able (i.e. fixed). We obtain features similar to what can

be obtained with the well-known “Center Loss” [1] and

other similar approaches but with several practical advan-

tages including maximal exploitation of the available fea-

ture space representation, reduction in the number of net-

work parameters, no need to use other auxiliary losses be-

sides the Softmax.

Our approach unifies and generalizes into a common ap-

proach two apparently different classes of methods regard-

ing: discriminative features, pioneered by the Center Loss

[1] and fixed classifiers, firstly evaluated in [2].

Preliminary qualitative experimental results provide

some insight on the potentialities of our combined strategy.

1. Introduction

Convolutional Neural Networks (CNNs) together with

the Softmax loss have achieved remarkable successes in

computer vision, improving the state of the art in image

classification tasks [3, 4, 5, 6]. In classification all the pos-

sible categories of the test samples are also present in the

training set and the predicted labels determine the perfor-

mance. As a result, the Softmax with Cross Entropy loss

is widely adopted by many classification approaches due to

its simplicity, good performance and probabilistic interpre-
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Figure 1: Margin Regular Polytope Networks (Margin-

RePoNets). Features with maximal inter-class separability

and intra-class compactness are shown (light blue). These

are determined combining fixed classifiers derived from

regular polytopes [9] with a recently developed margin loss

[10]. Maximal features separation is obtained by setting the

classifier weights wi according to values following the sym-

metrical of configuration regular polytopes (red). Maximal

compactness is obtained by setting the margin between the

features at the maximum allowed (i.e. ϕ).

tation. In other applications like face recognition [7] or hu-

man body reidentification [8] test samples are not known in

advance and recognition at test time is performed according

to learned features based on their distance.

The underlying assumption in this learning scenario is

that images of the same identity (person) are expected to

be closer in the representation space, while different identi-

ties are expected to be far apart. Or equivalently, the learned

features having low intra-class distance and large inter-class

distance are successful at modeling novel unseen identities

and for this reason such features are typically defined “dis-

criminative”. Specifically, the Center Loss, firstly proposed

in [1], has been proved to be an effective method to com-

pute discriminative features. The method learns a center

determined as the average of features belonging to the same

class. During training, the centers are updated by minimiz-
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ing the distances between the deep features and their corre-

sponding class centers. The CNN is trained under the joint

supervision of the Softmax loss and the Center Loss by bal-

ancing the two supervision signals. Intuitively, the Softmax

loss forces the deep features of different classes to be sepa-

rable while the Center Loss attracts the features of the same

class to their centers achieving compactness.

Despite its usefulness, the Center Loss has some limita-

tions: the feature centers are extra parameters stored outside

the network that are not jointly optimized with the network

parameters. Indeed, they are updated with an autoregres-

sive mean estimator that tracks the underlying representa-

tion changes at each step. Moreover, when a large num-

ber of classes must be learned, mini-batches do not provide

enough samples for a correct estimation of the mean. Center

Loss also requires a balancing between the two supervision

losses which typically requires a search over the balancing

hyper-parameter.

Some works have successfully addressed all the issues

described above importing intra-class feature compactness

directly into the Softmax loss. This class of methods, in-

cluding [11, 12, 10, 13, 14], avoids the need of an auxiliary

loss (as in the Center Loss) with the possibility of includ-

ing a margin between the class decision boundaries, all in a

single Softmax loss.

Other successful works follow a nearly opposite strategy

by removing the final classification layer and learn directly a

distance evaluated on image pairs or image triplets as shown

in [15] and in [16] respectively. Despite the performance re-

sults, carefully designed pair and triplet selection is required

to avoid slow convergence and instability.

Except for few recent cases [17, 18, 9] inter-class sep-

arability and compactness are always enforced in a local

manner without considering global inter-class separability

and intra-class compactness. For this purpose, the work

[18] uses an auxiliary loss for enforcing global separabil-

ity. The work [17] use an auxiliary loss similar to [18] for

enforcing global separability and a further margin loss to

enforce compactness. The work [9] uses a fixed classifier

in which the parameters of the final transformation imple-

menting the classifier are not subjected to learning and are

set with values taken from coordinate vertices of a regular

polytope. This avoids optimizing for maximal separation as

in [17] and [18] since regular polytopes naturally provide

distributed vertices (i.e. the classifier weights) at equal an-

gles maximizing the available space.

