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Abstract

Automated object detectors on Unmanned Aerial Vehi-

cles (UAVs) are increasingly employed for a wide range

of tasks. However, to be accurate in their specific task

they need expensive ground truth in the form of bounding

boxes or positional information. Weakly-Supervised Ob-

ject Detection (WSOD) overcomes this hindrance by local-

izing objects with only image-level labels that are faster and

cheaper to obtain, but is not on par with fully-supervised

models in terms of performance. In this study we propose

to combine both approaches in a model that is principally

apt for WSOD, but receives full position ground truth for

a small number of images. Experiments show that with

just 1% of densely annotated images, but simple image-

level counts as remaining ground truth, we effectively match

the performance of fully-supervised models on a challeng-

ing dataset with scarcely occurring wildlife on UAV images

from the African savanna. As a result, with a very limited

amount of precise annotations our model can be trained

with ground truth that is orders of magnitude cheaper and

faster to obtain while still providing the same detection per-

formance.

1. Introduction

Object detection in images from Unmanned Aerial Vehi-

cles (UAVs) recently experienced an uprising interest in the

computer vision community [6, 7, 3, 18, 2]. Applications

are manifold and range from security and safety [12] to an-

imal conservation [1, 6]. Thanks to research advancements

like Convolutional Neural Networks (CNNs) [16], auto-

mated detectors have shown significant increase in posi-

tional and classification accuracy of objects [24, 10, 22, 23].

Traditionally, object detectors are fully-supervised,

which implies that the class, location in the image and di-

mensions of every object of interest is known during train-

ing. This high level of supervision leads to superior model

performances, but comes at a substantial annotation cost: it

13 "yes"
2024.820685   1419.105765

2473.783816   1414.264317

3019.898535   1016.943270

3292.633121   1206.727815

3375.583174   1196.722166

> >

Figure 1: Large-scale UAV datasets pose substantial label-

ing efforts if bounding boxes or object coordinates (bottom

left) are required. Our model reduces this tedium by re-

sorting to inexpensive, image-level object counts (bottom

middle) or simple object presence/absence (bottom right)

for the most part, and requiring positions only for a handful

of images.

requires precise bounding boxes to be drawn, and class la-

bels to be given, to many objects in hundreds or thousands

of images (as in Figure 1). This becomes especially tedious

for datasets that contain large numbers of objects per im-

age, such as crowd surveillance imagery [33], as well as

cases where objects of interest are a rare sight. UAV images

bear particularly high implications for ground truth cost and

quality in this respect [18].

A promising direction to ease label complexity is

Weakly-Supervised Object Detection (WSOD), where a

model is only given image-level labels, but aims at local-

izing objects in the image nonetheless [5]. This concept is

also related to density estimation [33] in that in both cases

no bounding boxes or object positions are provided as a

ground truth. Such models require much simpler and there-
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Figure 2: Overview of our proposed model. The detector predicts object locations via a heatmap and receives weak supervi-

sion, either through object counts or presence/absence of objects as a ground truth. In a small fraction of cases (e.g. 1%), we

train on the full, positional ground truth to improve performances.

fore cheaper annotations, such as image-level labels in the

WSOD case, and counts (number of class instance occur-

rences) in density estimation. Consider Figure 1: drawing

bounding boxes for all objects in the UAV images would

be tedious and hence expensive, especially when thousands

of such images need to be labeled. In turn, providing ob-

ject count estimates or even just the presence or absence

of objects for the entire images can be done with just one

interaction per image. The downside to WSOD models is

typically a loss in accuracy: such models tend to miss small

objects [19] or combine multiple close-by instances of the

same class into one [8]. Count-based models need to be

trained with a sufficient number and variation of objects per

image, sometimes including images that contain no object

at all, and they risk to focus on the wrong kind of object if

two classes appear in similar numbers in the imagery, a sce-

nario not unlikely in UAV images. For example, one may be

interested in the number of cars in a top-down view image,

but the detector could get confused due to similar numbers

of motorcycles.

