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Abstract

In this paper, we propose a joint intrinsic decomposition

framework to recover intrinsic scene properties from a re-

mote sensing hyperspectral images (HSIs) and the aligned

Light Detection And Ranging (LiDAR) dataset. Our motive

is similar to that of Scene-SIRFS for RGB-D images [4, 5],

but our method differs significantly from it both in theory

and practice, due to the challenges following the complex-

ity of the data considered. More specifically, we propose a

novel HSI rendering model with sub-pixel reflectances and

shapes which are provided by unorganized LiDAR points,

rather than basing on pixel-level rendering model as pre-

viously done. Since our method operates directly on point

clouds, the output of our model is an intrinsic hyperspectral

point cloud (IHSPC) where each point possesses not only

coordinates and normals, but also the reflectance over each

wavelength. As illustration of applications, we show how

to relight the IHSPC to re-render a new HSI with higher

spatial resolution and image quality, or under different illu-

minations, as well as to increase the performance of classi-

fication tasks.

1. Introduction

Typically, intrinsic image decomposition (IID) refers to

the separation of reflectance and shading component from a

single RGB [25, 29, 30, 31]. Some more ambitious methods

aims to recover at the same time shape and illumination in

addition to reflectance and shading from a single image, this

can be done by depth prediction using a novel convolutional

neural network (CNN) [19, 28], or by natural image statis-

tics analysis [3], the latter usually requires the inputs to be

images with only single segmented objects. As for the more

general case, i.e., recovering the shape, illumination, and

reflectance from the whole image scene where objects may

occlude or support one another and spatially-varying illu-

mination exists, additional sources, either image sequences

illuminated under varying illumination [6, 21, 26], depth

cues acquired by depth sensor [8, 12, 14, 20], or incident

light direction [1] are needed. Though in computer vision

there exists some efficient IID models for RGB or RGB-D

images, these methods usually can not be extended easily

to HSIs which may contain hundreds of bands, and when

they do, they usually work poorly as a remote sensing scene

is much more complicated than that in computer vision.

Moreover, though the HSI ”intrinsic image” problem has al-

ready investigated by some previous works [16, 17, 18], the

more general ”shape, illumination, and reflectance” prob-

lem for HSI has seen little success. In this paper, we would

consider the problem in the context of remote sensing im-

age processing: given HSI and aligned LiDAR, recover the

shape, illumination and reflectance via joint intrinsic image

decomposition of the two.

Nowadays, a variety of remote sensing technologies and

imaging sensors can be used for Earth observation and to

acquire abundant land cover information. What’s more, the

simultaneous acquisition of multi-sensor data (or the re-

peated observations of an overlapping region with differ-

ent sensors) becomes more easily accessible. Each imaging

method has its own advantages and limitations, e.g., hyper-

spectral imaging produces an image with rich spectral infor-

mation but relatively lower spatial resolution; whereas, the

LiDAR can make a dense 3D laser scanning of ground sur-

face and provide 3D representations of the object, but it is

weak in the discrimination of different materials with same

height. Hence, considering the complementarity, it may

be desirable to jointly analyze two or more heterogeneous

datasets. Our work can methodologically be deemed as a

novel fusion method of HSI and LiDAR, but differs from

the existing works in following ways: 1) instead of utilizing

a LiDAR derived Digital Surface Model (DSM) [11] which

has the same spatial resolution and organized grid structure

with HSI, we use directly the unorganized point clouds and

explore the relation between HSI pixel and somewhat sub-

pixel LiDAR points, by doing which we can make full use

of the information contained in the data; 2) instead of ex-

tracting human-designed features from the two datasets and

considering how to combine them together [15, 27], we try

to physically infer the properties of a scene (coordinates,
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Figure 1. The proposed model takes as inputs a HSI and LiDAR point cloud, and produce as output an IHSPC where each point possesses

not only coordinates and normals, but also the reflectance over each wavelength.

height, surface, illumination, reflectance, etc) that together

reproduce a HSI and LiDAR.