In this paper we address all those limitations including

global inter-class separability and compactness in a maxi-

mal sense without the need of any auxiliary loss. This is

achieved by exploiting the Regular Polytope fixed classi-

fiers (RePoNets) proposed in [9] and improving their fea-

ture compactness according to the additive angular margin

described in [10]. As illustrated in Fig. 1, the advantage

of the proposed combination is the capability of generating

global maximally separated and compact features (shown in

light blue) angularly centered around the vertices of poly-

topes (i.e. the classifier fixed weights shown in red). The

same figure further illustrates the three basic types of fea-

tures that can be learned. Although, there are infinite regu-

lar polygons in R
2 and 5 regular polyedra in R

3, there are

only three regular polytopes in R
d with d ≥ 5, namely the

d-Simplex, the d-Cube and the d-Orthoplex.

In particular, the angle ϕ subtended between a class

weight and its connected class weights is constant and max-

imizes inter-class separability in the available space. The

angle ϕ is further exploited to obtain the maximal compact-

ness by setting the angular margin between the features to

ϕ (i.e. the maximum allowed margin). The advantage of

our formulation is that the margin is no longer an hyperpa-

rameter that have to be searched since it is obtained from a

closed form solution.

2. Related Work

Fixed Classifiers. Empirical evidence, reported in [19],

firstly shows that a CNN with a fixed classification layer

does not worsen the performance on the CIFAR10 dataset.

A recent paper [2] explores in more detail the idea of ex-

cluding the classification parameters from learning. The

work shows that a fixed classifier causes little or no re-

duction in classification performance for common datasets

(including ImageNet) while allowing a noticeable reduc-

tion in trainable parameters, especially when the number

of classes is large. Setting the last layer as not trainable also

reduces the computational complexity for training as well

as the communication cost in distributed learning. The de-

scribed approach sets the classifier with the coordinate ver-

tices of orthogonal vectors taken from the columns of the

Hadamard1 matrix. Although the work uses a fixed clas-

sifier, the properties of the generated features are not ex-

plored. A major limitation of this method is that, when the

number of classes is greater than the dimension of the fea-

ture space, it is not possible to have mutually orthogonal

columns and therefore some of the classes are constrained

to lie in a common subspace causing a reduction in classifi-

cation performance.

Recently [9] improves in this regard showing that a novel

set of unique directions taken from regular polytopes over-

comes the limitations of the Hadamard matrix. The work

further shows that the generated features are stationary at

training time and coincide with the equiangular spaced ver-

tices of the polytope. Being evaluated for classification the

method does not enforce feature compactness. We extend

this work by adding recent approaches to explicitly enforce

1The Hadamard matrix is a square matrix whose entries are either +1

or 1 and whose rows are mutually orthogonal.
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feature compactness by constraining features to lie on a hy-

persphere [12] and to have a margin between other features

[10].

Fixed classifiers have been recently used also for not dis-

criminative purposes. The work [20] trains a neural net-

work in which the last layer has fixed parameters with pre-

defined points of a hyper-sphere (i.e. a spherical lattice).

The work aims at learning a function to build an index that

maps real-valued vectors to a uniform distribution over a d-

dimensional sphere to preserve the neighborhood structure

in the input space while best covering the output space. The

learned function is used to make high-dimensional indexing

more accurate.

Softmax Angular Optimization. Some papers train

DCNNs by direct angle optimization [14, 21, 12]. From a

semantic point of view, the angle encodes the required dis-

criminative information for class recognition. The wider

the angles the better the classes are separated from each

other and, accordingly, their representation is more discrim-

inative. The common idea of these works is that of con-

straining the features and/or the classifier weights to be unit

normalized. The works [22], [23] and [12] normalize both

features and weights, while the work [11] normalizes the

features only and [14] normalizes the weights only. Specifi-

cally, [11] also proposes adding a scale parameter after fea-

ture normalization based on the property that increasing the

norm of samples can decrease the Softmax loss [24].

From a statistical point of view, normalizing weights and

features is equivalent to considering features distributed on

the unit hypersphere according to the von Mises-Fisher dis-

tribution [23] with a common concentration parameter (i.e.

features of each class have the same compactness). Under

this model each class weight represents the mean of its cor-

responding features and the scalar factor (i.e. the concen-

tration parameter) is inversely proportional to their standard

deviations. Several methods implicitly follow this statisti-

cal interpretation in which the weights act as a summarizer

or as parameterized prototype of the features of each class

[12, 14, 25, 26, 27]. Eventually, as conjectured in [12] if all

classes are well-separated, they will roughly correspond to

the means of features in each class.