In this paper we propose to overcome these issues by

combining the merits of both fully- and weakly-supervised

detectors in a hybrid approach, as shown in Figure 2. In de-

tail, we train a WSOD model with weak supervision (object

count or binary presence/absence of objects) and then com-

plement it with a small fraction of images where a full, po-

sitional ground truth is available. The intuition behind this

is that few precise ground truth maps are comparably inex-

pensive to obtain, but sufficient for the model to focus on

the object class of interest, so that predictions become more

precise and ambiguities are reduced. We evaluate our mod-

els on a challenging UAV-derived dataset and show that,

even with completely weak supervision, object localization

is possible to a high accuracy, but that adding just 1% of

full positional ground truth can match the performance of a

model that has profited from 100% full supervision.

The rest of this paper is organized as follows: Section 2

addresses related work on the main topics; Section 3 ex-

plains the method in detail. Experiments are outlined in

Section 4, results of which are discussed in Section 5. Fi-

nally, Section 6 concludes the work and outlines potential

future research on the topic.

2. Related Work

2.1. Object counting

Object counting models recently gained a lot of attrac-

tion in the computer vision community [17, 13, 31, 34].

They generally fall into one of three categories: detection-

based models [24, 22, 23, 9] first localize objects of a kind

in an image and then simply return the number of detec-

tion. These models provide explicit localizations, but thus

require large numbers of expensive bounding boxes. Also,

they can be strongly affected by cases of occlusions and

pose variations, since each object instance is handled as

a binary contribution to the total count. Regression-based

models [28, 27] directly predict an estimated number of ob-

jects from the image. They forgo expensive ground truth,

but may struggle whenever they have to do extrapolation

(i.e., predicting more or less objects than seen in the train-

ing set) and cannot easily provide object positions. Finally,

density-based models [13, 35] predict a spatial heatmap of

localizations whose sum corresponds to the expected num-

ber of objects. These models basically combine the advan-

tages of both detection- and regression-based approaches in

that they only need count estimations but still yield a spa-

tial prediction. If successful, these models can therefore be

seen as a variant of WSOD, which is discussed below.



2.2. WeaklySupervised Object Detection

The aim of WSOD is to localize objects in images with

just image-level ground truth. The hope of such models is

that they will learn which parts of the image to draw their

attention to, and that these parts will then coincide with

the location of the objects of interest. Several variants of

WSOD models have been proposed: [5] retrieves reoccur-

ring patterns across the dataset by clustering. [20] trains an

object detector through active learning, querying an oracle

for automatically predicted bounding boxes. [30, 29] both

exploit prior knowledge (object sizes, texture compositions

of objects) to facilitate identification of objects across im-

ages. [19] is closely related to heatmap-based models used

in this study, but differs in that the model is only trained

with weak supervision, and that the prediction is a grid of

pseudo-probabilities that gets softmax-activated across all

classes. The authors report good localization performance

for vision benchmark datasets, but due to the softmax oper-

ator encouraging weight concentration to one sample their

model is likely to be unable to localize multiple objects

of the same category in one image, a crucial necessity for

counting. [8] attempts to solve this drawback by disentan-

gling multiple objects detected together, based on a count-

based ground truth, but their method still relies on explicit

detectors that may be hard to train and may fail under oc-

clusions and on small targets.

2.3. Hybrid Approaches

Some works studied combining different levels of super-

vision, but typically focus on performance improvements,

rather than on reducing annotation efforts. [12] employs

both positions and counts for crowd density estimation, but

needed a dataset with complete positional information for

over 1.5 Million targets. [17] proposes a model that uses

detection for low estimated object counts and switches to

regression for crowded scenes. [21] detects objects with

image-level labels and single point annotations; [4] extends

this idea to semantic image segmentation. However, both

approaches require all of the training images to be labeled

this way. [34] is more similar to our model in that the

authors also alternate between weak supervision (density)

and object position ground truth for training, but also their

scheme required all training set instances to be fully labeled.

3. Method

3.1. Densitybased Object Detection

As a base model for all experiments we employ a deep

fully-convolutional CNN that accepts an image and predicts

a downsampled grid ŷ of size N×M . This grid corresponds

to the density map and is expected to contain high values in

those locations where an instance of our object class of in-

terest is to be found, and values close to zero elsewhere.