Our motive is similar to that of the Scene-SIRFS [4, 5]

for a single RGB-D image, which models a scene using a

mixture of shapes and takes as input a RGB image and a

coarse and noisy depth image while yields as output an im-

proved depth map, surface normals, a reflectance image, a

shading image, and illumination. But in both theory and

practice, there exists significant distinctions. At first sight

it may seem trivial to first derive a DSM from LiDAR and

then apply a method similar to Scene-SIRFS for RGB-D im-

ages. But a further reflection corrects the first impression,

by showing that not only the spatial resolution and image

quality of HSIs are usually lower than that of RGB images,

but also there exists some rough and inconsistent surfaces

which Scene-SIRFS can hardly handle in outdoor remote

sensing scenes. Consequently, our method operates directly

on point clouds, and tries to discover the inner imaging re-

lation between pixels in HSI and LiDAR points. The output

of our model is thus an IHSPC where each point possesses

not only coordinates and normals, but also the reflectance

over each wavelength, as shown in Figure 1.

Another challenge (even more sticky to handle) is how to

quantitatively evaluate the accuracy of our model, as there

are no pre-existing real-world or Pseudo-Synthetic remote

sensing datasets with ground-truth height, surface normals,

reflectance, and illumination. It is extremely difficult to

produce such ground-truth information, especially for HSIs

where reflectance and illumination over each wavelength

must be considered. Sean Bell et al. proposed a method

in [7] to determine ground-truth reflectance for large scale

indoor scenes by collecting human judgment, but it can

not generalize to outdoor remote sensing scenes as they are

much more complicated and only a small datasets are avail-

able. Maybe the closest data set is the SHARE 2012 data,

which provides ground reflectance of some in-scene materi-

als and ground based LiDAR [10]. However, the reflectance

over whole scene is still absence and the geometric distor-

tion of the HSI data is not suitable for our method. Since

the point of departure of our investigation is to infer a model

that reproduces a HSI or LiDAR, so one way to indirectly

evaluate our model is to demonstrate the efficiency of re-

rendering the input HSI under different illumination condi-

tions and with different spatial resolutions. Taking as inputs

a HSI and a LiDAR and generating a HSI with higher spatial

resolution can be deem as hyperspectral super-resolution

method. While traditional super-resolution methods usually

work with a high-resolution (HR) RGB and low-resolution

HSI (LR) [9, 22], the proposed method provides a alterna-

tive when only LR HSI and LiDAR data are offered.

Our paper is as follows: in Section 2 we introduce a new

HSI imaging model considering sub-pixel reflectances and

shapes, in Section 3, we show how to connect HSI with Li-

DAR in our model, in Section 4 we show how to estimate

light and recover reflectance, in Section 5 we present exper-

iments and in Section 6 we conclude.

2. HSI rendering model

The ”intrinsic image” problem usually assumes that an

image can be separated as the production of intrinsic com-

ponent and shading component [13, 23], which can be ex-

pressed as:

I = sR (1)

where I is the image, s denotes the shading component, and

R denotes the reflectance component.

While in ”shape, illumination, and reflectance from

shading” model, shading is no longer treated as a kind of

image, but the product of shape and illumination [1, 2, 3]:

I = R+ S(Z,L) (2)

where R is a log-reflectance image, Z is a depth-map, L

is a spherical-harmonic (SH) model of illumination, and

S(Z,L) is a rendering engine which produces a log-shading

image given Z and L.
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Figure 2. Illustration of our imaging model considering sub-pixel

mixing materials and shapes, where the incoming light direction

is ωi, outgoing direction is ωr, and the BRDF, fr(x, y;ωi,ωr) and

surface normal, n are spatially varying functions.

These models do not fit quite well when applied to HSIs.

It makes sense in computer vision to assume that a pixel

from a RGB image presents single material and possesses

smooth shape, while in HSI processing, we must consider

sub-pixel mixing materials and shapes due to its lower spa-

tial resolution. Hence, we firstly apply BRDF to how each

pixel in HSI is rendered with sub-pixel reflectances and

shapes.

By definition, BRDF is:

fr(!i,!r) =
dLr(!r)

Li(!i) cos ✓i d!i

(3)

where Lr is radiance, Li(!i) cos(✓i) is irradiance, and ✓i is

the angle between !i and surface normal, n. It measures the

ratio of reflected radiance exiting along !r to the irradiance

incident on the surface from direction !i.