In [9] the fixed classifiers based on regular polytopes pro-

duce features exactly centered around their fixed weights as

the training process advances. The work globally imposes

the largest angular distances between the class features be-

fore starting the learning process without an explicit opti-

mization of the classifier or the requirement of an auxiliary

loss as in [18] and [17]. The works [18, 17] add a regular-

ization loss to specifically force the classifier weights dur-

ing training to be far from each other in a global manner.

These works including [9] draw inspiration from a well-

known problem in physics – the Thomson problem [28] –

where given K charges confined to the surface of a sphere,

one seeks to find an arrangement of the charges which min-

imizes the total electrostatic energy. Electrostatic force re-

pels charges each other inversely proportional to their mu-

tual distance. In [18] and [17] global equiangular features

are obtained by adding to the standard categorical Cross-

Entropy loss a further loss inspired by the Thomson prob-

lem while [9] builds directly an arrangement for global sep-

arability and compactness by considering that minimal en-

ergies are often concomitant with special geometric config-

urations of charges that recall the geometry of regular poly-

topes in high dimensional spaces [29].

3. Regular Polytope Networks with Additive

Angular Margin Loss

In Neural Networks the representation for an input sam-

ple is the feature vector f generated by the penultimate

layer, while the last layer (i.e. the classifier) outputs score

values according to the inner product as:

zi =w⊺i ⋅ f (1)

for each class i, where wi is the weight vector of the clas-

sifier for the class i. In the final loss, the scores are further

normalized into probabilities via the Softmax function.

Since the values of zi can be also expressed as

zi =w⊺i ⋅ f = ∣∣wi∣∣ ∣∣f ∣∣ cos(θ), where θ is the angle between

wi and f , the score for the correct label with respect to the

other labels is obtained by optimizing ∣∣wi∣∣, ∣∣f ∣∣ and θ. Ac-

cording to this, feature vector directions and weight vector

directions align simultaneously with each other at training

time so that their average angle is made as small as possi-

ble. In [9] it is shown that if classifier weights are excluded

from learning, they can be regarded as fixed angular ref-

erences to which features align. In particular, if the fixed

weights are derived from the three regular polytopes avail-

able in R
d with d ≥ 5, then their symmetry creates angular

references to which class features centrally align. More for-

mally, let X = {(xi, yi)}Ni=1 be the training set containing

N samples, where xi is the image input to the CNN and

yi ∈ {1,2,⋯,K} is the label of the class that supervises the

output of the DCNN. Then, the Cross Entropy loss can be

written as:

L = − 1

N

N∑
i=1

log
⎛
⎝

e
w
⊺

yi
fi+byi

∑K
j=1 e

w
⊺

j
fi+bj

⎞
⎠, (2)

where W = {wj}Kj=1 are the fixed classifier weight vectors

for the K classes. Only three polytopes exist in every di-

mensionality and are: the d-Simplex, the d-Orthoplex and

the d-Cube from which three classifiers can be defined as

follow:

Ws = {e1, e2, . . . , ed−1, α d−1∑
i=1

ei}, (3)
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Figure 2: The distribution of features learned from the MNIST dataset using the RePoNet classifiers. Features are shown

(from left to right) with a scatter plot matrix for the d-Simplex, d-Orthoplex and d-Cube classifier respectively. It can

be noticed that features are distributed following the symmetric vertex configuration of polytopes. Although features are

maximally separated, their compactness is limited.

Wo = {±e1,±e2, . . . ,±ed}, (4)

Wc =
⎧⎪⎪⎨⎪⎪⎩w ∈ R

d ∶ [− 1√
d
,
1√
d
]
d⎫⎪⎪⎬⎪⎪⎭ , (5)

where α = 1−
√
d+1
d

in Eq.3 and ei with i ∈ {1,2, . . . , d − 1}
in Eqs.3 and 4 denotes the standard basis in R

d−1. The final

weights in Eq.3 are further shifted about the centroid, the

other two are already centered around the origin. Such sets

of weights represent the vertices of the generalization of the

tetrahedron, octahedron and cube respectively, to arbitrary

dimension d. The weights are further unit normalized (ŵj =
wj

∣∣wj ∣∣ ) and the biases are set to zero (bj = 0). According to

this, Eq. 2 simplifies to:

L = − 1

N

N∑
i=1

log
⎛
⎝

e
ŵ
⊺

yi
fi

∑K
j=1 e

ŵ
⊺

j
f̂i

⎞
⎠. (6)

Although, Eq. 6 directly optimizes for small angles, only

partial intra-class compactness can be enforced. Fig.2

shows (from left to right) the distribution of features learned

from the MNIST dataset with the three different classifiers.

