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Abstract

We present the workflow of a digital surface model

(DSM) refinement methodology using a HYBRID-CGAN

where the generative part consists of two encoders and a

common decoder which blends the spectral and height in-

formation within one network. The inputs to the Hybrid-

cGAN are single-channel photogrammetric DSMs with con-

tinuous values and single-channel pan-chromatic (PAN)

half-meter resolution satellite images. Experimental results

demonstrate that the earlier information fusion from data

with different physical meanings helps to propagate fine de-

tails and complete an inaccurate or missing 3D information

about building forms. Moreover, it improves the building

boundaries making them more rectilinear.

1. Introduction

Digital surface models (DSMs) with detailed and real-

istic building shapes are beneficial data sources for many

remote sensing applications, such as urban planning, car-

tographic analysis, environmental investigations, etc. Sev-

eral ways for deriving 3D elevation morphology, but the

DSMs generated from space-borne data using stereo image

matching techniques nowadays have lower costs compared

to other technologies, show relatively high spatial resolu-

tion and wide coverage which is important for large-scale

remote sensing applications, such as disaster monitoring.

However, apart from many advantages, DSMs generated

by image-based matching techniques show a reasonable

amount of noise and outliers because of matching errors or

occlusions due to densely located buildings or trees, which

cover parts of the building constructions. To solve these

problems, algorithms from computer vision have been ana-

lyzed and adapted to satellite imagery processing. In the lit-

erature, very few of the proposed approaches work towards

photogrammetric DSM improvement of urban areas. In

(a) (b) (c)

Figure 1: Sample of area from our dataset illustrated both

inputs to the network (a) pan-chromatic (PAN) image and

(b) photogrammetric DSM, and (c) the ground truth level

of detail (LoD)-2-DSM. The DSM images are color-shaded

for better visualization.

contrast, earlier methodologies investigate the DSMs refine-

ment by applying filtering techniques, such as Gaussian [1],

Kalman [2], geostatistical [3], or interpolation routines, in-

cluding inverse distance weighting (IDW) and kriging [4].

Despite achieving smoother surfaces of roof planes, they

negatively influence the steepness of the building walls.

Later, some methodologies proposed to additionally utilize

spectral images for DSM refinement tasks, as, for instance,

they contain accurate information about object boundaries

or texture. For instance, Krauß et al. [5] transfer segmenta-

tion information from stereo satellite imagery to the DSM

and, from statistical analysis and spectral information, per-

form object detection and classification. As a further step,

this information is used to refine the DSM. Sirmacek et

al. [6] propose building shape refinement on DSMs by a

multiple-step procedure. First, they extract possible build-

ing segments by thresholding the normalized digital surface

model (nDSM). Then, by considering Canny edge informa-

tion from the spectral image, they fit rectangular boxes to

detect building shapes. Finally, applying this information

about detected rectangular boundaries, the building shapes

are further enhanced. The drawback of this methodology is

that they assign one single height value to each generated



building object. Moreover, it is limited to the detection and

enhancement of rectangular buildings only.

Within recent years, the already well-studied branch of

the deep learning family, convolutional neural networks

(CNNs), has also been applied to the remote sensing field.

They achieve state-of-the-art results for image classifi-

cation, object detection, or semantic segmentation tasks.

However, most of these methodologies extract information

from spectral imagery, while depth image processing is still

not well explored, as it is not straightforward to work with

continuous values. For example, Eigen et al. [7] employ

cascade deep network which first performs a coarse global

prediction from a single spectral image and refines the pre-

dictions locally afterwards. Liu et al. [8] join CNNs and

conditional random fields (CRFs) in a unified framework

while making use of superpixels for preserving sharp edges.

In case of height prediction problems, only a couple of

works made attempts to improve DSMs. Our earlier ap-

proaches [9, 10] propose to refine building shapes to a high

level of details from photogrammetric half-meter resolu-

tion satellite DSMs using generative adversarial network

(GAN)-based techniques. Mainly, they investigate condi-

tional generative adversarial networks (cGANs) with two

objective functions—i.e. the negative log-likelihood and

least square residuals—to generate accurate light detection

and ranging (LIDAR)-like and LoD-2-like DSMs with en-

hanced 3D building shapes directly from noisy input data.

Moreover, the experiment performed on a completely new

dataset, belonging to different geographical areas, showed

the network’s potential to generalize well to different cities

with complex constructions without many difficulties. As

it is common in the field of remote sensing to fuse data

with different modalities to complement missing knowl-

edge, in our followed work [11] we introduce a cGAN-

based network which merges depth and spectral information

within an end-to-end framework. Fusing data from separate

networks—which are fed with PAN images and DSMs—is

performed at a later stage right before producing the final

output.