A non-negative activation nonlinearity, such as a ReLU or

sigmoid, ensures that predictions are bound to a range of

zero or more. Let scalar ŷ =
∑

i∼N

∑

j∼N

(

yij

)

be the

sum over the output grid ŷ for each image. Our objective

then is it to train the model to predict a grid whose sum ŷ

corresponds to the ground truth. In this paper we consider

two levels of weak supervision: (i.) a scalar for the object

count; (ii.) a binary variable denoting presence/absence of

the object class of interest in the image. The latter is an ex-

treme case that we use to see if a CNN can localize objects

where the only knowledge we have is whether the class of

interest is present in the image, eliminating the need for the

annotator to count the objects to create the ground truth and

thus greatly reducing the annotation effort.

To this end we employ different loss functions, depend-

ing on the level of weak supervision. In cases where the

ground truth consists of an object count, we employ a

Smooth ℓ1, also known as Huber loss [9]:

ℓ(y, ŷ) = ℓHuber (y, ŷ) =

{

1

2
(y − ŷ)2, if |y − ŷ| < δ

|y − ŷ| − 0.5δ otherwise

(1)

where y is the object count in the image. Unlike an ℓ2
loss, the Huber loss employs an ℓ1 norm beyond a thresh-

old δ (set to 1 in our experiments), which poses less of a

restriction on outliers in the data. This is also useful for bal-

ancing loss strengths between samples with low and high

counts, which is the case in our UAV images (wildlife tends

to flock together, causing some images to have high counts

and others to contain no animal at all).

In the binary case, we only have two possible labels: 0

(absence) and 1 (presence). We therefore use a conditional

loss instead:

ℓ(y, ŷ) =

{

0 if y = 1 and ŷ ≥ 1

ℓHuber (y, ŷ) otherwise
(2)

In other words, the loss here pushes the sum over the

predicted heatmap to zero whenever no object is present

(y = 0), but is zero if the respective area is labeled as “has

object” (y = 1) and the sum over the heatmap is at least

one.

Note that Equations (1) and (2) are limited to a single

object class, as is the case in our experiments, but an exten-

sion to the multi-class scenario would be straight-forward

by predicting K heatmaps for K classes and individually

applying the respective loss function.

3.2. Sparse Full Supervision

Our proposed method follows the same principle and

employs the same loss functions for the most part. For

the weakly labeled images the training loss therefore corre-

sponds to either Equation (1) or (2), depending on whether a



count- or presence/absence-based ground truth is available.

However, for a small percentage of images we assume the

availability of precise, positional ground truth for all objects

they contain (left ground truth in Figure 2). For these im-

ages we replace the weakly-supervised loss with a spatially

explicit binary cross-entropy loss:

ℓ(y, ŷ) =
∑

i∼N

∑

j∼M

−
(

yij log(ŷij)+(1−yij) log(1− ŷij)
)

(3)

where y and ŷ ∈ RN×M are the ground truth and pre-

diction (density) maps, respectively. y contains value one

wherever an object is present, and zero elsewhere.

The primary intuition behind this is to spatially focus the

model on the kind of object we would like to detect. While

pure WSOD models tend to localize objects fairly well, they

struggle estimating the objects’ dimensions [19]. This is be-

cause the only limitation imposed on the model through the

loss is the heatmap sum constraint. Providing a few fully-

supervised cases, however, encourages the model to con-

centrate more mass on just one prediction grid cell, instead

of spreading it out to the neighbors. This not only reduces

spurious, shallow detections of undesired objects, but also

helps disentangling two instances next to each other that

otherwise would likely be combined.

Furthermore, in cases where multiple kinds of objects

appear in similar quantities, it helps reducing chances of

the model detecting the wrong object class. This may par-

ticularly happen with presence/absence ground truths that

naturally allow for high ambiguities.

3.3. Evaluating Positional Accuracies

Most fully-supervised object detectors predict bound-

ing boxes, which can easily be evaluated through the

intersection-over-union with the nearest ground truth box.

In our case this does not apply, as we only predict heatmaps.

To assess the quality of the positional detection, we thus re-

sort to a distance-based evaluation: we first threshold the

heatmap at a given value and subject all remaining loca-

tions to a Non-Maximum Suppression (NMS) stage to filter

multiple hits of the same object. The assessment then fol-

lows the principle of [14], which calculates the Euclidean

distance of the respective prediction cell coordinate to the

nearest ground truth location, and only accepts it as a true

positive if it is below a maximum distance and if the ground

truth object has not been detected by another grid cell (in

which case it counts as a false positive).