Now we assume a pixel k taken from the given HSI is a

sample of ground surface A. As shown in Figures 2, let the

incident light direction be !i, the observation direction of

the sensor be !r, the angle between surface normal n and !i

be ✓i , and the angle between n and !r be ✓r . Applying the

spatially varying version of BRDF, then for a surface ele-

ment dA of A, the reflected differential of radiance emitted

along !r is

dLr(x, y;!r) = Li(!i) cos ✓ifr(x, y;!i,!r) d!i (4)

where (x, y) is the spatial coordinates of dA.

Then the differential of flux received by the sensor from

dA is:

dΦ = Lr(x, y;!r) dA cos ✓r · d!r (5)

Integrating over area A we get the radiant flux received by

sensor as:

Φ =

Z

Ωr

Z

A

Lr(x, y;!r) cos ✓r · dx d y d!r (6)

here we disregard inter-reflections and occlusions for sim-

plicity.

Finally, our imaging model of HSI is calculated as

I =
Φ

Ω0A?

=
Ωr ·

R

A
Lr(x, y;!r) cos ✓r · dx d y

Ω0A

=
Eωi

·
R

A
fr(x, y) cos ✓i cos ✓r · dx d y
R

A
cos ✓r · dx d y

(7)

where Eωi
=

R

Ωi
Li(!i) · d!i denotes the illumination in-

tensity.

3. Connection with LiDAR

In Section 2, we propose a novel imaging model ren-

dering HSI with sub-pixel reflectances and shapes. But it

is given in continuous domain, and the integration form is

too complicated to calculate in practice. In this section, we

would show how to combine HSI with LiDAR and apply

Monte Carlo integration to derive the discrete form of our

model. Figure 3 shows how the connection between HSI

and LiDAR is considered.

The points in LiDAR are discrete and unorganized, and

we assume the point cloud is dense enough to provide the

sub-pixel shapes for HSI (which is often true since the spa-

tial resolution of HSI is relatively lower, and when repeated

observations available, multiple point clouds can be merged

into a much denser one). Another assumption we make

is that the LiDAR is a random and uniform sample of the

ground surface. The sampling points are actually deter-

mined by flight path, which possesses some randomness but

is not strictly random. Similarly, there could be in a LiDAR

point cloud some denser areas on one hand, and some holes

on the other, so it is not satisfactorily uniform. Hence, this

assumption on which our later analysis is based is not ex-

actly true, but we think the error is acceptable. Addition-

ally, some re-sampling methods can be applied to construct

a random and uniform data when required.

We denote the sub-set of LiDAR points, which provides

the sub-pixel shapes of pixel k of HSI, as Pk = {pkj}
mk

j=1,

where pkj = (xkj , ykj , zkj) and mk is the number of

points.

We first recall what Monte Carlo integration says, for a

multidimensional definite integral

F =

Z

Ω

f(x) · dx (8)
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Figure 3. Illustration of how HSI and LiDAR are connected in our model. For each pixel of HSI, we assume some sub-pixel reflectances

and shapes which re-render that pixel. Then the sub-pixel shapes are provided and estimated by discrete LiDAR points.

where Ω 2 Rm has volume

V =

Z

Ω

dx (9)

given N uniform samples, {xi}
N

i=1, on Ω, F can be approx-

imated by

F ⇡ V
1

N

N
X

i=1

f(xi) (10)

Now, we rewrite Eq. 7 as

I =
Eωi

·
R

A
g1(x, y)g2(x, y) · dx d y

R

A
g2(x, y) · dx d y

(11)

where g1(x, y) = fr(x, y) cos ✓i(x, y) and g2(x, y) =
cos ✓r(x, y), note ✓i and ✓r are spatially varying functions

of (x, y).
Given a random and uniform (as we assumed previously)

sample points of surface A, Pk = {pkj}
mk

j=1, we can apply

an extended form of Monte Carlo integration and approxi-

mate I as

Ik ⇡ Eωi

Pmk

j=1 g1(pkj)g2(pkj)
Pmk

j=1 g2(pkj)
(12)

which can be rewrote as

Ik = Eωi

Pmk

j=1 fr(pkj)(~!i · ~nkj)(~!r · ~nkj)
Pmk

j=1(~!r · ~nkj)
(13)

where ~nkj = [Nx
kj , N

y
kj , N

z
kj ]

T.