Following up to the aforementioned approach, in this

work, we investigate the fusion of spectral (Fig. 1a) and

height (Fig. 1b) information at an earlier stage within an

end-to-end Hybrid-cGAN network to further improve not

only the small and simple residential buildings, but also

complex industrial ones. Besides, we add an auxiliary nor-

mal vector loss term to the objective function enforcing the

model to produce more planar and flat roof surfaces, simi-

lar to the desired LoD2-DSM (Fig. 1c) artificially produced

from city geography markup language (CityGML) data.

2. Methodology

2.1. Objective function

The advent of GAN-based domain adaptation neural net-

works, introduced by Goodfellow et al. [12], lead to great

performance gains in generating realistic, but entirely arti-

ficial images. These GANs realize an adversarial manner

of learning by training a pair of networks in a competing

way: A generator G(z|x) = y produces a fake image y

from a latent vector z ∼ pz(·) drawn from any distribution

pz(·)—e.g. a uniform distribution pz(·) = Unif(·; a, b)—
which looks like a real one y∗ ∼ preal(·). Adversarially,

a discriminator D(y|x) ∈ [0, 1] tries to decide whether a

presented image y is a real or a generated fake one. Fre-

quently, some external information in the form of a source

image x is additionally used as an input to restrict both the

generator in its output and the discriminator in its expected

input. The objective function for such conditional GANs

can be expressed through a two-player minimax game

min
G

max
D

LcGAN(G,D) = Ex,y∼preal(y)[logD(y|x)]+

Ex,z∼pz(z)[log(1−D(G(z|x)|x))], (1)

where E[·] denotes the expectation value. To overcome the

problem of instability during training cGAN when its objec-

tive function is based on the negative log-likelihood, we use

a least square loss L2 instead which yields the conditional

least square generative adversarial network (cLSGAN) ob-

jective function

LcLSGAN(G,D) = Ex,y∼preal(y)[(D(y|x)− 1)2]

+ Ex,z∼pz(z)[D(G(z|x)|x)2]. (2)

In order to obtain DSMs in which the buildings feature

sharply defined ridgelines and steep walls, we utilize the

L1 distance

LL1
(G) = Ex,y∼preal(y),z∼pz(z)[‖y −G(z|x)‖1], (3)

which prevents blurring effects.

As our major goal is to improve roof surfaces by making

them flatter and looking closer to realistic ones, we integrate

a normal vector loss term
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into the learning process, as proposed by Hu et al. [13].

This normal vector loss measures the angle between the set

of surface normals N p =
{

n
p
1, . . . ,n

p
m

}

of an estimated

DSM and the set of surface normals N t = {nt
1, . . . ,n

t
m}

of the target LoD2-DSM. Adding those three terms together

leads to our final objective

G⋆ = argmin
G

max
D

LcGAN(G,D) + λLL1
(G)

+γLnormal(N
t,N p) , (5)
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Figure 2: Schematic overview of the proposed architec-

ture for the building shape refinement on photogrammetric

DSMs by Hybrid-cGAN using both depth and spectral in-

formation.

where G intents to minimize the objective function

LcLSGAN(G,D) against D that aims to maximize it. The

parameters 0 ≤ λ ∈ R and 0 ≤ γ ∈ R are the balancing

hyper-parameters.

2.2. Network architecture

We have already made an attempt to investigate the

LoD2-like DSM generation with enhanced building shapes

from a single noisy photogrammetric DSM using cGAN ar-

chitecture with an objective function based on least square

residuals [10]. In this work, we refer to it as a single-stream

cGAN. As each photogrammetric DSM is a product ob-

tained from panchromatic image pairs, it seems reasonable

to integrate depth and spectral data into one single network,

as the latter provides sharper information about building sil-

houettes, which allows not only a better reconstruction of

missing building parts but also the refinement of building

outlines. We fuse two separate but identical UNet-type net-

works at the later end within the G part of a cGAN, where

the first stream is fed with the PAN image and the second

stream with the stereo DSM, creating a so-called WNet ar-

chitecture [11].