This raises the question for the maximum distance

threshold to be used. Especially in WSOD, we cannot ex-

pect the model to always perfectly predict the center posi-

tion of an object. However, depending on the task, a pixel-

precise localization may not be necessary after all, such as

in our case of animal census. Consider Figure 3, where

10 (0.6) 20 (1.2) 30 (1.8) 40 (2.4) 50 (3.0) 80 (4.8) 100 (6.0)

Figure 3: Concentric circles with varying radii over an ani-

mal in pixels. Equivalence in meters is reported in parenthe-

ses. Too small evaluation distances (blue) require models to

precisely pinpoint the animal; too large (pink) risk includ-

ing neighboring predictions. If we are also satisfied when

the model predicts e.g. the animals’ shadows, a radius in-

between may be a viable choice.

circles of different distances are shown. The smallest cir-

cle (blue) only encompasses just a part of the animal; this

poses a severe restriction, as detectors are required to per-

fectly pinpoint the objects all the time. However, we would

already be satisfied if the model detected e.g. the animal

shadow, which lies outside the blue circle. Such a detec-

tion is thus only counted as a hit if we increase the distance

threshold. Too large circles (brown, pink) in turn bear the

risk of including false predictions outside of the animal. In

essence, the positional tolerance is a function of the objec-

tive and the object size (in pixels). The effect of positional

tolerance will be studied in the experiments.

4. Experiments

We now put the models with varying type and degree

of supervision to the test. All in all, we compare models

trained with the following levels of ground truth:

• Binary (baseline A): we regress the density map sum

with the presence/absence of objects (Eq. (2)).

• Counts (baseline B): here, we provide the number of

objects per image patch as a ground truth and use

Eq. (1) as a loss.

• Binary + 1% (proposed A): this scenario adds full posi-

tional ground truth for 1% of the images (three images

in our case) through Eq. (3), but presence/absence for

the rest.

• Counts + 1% (proposed B): the same, but with counts

as ground truth for the majority of images.

• Full dense (upper bound): we train the model with a

complete set of positional ground truth (only Eq. (3) is

used), and no counting or binary loss.



# images

Set with animals without total # animals

train 159 291 450 830

val 35 41 76 118

test 45 83 128 235

Table 1: Properties of the Kuzikus UAV dataset.

4.1. The Kuzikus Dataset

For evaluation we resort to a set of UAV images acquired

over the Kuzikus game reserve in Namibia1. Kuzikus is a

private-owned wildlife park that stretches across 103km2

and is home to around 3000 individuals of multiple large

mammal species, such as black rhino, ostriches, zebras, and

various ungulates [25, 14]. In 2014, the SAVMAP consor-

tium2 imaged parts of the park with a SenseFly eBee3 UAV,

equipped with a consumer-grade camera at a flying altitude

of around 100m above ground. This resulted in 654 nadir

RGB images with a resolution of 4-8cm. An initial local-

ization of animals was obtained through a crowdsourcing

campaign conducted by MicroMappers4; upon refinement

of the labels, 1183 animals could be identified in the 654 im-

ages. This makes them a comparably rare sight and required

manually examining every image for small targets. The

dataset statistics are listed in Table 1; images are available

at https://doi.org/10.5281/zenodo.609023.

4.2. Model Setup and Training

Our model for all experiments is based on a ResNet-

18 [11], pre-trained on ImageNet [26], until the third-last

layer: i.e., we remove the original classification and average

pooling layers and instead add two Multi-Layer Perceptrons

(MLPs) that map from 512 to 1024 dimensions, and then

to one (the heatmap), respectively. We replace the original

BatchNorm layers with non-affine Instance Normalization

variants [32], since we observed better stability for vari-

able batch sizes during inference. Also, we reduce the first

layer’s stride to one to allow for a higher-resolution density

map prediction. The density map output is scaled to [0, 1]
through a sigmoid activation.