Eq. 13 gives an approximation of Eq. 7, from which we

can see that in our model a pixel Ik of HSI is re-rendered by

illumination intention, Eωi
, sub-pixel distribution of surface

normals provided by LiDAR, ~nkj , sub-pixel reflectances re-

mained to be recovered, fr(pkj), incoming light direction,

!i, and shooting direction of HSI sensors, !r. Our model

explains more clearly how HSI is rendered and describes

how HSI and LiDAR are connected by imaging principles.

4. Light estimation and reflectance recovery

Section 3 shows how our model is simplified by connect-

ing HSI with LiDAR, which deals with only multiplication

and addition calculations, rather than integration, and can be

calculated efficiently. However the question is still not free

from difficulty with so many unknown variables to solve.

For example, the viewing angle of the sensor is rather chal-

lenging to estimate from a single HSI, to make the problem

worse, it may change during the image acquisition. But with

the observation that the view point of Earth remote sensing

images is usually from top the bottom, we would roughly

assume ~!r = (0, 0, 1) for simplicity. Hence, we rewrite

Eq. 13 as

Ik = Eωi

Pmk

j=1 fr(pkj)(~!i · ~nkj)(N
z
kj)

Pmk

j=1 N
z
kj

(14)

There is another question to which the solution needs to

be found, i.e., the estimation of light direction, ~!i. In a re-

mote sensing scene, the light comes from a distant source

and be deemed uniformly distributed over surface. Yet

the difficulty remains if we previously know nothing about

how the material distributes over surface, as we can not tell

whether a intensity change of HSI is resulted from material

change or surface normal change. To address this problem,

we would first extract some critical objects where we as-

sume there is no material change, which are typically some

man-made strictures like building surfaces. This is done by

segmenting the LiDAR points in terms of smoothness con-

straint. A set of clusters {Sc}
u

c=1 are obtained, where each

cluster is a set of points that are considered to be consist of

single material.

For each cluster we have a set of overdetermined equa-

tions

Ick(�) = E(�)fc(�)~!i ·

Pmk

j=1 N
z
kj~nkj

Pmk

j=1 N
z
kj

,

k = 1, 2, · · · (15)



where � is wavelength. And recall {nkj}
mk

j=1 is the normals

of a sub-set of LiDAR points, which provides the sub-pixel

shapes of pixel k of HSI. Solving these overdetermined sys-

tem we give a estimation of global light direction, ~!i.

Once global light direction is given, our reflectance re-

covery degenerates to ”intrinsic image” problems

I(�) = fr(�)S(!i,n) (16)

of which the particularity is that the shading is rendered by

our sub-pixel model

S(!i,n) = E(�)~!i ·

P

j N
z
kj~nkj

P

j N
z
kj

(17)

And our prior on reflectance is based on the observation

that locally, neighboring points share similar reflectance;

and globally, the distribution of reflectance appears sparsity.

Hence we assume following relations

fi =

n
X

j=1

!ijfj (18)

where L1-graph coding is used to calculate !ij :

min
α

i

k↵ik1 subject to Ii = Di
↵
i (19)

where matrix Di =
⇥

I1, · · · , Ii�1, Ii+1, · · · , In, Id
⇤

2

Rd⇥(d+n�1) and ↵i 2 Rd+n�1. Then, set !ij = ↵i
j if

i > j, and !ij = ↵i
j�1 if i < j.

The output of model is thus an IHSPC, {P0
i}

K

i=1

P0
i = (xi, yi, zi, N

x
i , N

y
i , N

z
i , fr(�1), · · · fr(�d)) (20)

where each point possesses not only coordinates and nor-

mals, but also the reflectance over each wavelength.

With {P0
i}

K

i=1, we can then apply Eq. 14 to re-render a

new HSI with higher spatial resolution and image quality,

or under different illuminations.

5. Experiment

As we have mentioned in introduction, it is rather

challenging to quantitatively evaluate the accuracy of our

model, as there are no pre-existing HSI datasets with

ground-truth heights, surface normals, reflectance, and il-

lumination. Even, there are only few open accessible multi-

source optical remote sensing datasets that contain both HSI

and LiDAR, for the data are expensive to acquire. Usually,

these data are provided for classification tasks and only land

use and land cover classes would be given (if there is any) as

ground truth. Unlike classification labels, which can at least

be roughly produced by visual perception, ground-truth re-

flectance in remote sensing scenes is hardly possible to pro-

duce in practice. Hence, we would evaluate our model indi-

rectly.