In this paper, we examine the potential of an earlier fu-

sion of data from different modalities, as it could poten-

tially even better blend together the depth and spectral in-

formation. Mainly, the generator G of the proposed Hybrid-

cGAN network consists of two encoders E1 and E2, con-

catenated at the top layer, and a common decoder, which in-

tegrates information from two different modalities and gen-

erates an LoD2-like DSM with refined building shapes. The

inputs to E1 are the single-channel orthorectified PAN im-

ages, while E2 receives the single-channel photogrammet-

ric DSMs with continuous values. Since intensity and depth

information have different physical meanings, it is unlikely

to make sense to jointly propagate them right from the be-

ginning. It seems reasonable to separate them first and al-

low the network to learn the most valuable features from

each modality itself. The generator G is constructed based

on an U-form network proposed by Isola et al. [14]. As a

result, in our case it has 14 skip connections from both the

spectral stream and the depth stream allowing the decoder

to learn back detailed features that were lost by pooling in

the encoders. In particular, the encoder and decoder consist

of 8 convolutional layers each, followed by a leaky rectified

linear unit (LReLU) [15] activation function

σLReLU(z) =

{

z, if z > 0

az, otherwise
, a ∈ R

+,

and batch normalization (BN) in case of the encoder, and a

rectified linear unit (ReLU) activation function

σReLU(z) =

{

z, if z > 0

0, otherwise

and BN in case of the decoder. On top of the generator

network G, the tanh activation function σtanh(z) = tanh(z)
is applied.

The discriminator network D is a binary classification

network constructed with 5 convolutional layers, followed

by LReLU activation function and a BN layer. It has a sig-

moid activation function σsigm(z) =
1

1+e−z
at the top layer

to output the likelihood that the input image belongs either

to class 1 (“real”) or class 0 (“generated”). A schematic

representation of the proposed architecture is depicted in

Fig. 2.

All along the training phase, the two networks G and D

are trained at the same time by alternating one gradient de-

scent step of D and one gradient descent step of G. During

the inference process, only the trained generator model G

of the Hybrid-cGAN network is involved.

3. Study Area and Experiments

3.1. Dataset

Experiments have been carried out on data showing the

city of Berlin, Germany, covering a total area of 410 km2. It

consists of half-meter resolution orthorectified PAN images

showing the closest nadir view and photogrammetric DSMs

generated with semi-global matching (SGM) [16] from six

panchromatic Worldview-1 images acquired at two differ-

ent days. As ground truth, the artificial LoD2-DSM, gener-

ated with a resolution of 0.5 px from a CityGML data model

together with an available digital terrain model (DTM), was

used. The CityGML data model is freely available from the

download portal Berlin 3D 1. We followed the same LoD2-

1http://www.businesslocationcenter.de/

downloadportal



DSM creation procedure as in Bittner et al. [10].

3.2. Implementation and Training Details

The proposed Hybrid-cGAN network was realized using

the PyTorch python package based on the implementation

published by Isola et al. [14]. The prepared training dataset

covers 353 km2 and consists of 21 480 pairs of patches of

size 256 × 256 px obtained by tiling the given satellite im-

age on the fly with random overlap in both horizontal and

vertical directions. This procedure provides the network

the possibility to learn building shapes, which, during one

epoch, may be located on the patch border and, as a result,

are only partially introduced to the network. For the valida-

tion phase, an area covering 6 km2 was used for tuning the

hyper-parameters. The Hybrid-cGAN network and others,

used in this paper for comparison, were trained on mini-

batch stochastic gradient descent (SGD) using the Adam

optimizer [17] with an initial learning rate of α = 0.0002
and momentum parameters β1 = 0.5 and β2 = 0.999. We

set the weighting hyper-parameters λ = 1000 and γ = 10
after performing training and examining the resulting gen-

erated images from the validation dataset. The complete

number of epochs was set to 200 with a batch size of 5 on a

single NVIDIA TITAN X (PASCAL) GPU with 12 GB of

memory.

Different to the training phase, where two networks

G and D were trained at the same time by alternating

one gradient descent step of D and one gradient descent

step of G, in inference phase only the trained generator

model G was involved. Stitching the predicted LoD2-like

height images—entirely unseen during training and valida-

tion phases—with a fixed overlap of half the patch size in

both horizontal and vertical directions, we generated the fi-

nal full image covering an area of 50 km2.