To train the model we crop 16 random patches per epoch

of size 512× 512 from each UAV image in the training set

and perform data augmentation by random flipping (both

axes) and random 90◦ rotations. The model then predicts a

density map of 32× 32, which corresponds to a downsam-

pling factor of 16. With our dataset’s image resolution of

around 4-8cm, one grid cell has a side length of roughly

0.6-1.3m, which still allows detecting animals below the

1http://kuzikus-namibia.de/xe_index.html
2https://lasig.epfl.ch/savmap
3https://www.sensefly.com
4https://micromappers.wordpress.com

Model MAE MSE

Binary (baseline A) 1.96 22.29

Counts (baseline B) 0.79 1.63

Binary + 1% (proposed A) 1.22 4.99

Counts + 1% (proposed B) 0.79 1.59

Full dense 1.28 2.75

Table 2: MAE and MSE values for the models on the sum

of the density maps.

average size of around 1.5m. This map gets summed and

compared to the ground truth according to either loss func-

tion described above, depending on the degree of supervi-

sion (counts versus presence/absence of objects). We use

mini-batches of four patches and employ the Adam opti-

mizer [15] with a learning rate of 10−5 for the first 50, and

10−6 for the remaining 250 epochs. We also enable weight

decay of 10−4.

During inference we tile the images evenly into same-

sized patches, evaluate them individually and stitch the pre-

dictions back together to one density map. For detection we

filter the predicted heatmap and retain locations with value

0.01 or greater. These are subjected to NMS with a search

radius of 2 prediction grid cells (32 pixels; about 1.92m).

Evaluation is then performed on a distance basis as in [14],

with thresholds of 30 pixels (ca. 1.8m) and 40 pixels (2.4m),

respectively.

For the fully labeled images used by our proposed mod-

els we randomly select three images from the pool of im-

ages that contain at least one animal. The eventually se-

lected images contain 1, 38, and 7 animals, respectively.

5. Results and Discussion

Table 2 lists Mean Absolute Error (MAE) and Mean

Squared Error (MSE) values on the heatmap sums over the

test set. As can be seen, the count-based model with 1%

full supervision yields the best score for both measures and

is on a tie with the fully WSOD counts model in terms of

MAE. Generally, it is not surprising that the count-based

models outperform the others, even the model with full po-

sitional supervision, since they are the only ones explic-

itly trained on the objective of these measures, i.e. count-

ing. The large MSE, but still reasonable MAE scores of

the binary model imply that it predicts a few images wrong,

but by a large difference (see Figure 4 top). Since animals

are a minority compared to background, this indicates that

the model generally manages to localize them, but overpre-

dicts them by also assigning high confidences to their spa-

tial surroundings. This is not surprising, given that the bi-

nary model did not have any constraints other than to predict

at least a mass sum of one whenever an animal is present.

Adding just 1% of full supervision significantly improves
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Figure 4: True animal counts versus predicted heatmap

sums for the two binary models (top), the two count models

(middle) and the fully-supervised model (bottom). In the

binary case, 1% of full supervision (green) greatly reduces

the overprediction of animal presence. For the count-based

models the full supervision does not significantly improve

the heatmap sum, but instead raises the precision (see Fig-

ure 6). The fully-supervised model’s heatmap sum is simi-

larly close to the optimum (dashed line).

the scores, although they do not reach those of the other

models. In the case of the count-based models (Figure 4

middle), the WSOD-only model already performs similarly

well as the fully-supervised one (Figure 4 bottom). How-

ever, here the 1% fully-supervised images have the effect

of reducing false positives and hence improve localization

performance, which can be seen in Figure 6.

Figure 5 shows example images from the test set (top

row), together with heatmaps predicted by all five mod-

els. The images further contain the true animals’ bounding

boxes (cyan). As visible in the heatmaps, the CNNs do in-

deed manage to predict precise locations of animals, even if

trained with weak supervision. The binary model (baseline

A) assigns particularly large masses to the animals, which

corresponds to the observations made in Table 2 and Fig-

ure 4. Also, it is more prone to falsely detecting background

objects like tree trunks, such as those in the left part of the

left image. However, adding just 1% of positions (proposed

A) significantly reduces both effects and dampens predic-

tions around the animals, as well as around background lo-

cations. This confirms that a bit of strong supervision is

enough to solve both issues (overprediction of animals and

false detections of the mentioned background objects).