RGB HSI LiDAR DSM

Figure 4. Three scenes of data used in our experiments. The first

column: very high-resolution RGBs imagery at a 5-cm GSD . The

second column: false-color composite images of HSI at 1-m GSD.

The third column: LiDAR point cloud. The fourth column: Li-

DAR derived DSM at 0.5-m GSD.

5.1. Data description

In our experiment, we use three remote sensing

scenes took from the ”grss dfc 2018” dataset, which

is used for the 2018 IEEE GRSS Data Fusion Con-

test [24]. More information can be find at following web-

site: http://www.grss-ieee.org/community/

technical-committees/data-fusion. The data

were acquired by the National Center for Airborne Laser

Mapping (NCALM) on February 16, 2017 between 16:31

and 18:18 GMT. The dataset, which are originally meant for

multi-source optical remote sensing data fusion and analy-

sis, provide following multi-source data acquired by three

different sensors:

• Multispectral LiDAR point cloud data, intensity

rasters and DSMs at a 0.5-m ground sampling dis-

tance (GSD)

• Hyperspectral data at a 1-m GSD

• Very high-resolution (VHR) RGB imagery at a 5-cm

GSD

Though a multispectral LiDAR point cloud data is pro-

vided, we do not use the intensity information of it in our

model. Figure 4 gives the illustrations of RGB, HSI, Li-

DAR, and DSM data of three scenes we use. Note, only HSI

and LiDAR point cloud are taken as inputs in our model.

5.2. Re-render HSI under different illuminations

One way to evaluate our model is to show that with

outputs from our model we can re-render a new HSI un-

der different illuminations or resolution sensibly. The re-

render results under three light settings are shown in Fig-

ure 5, from which we can see that our model can re-
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Figure 5. Re-render HSI under different illuminations. The first column: original images. The second column: relight un-

der estimated light, i.e., ωi = (−0.07,−0.31,−0.85), (−0.01,−0.33,−0.77), and(−0.06,−0.34,−0.73), respectively. The

third column: relight under light perpendicular to ground, i.e., ωi = (0, 0,−1). The fourth column: relight under ωi =
(0.07, 0.31,−0.85), (0.01, 0.33,−0.77), and(0.06, 0.34,−0.73) , respectively.

render a new HSI of clearer spatial details. The estimated

light directions for three scenes are (�0.07,�0.31,�0.85)
, (�0.01,�0.33,�0.77), and (�0.06,�0.34,�0.73), re-

spectively. It makes sense that they resemble each other

as they are took from a same large scene. Some defects of

our model arise from its disregarding occlusions and cast

shadows, as a result, it fails to recover accurate reflectance

where occlusions affect servilely or to handle shadow areas

while re-rendering.

We know that two spectral energy distributions I1(�) and

I2(�) can either arise from a material change, a surface ori-

entation change, or illumination change. This uncertainty

causes inconvenience in some HSI processing tasks, e.g.,

only material changes may be interested in land cover clas-

sification task. The primary goal of our work is to decrease

the complexity of these tasks by separating intrinsic com-

ponent from other component influenced by environment.

But on the other hand, some methods (e.g., deep learning)

do desire a more complex datasets in the training step to

improve model’s generalization ability and reduce overfit-

ting. In oder to train a model invariant to translation, view-

point, resolution, or illumination, data augmentation is de-

sired to enlarge the training dataset, especially for HSI pro-

cessing in which the available dataset is very small. So our

method also shows potential in data augmentation, for it

can re-render physically sensible new HSI data under differ-

ent translation, viewpoint, resolution, or illumination, apart

from some popular data augmentation techniques like rota-

tion, flip, scale, and so on.

5.3. Re-render HSI under higher spatial resolutions

While HSI provides a high spectral resolution, its spatial

resolution is significantly lower due to hardware limitations.