4. Results and Discussion

Selected test samples of the DSMs generated by the

single-stream cGAN model [10], the two-stream WNet-

cGAN model [11], and our proposed Hybrid-cGAN model

are illustrated in Figs. 3, 5 and 6. One can notice that small

buildings in all generated DSMs show more rectilinear bor-

ders and are not merged with adjacent trees, as present in

the input DSMs (c.f . Figs. 3c, 5b and 6b). The integration

of spectral information into the model obviously benefits

the building reconstruction process. First of all, the num-

ber of reconstructed buildings is increased. For instance,

the magenta arrows in Fig. 3b highlight the areas in the

DSM generated by the single-stream cGAN model, where

the model was not able to reconstruct individual buildings,

as opposed to the WNet-cGAN network and our proposed

Hybrid-cGAN network. Second, the roof ridge lines are

more distinguishable and rectilinear. This statement can be

also confirmed by exemplary investigating the profiles of

the two buildings highlighted in Fig. 3f. From Fig. 4 we

can notice that the Hybrid-cGAN network was able to re-

construct much finer building shapes more similar to the

ground truth. Moreover, the surfaces of roof planes are

smoother or even flat in many cases affirming the influ-

ence of the normal vector loss. The profiles also demon-

strate the strength of all networks to separate the buildings

from adjacent vegetation. From the demonstrated results

we can further conclude that most of the generated building

shapes followed the correct pattern and feature improved

roof forms. However, this statement is true for many resi-

dential and not big industrial buildings. How does the net-

work behave in case of big and complicated building struc-

tures? The single depth-stream cGAN model [10] and the

two-stream WNet-cGAN model [11] only partially extract

such buildings. In case of spectral information integration,

although at the late fusion, it helps to improve the silhou-

ette of the buildings as well as the detailed constructions on

the rooftops (c.f . Figs. 5e and 6e) but still misses or has in-

completed inside parts of structures. Moreover, as the input

photogrammetric DSMs contain noise and many outliers,

they propagate along the height image reconstruction and

influence the results, as indicated by the dark blue areas in

Figs. 5d and 5e, and Figs. 6d and 6e. On the other hand, the

proposed Hybrid-cGAN network was able to not only elim-

inate those artifacts, but also to reconstruct the complete

building structures at any single detail. Besides, although

the building rooftops seem to be entirely flat in the ground

truth data (c.f . Figs. 5c and 6c)—which is not the case in

reality—, such cases do not confuse the model during the

training phase and make it capable to preserve detailed 3D

information from input photogrammetric DSM. Those ob-

servations prove that the introduced Hybrid-cGAN architec-

ture may successfully blend together the spectral and height

information. The earlier combination of both modalities

forces the network to accommodate the information even

better.

In order to evaluate the generated elevation models quan-

titatively, we utilized error metrics commonly used in the

relevant literature [18–21], namely, the root mean squared

error (RMSE)

εRMSE(h, ĥ) =

√

√

√

√

1

n

n
∑

j=1

(ĥj − hj)2, (6)

the normalized median absolute deviation (NMAD)

εNMAD(h, ĥ) = 1.4826 ·median
j

(|∆hj −m∆h|), (7)

and the mean absolute error (MAE)

εMAE(h, ĥ) =
1

n

n
∑

j=1

|ĥj − hj |, (8)
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(b) Single depth-stream DSM [10]

(c) Photogrammetric DSM (d) WNet-cGAN [11]

(e) Ground truth
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(f) Hybrid-cGAN (ours)

Figure 3: Visual analysis of DSMs, generated by (c) a standard photogrammetric method, (b) the single-stream cGAN

model [10], (d) the two-stream WNet-cGAN [11], and (f) our proposed Hybrid-cGAN architecture. The DSM images are

color-coded for better visualization.

where h = (hj)j and ĥ = (ĥj)j , 1 ≤ j ≤ n, denote the

actually observed and the predicted heights, respectively,

height errors are defined as ∆hj , and the median error is

m∆h. The constant 1.4826, included in the NMAD metric,

is comparable to the standard deviation if the data errors

are distributed normally. This estimator can be considered

more robust to outliers in the dataset [18].

To exclude the influence of time acquisition difference

between the photogrammetric DSMs and the CityGML data

model—carrying the risk of absence or the appearance of

new buildings—, we manually checked the evaluation re-

gions in this regard and carried out evaluation on regions

showing buildings in both the photogrammetric DSM as

well as in the reference LoD2-DSM.

The obtained results for the three test area samples are

presented in Tables 1 to 3. In comparison to the other meth-

ods, the DSMs created by the single-stream model [10]

showed inferior results in terms of εRMSE for all three ar-

eas. As we have already pointed out before in Fig. 3b, the

model was not able to reconstruct some buildings at all or

only partially reconstructed them, exemplary highlighted in

Figs. 5d and 6d.

With the intensity information integrated into the learn-

ing process, the RMSE error εRMSE decreased and, in case



(a) Single depth-stream DSM [10] (b) WNet-cGAN [11] (c) Hybrid-cGAN (ours)

input DSM Ground truth Single depth-stream DSM [10]

WNet-cGAN [11] Hybrid-cGAN (ours)

Figure 4: Visual investigation of profiles for two selected buildings from the DSMs generated by (a) the single-stream cGAN

model [10], (b) the two-stream WNet-cGAN model [11], and (c) the proposed Hybrid-cGAN architecture. The first row

shows profiles of building “1” and the second row depicts the profiles of building “2” (c.f . Fig. 3f).