In the case of the count-based models (baseline B, pro-

posed B) the prediction strength is greatly reduced; activa-

tions over animals are smaller and with lower values. This

shows that the counts pose more of a restriction to the model

than the binary ground truth. However, despite this stronger

learning signal also this baseline commits quite a few mis-

takes in the form of false positives, especially in the left

image of Figure 5. Again, adding 1% of full supervision

reduces the number of false detections. Visually, the up-

per bound (bottom row) nonetheless seems to provide the

sharpest predictions (least spread in space around animals).

Figure 6 shows results for distance thresholds of 30 pix-

els (around 1.8m; top) and 40 pixels (ca. 2.4m; bottom),

corresponding to the green and red circles in Figure 3, re-

spectively. These distances are still fairly hard, as the mod-

els only get a small chance of predicting a true positive

when e.g. concentrating mass on animal shadows. The

curves show that, even under such conditions, all models

manage to reach reasonably high recalls of ca. 70 to 90%,

but with varying degrees of precision. In general, the bi-

nary model (baseline A) falls short the most, which goes

in line with it not penalizing the wrong number of ani-

mals: despite NMS, it produces many false positives. The

semi-supervised counterpart (proposed A) shows significant

improvements in this respect, but does not come close to

the levels of recall of the other models. Therefore, binary

ground truth seems sufficient to get the models into a good

direction, but not enough to really make them focus on the

target objects. Higher percentages of full supervision might

improve results in this respect, but we leave this to further

studies.

For the count-based models, we already see a good per-

formance with the WSOD-only model (baseline B), but

only when using a more generous distance of 40 pixels. It

seems that the counts-only model focuses more on shad-
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Figure 5: Crops of images from the Kuzikus dataset (top), along with predicted heatmaps for all the models.
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Figure 6: Precision-recall curves for the models on the

Kuzikus test set, with a maximum ground truth distance of

30 pixels (1.8m; top) and 40 pixels (2.4m; bottom).

ows than on the animals, which corresponds to the slight

spatial shifts of the heatmap peaks observable in Figure 5.

A threshold of 30 pixels is insufficient to account for such

misplacements. However, we get a substantial improve-

ment in the model with counts and 1% of positional ground

truth (proposed B); in this case the model surprisingly is on

par with the one trained on 100% positions (upper bound).

This is even the case with 30 pixels tolerance, indicating

that a few labels of strong supervision are enough to steer

the model towards detecting the actual animal itself, rather

than its shadow. It may seem surprising that this model ac-

tually outperforms the upper bound for recalls of around

80-90%. Our intuition on this phenomenon is that a full

set of positions may actually be counterproductive, possi-

bly due to limitations from the prediction grid: the heatmap

of the CNN is purposely downgraded in resolution, which

may cause problems if the ground truth position lies e.g.

on the border between two heatmap grid cells. In those

cases assigning all mass to one of the two cells may be

suboptimal for the model, especially when this happens fre-

quently. Hence, the proposed model sees just enough po-

sitional ground truth to learn what to focus on, but not too

much to cause problems due to spatial precision. All in all,

the end-effect of this is that instead of having to densely

label hundreds of images, weak image-based labels with a

tiny fraction of full supervision gives equally good or even

slightly better results, meaning that the labeling process be-

comes easier, faster, and thus less expensive, allowing for

more or larger UAV datasets to be processed in a given time.

6. Conclusion

In this work we demonstrated how to reduce labeling ef-

forts for training object detectors in Unmanned Aerial Vehi-

cle (UAV) images. The proposed model resorts to Weakly-

Supervised Object Detection (WSOD), which makes use of

simple image-level labels like counts or presence/absence

of objects. When augmented with just 1% of positional

ground truth, the count-based variant effectively matches

its counterpart trained on object positions in all images.

Hence, we believe our strategy to be of major benefit to

the labeling of large-scale UAV image datasets. To this

end, further work is required on the role of the fully-

supervised ground truth, in particular regarding the percent-

age of fully-supervised images, or else more sophisticated,

perhaps model-driven strategies for selecting the images

that require a positional ground truth. Also, model perfor-

mance on objects of varying sizes could be worth investigat-

ing. Finally, improvements for the detection performance of

the binary model could pave the way to lower the required

labeling efforts even further.
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