Here we would show via re-rendering the IHSPC that our

model produces, we can reconstruct a high-resolution HSI

of high quality. In our experiment, we first generated a LR

HSI via spectral downsampling of original HR HSI that is

used as ground-truth, and then used the LR HSI and LiDAR

to obtain an IHSPC, which was thus utilized to re-render a

new HR HSI. As comparison, we also generated a normal



Methods Scene1 Scene2 Scene3

HSPC 10.5 8.4 8.8

IHSPC 8.3 6.3 7.0

Table 1. Quantitative results (on RMSE) of the test methods.

Methods Scene1 Scene2 Scene3

HSPC 4.4 3.8 3.5

IHSPC 3.2 3.1 2.3

Table 2. Quantitative results (on SAM) of the test methods.

Data HSPC MSLPC IHSPC

OA 66.7 72.8 80.1

Table 3. Overall classification accuracy (%) of HSPC, MSLPC,

IHSPC.

hyperspectral point cloud (HSPC) via matching the nearest

pixel of HSI to each LiDAR point. To evaluate the quality

of the reconstructed HSIs, indexes as root mean square error

(RMSE), where the images are on 8-bit intensity, and the

spectral angle mapper (SAM), which is given in degrees and

the smaller the better, are used.

The results in terms of RMSE and SAM are reported

in Table 1 and Table 2, respectively, where the proposed

method achieves best scores. The reconstructed HSIs in

746 nm by competing methods are shown in Figure 6, from

which we could see that the obtained IHSPC can re-render

a HR HSI of much higher quality than HSPC. This is bene-

fit from the sub-pixel reflectance and shapes assumed in our

model. The proposed method thus provides an alternative

super-resolution technique taken as inputs a HSI and a Li-

DAR point cloud when HR RGB images are not available.

5.4. Classification result

Another possible way of evaluation is to use a down-

stream task like point cloud classification. Since the in-

trinsic hyperspectral reflectance could eliminate the impact

of illumination and shading, which would follow an in-

crease in material discrimination ability. To demonstrate

that, we classified three kind of data, i.e., HSPC, IHSPC and

mutispectral LiDAR point cloud (MSLPC), using support

vector machine (SVM) under same parameters, and com-

pared the classification result of the three.

The ground-truth classification labels of the point cloud

were made by human judgment, with the assistance of

VHR RGB image. Finally, nine classes were given, i.e.,

healthy grass, stressed grass, evergreen trees, deciduous

trees, residential buildings, non-residential buildings, roads,

sidewalks, parking lots. We picked out randomly four

small patches per class as training set, that eventually

10,078 points were selected for training, and the remain-

ing 2,088,358 points were used for test. The training and

Figure 6. Reconstructed images of three scenes (top two rows,

middle two rows, and bottom two rows) at wavelength 746 nm.

For every two rows, the first column shows the LR image (top)

and the ground-truth image (bottom); the second column shows

the reconstructed results of IHSPC (top) and HSPC (bottom); and

the third column shows the absolute difference of IHSPC (top) and

HSPC (bottom).

test data is given in Figure 7. The overall classification ac-

curacy (OA) scores are shown in Table 3, from which we

can see that IHSPC obtains the best score, outperforms both

HSPC that is generated by directly assigning HSI spectra to

LiDAR and MSLPC that is ontained by single hyperspectral
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Figure 7. The first row: legend (left), test data (middle), training data (right). The second row: the classification maps of HSPC (left),

MSLPC (middle) and IHSPC (right).

lidar sensor.

6. Conclusion

We have presented a joint intrinsic decomposition

model, which recovers intrinsic scene properties from a re-

mote sensing HSI and a LiDAR point cloud. We have done

this by proposing a novel HSI rendering model with sub-

pixel reflectances and shapes provided by LiDAR points,

and thus combine HSI and LiDAR together.

The output of our model is a intrinsic hyperspectral point

cloud , which we show can be applied to re-render a new

HSI with higher spatial resolution and image quality, or un-

der different illuminations, and it is easy to imagine other

applications such as HSI or LiDAR classification and seg-

mentation. We have also discussed some challenges re-

mained in the sense of remote sensing intrinsic image de-

composition, which still require further efforts, e.g., it is

rather difficult to generalize some existing IID methods to

HSI which may contain hundreds of bands, or to produce

HSI and LiDAR dataset with ground-truth reflectance, sur-

face normals, and illuminations.
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