The features are displayed as a collection of points, each

having the activation of one feature coordinate determin-

ing the position on the horizontal axis and the value of the

other feature coordinate activation determining the position

on the vertical axis. All the pairwise scatter plots of the

feature activation coordinates are shown and feature classes

are color coded. The size of the scatter plot matrices fol-

lows the size of the feature dimensionality d of each fixed

classifier which can be determined according to the number

of classes K as:

d =K − 1, d = ⌈log
2
(K)⌉, d = ⌈K

2
⌉, (7)

respectively. The scatter plot matrices therefore result in the

following dimensions: 9×9, 5×5 and 4×4 respectively. As

evidenced from the figure, the features follow the symmet-

ric and maximally separated vertex configurations of their

corresponding polytopes. This is due to the fact that each

single pairwise scatter plot is basically a parallel projection

onto the planes defined by pairs of multidimensional axes.

According to this, features assume a ), +, and × shaped

configuration for the d-Simplex, d-Orthoplex and d-Cube

respectively. Although maximal separation is achieved, the

intra-class average distance is large and therefore not well

suited for recognition purposes.

The plotted features are obtained training the so called

LeNet++ architecture [1]. The network is a modification

of the LeNet architecture [30] to a deeper and wider net-

work including parametric rectifier linear units (pReLU)

[31]. The network is learned using the Adam optimizer [32]

with a learning rate of 0.0005, the convolutional parameters

are initialized following [33] and the mini-batch size is 512.

To improve compactness keeping the global maximal

feature separation we follow [13, 12] normalizing the fea-

tures and multiplying them by a scalar κ: f̂i = fi

∣∣fi∣∣κ. The

loss in Eq.2 can be therefore rewritten as:

L = − 1

N

N∑
i=1

log
⎛
⎝

e
κŵ⊺yi

f̂i

∑K
j=1 e

κŵ⊺
j
f̂i

⎞
⎠

= − 1

N

N∑
i=1

log
⎛
⎝

eκ cos(θyi)

∑K
j=1 e

κ cos(θj)
⎞
⎠ (8)
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The equation above minimizes the angle θyi
between the

fixed weight corresponding to the label yi and its associ-

ated feature. The equation can be interpreted as if features

are realizations from a set of K von Mises-Fisher distribu-

tions having a common concentration parameter κ. Under

this parameterization ŵ is the mean direction on the hyper-

sphere and κ is the concentration parameter. The greater

the value of κ the higher the concentration of the distribu-

tion around the mean direction ŵ and the more compact the

features. This value has already been discussed sufficiently

in several previous works [12, 11]. In this paper, we directly

fixed it to 30 and will not discuss its effect anymore.

To obtain maximal compactness the additive angular

margin loss described in [10] is exploited. According to

this, Eq.8 becomes:

L = − 1

N

N∑
i=1

log
⎛
⎝

eκ cos(θyi+m)

eκ cos(θyi+m) +
n∑

j=1

j≠yi

eκ cos(θj)

⎞
⎠, (9)

where the scalar value m is an angle in the normalized

hypersphere introducing a margin between class decision

boundaries. The loss of Eq. 9 together with the fixed clas-

sifier weights of Eqs. 3, 4, 5 allows learning discriminative

features without using any auxiliary loss other than the Soft-

max.

The advantage of our formulation is that m is no longer

an hyperparameter that have to be searched. Indeed, the loss

above when used with RePoNet classifiers is completely in-

terpretable and the margin m can be set according to the an-

gle ϕ subtended between a class weight and its connected

class weights as illustrated in Fig.1. For each of the three

RePoNet fixed classifiers the angle ϕ can be analytically

determined as [9]:

ϕs = arccos( − 1

d
), (10)

ϕo = π

2
, (11)

ϕc = arccos(d − 2
d
), (12)

respectively, where d is the feature space dimension size.

Fig. 3 shows the effect of setting:

m = ϕ.

In the figure we draw a schematic 2D diagram to show the

effect of the margin m on pushing the class decision bound-

ary to achieve feature compactness. In the standard case of

a learnable classifier, as shown in Fig. 3 (left), the value ϕ

is not known in advance, it varies from class to class and

features are not guaranteed to distribute angularly centered

around their corresponding weights. Therefore, m cannot

𝑚 = 𝜑𝑚
𝐰1

𝐰2
𝐰1

𝐰2
𝜑 = ?