(a) Pan-chromatic image (b) Photogrammetric DSM (c) Ground truth

(d) Single depth-stream [10] DSM (e) WNet-cGAN [11] (f) Hybrid-cGAN (ours)

Figure 5: Visual analysis of DSMs, generated by (d) the single-stream cGAN model [10], (e) the two-stream WNet-cGAN

[11], and (f) our proposed Hybrid-cGAN architecture. The DSM images are color-shaded for better visualization.

of our proposed Hybrid-cGAN , achieved the lowest value,

even smaller than for the input photogrammetric DSM. This

observation provides evidence that the proposed model im-

proves the noisy and inaccurate photogrammetric DSMs to

a high level of details. Considering the other two metrics,

Hybrid-cGAN also outperformed the competing models,

except for the third test area. The single-stream DSM [10]

achieved the lowest NMAD error with εNMAD = 0.45. This

seems reasonable, as the buildings show flat roofs in the

ground truth, which is not the case for neither the input

photogrammetric DSM, nor for the DSMs generated by the

models with spectral information integrated. As the NMAD

metric is sensible to outliers, it shows higher values for the

results with more detailed roofs.



(a) PAN image (b) Photogrammetric DSM (c) Ground truth

(d) Single depth-stream [10] (e) WNet-cGAN [11] (f) Hybrid-cGAN (ours)

Figure 6: Visual analysis of an DSM, generated by (d) the single-stream cGAN model [10], (e) the two-stream WNet-cGAN

model [11], and (f) our proposed Hybrid-cGAN architecture. The DSM images are color-coded for better visualization.

Table 1: Quantitative results for RMSE, NMAD, MAE met-

rics evaluated on 17 selected buildings existed on both input

photogrammetric DSM and ground truth LoD2-DSM of the

first area depicted in Fig. 3.

Method Error

RMSE (m) NMAD (m) MAE (m)

photogrammetric DSM 1.66 1.01 1.23

single-stream cGAN [10] 2.28 1.09 1.86

WNet-cGAN [11] 1.63 0.72 1.22

Hybrid-cGAN (ours) 1.52 0.62 0.96

Table 2: Quantitative results for RMSE, NMAD, MAE met-

rics evaluated on 7 selected buildings existed on both input

photogrammetric DSM and ground truth LoD2-DSM of the

first area depicted in Fig. 5.

Method Error

RMSE (m) NMAD (m) MAE (m)

photogrammetric DSM 2.72 1.09 1.57

single-stream cGAN [10] 4.13 1.88 2.68

WNet-cGAN [11] 3.89 2.03 2.64

Hybrid-cGAN (ours) 2.64 1.34 1.69

Our results demonstrate that deep learning models visu-

ally produce fairly reasonable reconstructed DSMs. How-

ever, the used RMSE, NMAD, MAE metrics do not give

good enough insight into the depth estimation quality, as

they mainly consider the overall accuracy by reporting

Table 3: Quantitative results for RMSE, NMAD, MAE met-

rics evaluated on 4 selected buildings existed on both input

photogrammetric DSM and ground truth LoD2-DSM of the

first area depicted in Fig. 6.

Method Error

RMSE (m) NMAD (m) MAE (m)

photogrammetric DSM 2.19 0.62 1.12

single-stream cGAN [10] 3.38 0.45 2.99

WNet-cGAN [11] 3.16 1.15 2.02

Hybrid-cGAN (ours) 1.91 0.56 1.22

global statistics of depth residuals. Moreover, the available

ground truth data with only sufficient quality also influences

evaluation procedure.

5. Conclusion

We presented a methodology for automatic building

shape refinement from low-quality digital surface models

(DSMs) to the level of detail (LoD) 2 from multiple space-

borne remote sensing data on the basis of conditional gen-

erative adversarial networks (cGANs). The network auto-

matically combines the advantages of pan-chromatic (PAN)

imagery and photogrammetric DSM, while complement-

ing their individual drawbacks, and, from obtained results,

shows the potential of generating DSMs with completed

not only residential but also industrial building structures.

Moreover, the generated roof surfaces are smoother and

more planar, giving evidence of the positive influence of

the auxiliary normal vector loss function. Besides, a 3D vi-

sualization of the generated elevation models illustrates the



realistic appearance of the buildings and their strong resem-

blance to the ground truth.
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