Softmax

Boundary

(learnable)
Softmax

Boundary

(fixed)

𝜑/2 𝜑
Figure 3: Maximally compact feature learning with

RePoNet fixed classifiers and the angular margin loss. Left:

In a standard learnable classifier the decision boundaries

(dashed lines) defined by the angular margin m do not push

features to their respective weights uniformly (red arrows).

Right: In RePoNet classifiers the margin can be analyti-

cally determined (m = ϕ) so that the decision boundaries

maximally push the features closer to their respective fixed

weight.

be set in an interpretable way. Contrarily, in the case pro-

posed in this paper and shown in Fig. 3 (right), the value ϕ is

constant and known in advance, therefore by setting m = ϕ,

the class decision boundaries are maximally pushed to com-

pact features around their fixed weights. This because the

Softmax boundary (from which the margin is added) is ex-

actly in between the two weights w1 and w2. According to

this, the features generated by the proposed method are not

only maximally separated but also maximally compact (i.e.

maximally discriminative).

4. Exploratory Results

Experiments are conducted with the well-known MNIST

and EMNIST [34] datasets. MNIST contains 50,000 train-

ing images and 10,000 test images. The images are in

grayscale and the size of each image is 28×28 pixels. There

are 10 possible classes of digits. The EMNIST dataset (bal-

anced split) holds 112,800 training images, 18,800 test im-

ages and has 47 classes including lower/upper case letters

and digits.

Fig. 4 shows a visual comparison between the features

generated by the RePoNet fixed classifiers (left column) and

by a standard CNN baseline with learnable classifiers (right

column). Both approaches are trained according to the loss

of Eq. 9 and have exactly the same architecture, training

settings and embedding feature dimension used in Fig. 2.

Results are presented with a scatter plot matrix. Although

the two methods achieve substantially the same classifica-

tion accuracy (i.e. 99.45% and 99.47% respectively), it can

be noticed that the learned features are different. Specifi-

cally, Margin-RePoNet follows the exact configuration ge-

ometry of their related polytopes. Features follow very pre-

cisely their relative ), +, and × shapes therefore achieving

maximal separability. The standard baselines with learn-
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able classifiers (Fig. 4 left column) achieve good but non

maximal separation between features. However, as the em-

bedding dimension decreases, as in Fig. 4(c), the separation

worsens.

This effect is particularly evident in more difficult

datasets. Fig.5 shows the same visual comparison using the

EMNIST dataset where some of the 47 classes are difficult

to be correctly classified due to their inherent ambiguity.

Fig. 5 shows the scatter plot matrix of the d-Cube classifier

(left) compared with its learnable classifier baseline (right)

in dimension d = 6. Although also in this case they both

achieved the same classification accuracy (i.e. 88.31% and

88.39%), the features learned by the baseline are neither

well separated nor compact.

Finally, in Fig. 6 we show the L2 normalized features

(typically used in recognition) of both the training (top) and

test set (bottom) for the same experiment shown in Fig. 5.

Class features in this case correctly follow the vertices of the

six-dimensional hypercube since all the parallel projections

defined by each pairwise scatter plot result in the same unit

square centered at the origin.

5. Conclusion

We have shown how to extract features from Convo-

lutional Neural Networks with the desirable properties of

maximal separation and maximal compactness in a global

sense. We used a set of fixed classifiers based on regular

polytopes and the additive angular margin loss. The pro-

posed method is very simple to implement and preliminary

exploratory results are promising.

Further implications may be expected in large face

recognition datasets with thousands of classes (as in

[7]) to obtain maximally discriminative features with a

significant reduction in: the number of model param-

eters, the feature size and the hyperparameters to be

searched.
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Schmid, and Hervé Jégou. Spreading vectors for sim-

ilarity search. International Conference on Learning

Representations (ICLR), 2019. 3

[21] Weiyang Liu, Zhen Liu, Zhiding Yu, Bo Dai, Rongmei

Lin, Yisen Wang, James M. Rehg, and Le Song. De-

coupled networks. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2018.

3

[22] Yu Liu, Hongyang Li, and Xiaogang Wang. Learning

deep features via congenerous cosine loss for person

recognition. arXiv preprint: 1702.06890, 2017. 3

[23] Md Hasnat, Julien Bohné, Jonathan Milgram,
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