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Abstract

This work addresses the problem of combining noisy

overhead images to make a single high-quality image of a

region. Existing fusion methods rely on supervised learning,

which requires image quality annotations, or ad hoc crite-

ria, which do not generalize well. We formulate a weakly

supervised method, which learns to predict image quality

at the pixel-level by optimizing for semantic segmentation.

This means our method only requires semantic segmenta-

tion labels, not explicit artifact annotations in the input im-

ages. We evaluate our method under varying levels of oc-

clusions and clouds. Experimental results show that our

method is significantly better than a baseline fusion ap-

proach and nearly as good as the ideal case, a single noise-

free image.

1. Introduction

In recent years, it has become possible to frequently col-

lect high resolution overhead imagery of the same location.

Given the nature of how the images are captured and reg-

istered, they often contain artifacts such as clouds, large

streaks of missing data, significantly varying lighting and

weather condition, and other artifacts [6]. These are ma-

jor issues when attempting to use these images for remote

sensing tasks, such as object detection or semantic segmen-

tation.

Several methods have been proposed that address the

problem of such artifacts. Generally these methods re-

quire either problem-specific solutions or expensive label-

ing of artifacts in input images. While the former techniques

do not require labelled data, the solutions typically require

several complex interpolations and image processing tech-

niques. These methods are generalize poorly and require

re-calibration to newer scenarios. On the other hand, learn-

ing based methods have shown promising results in detect-

ing artifacts like clouds and cloud shadows. However, these

methods require labelled training data with every pixel cat-

egorized as clean, partly occluded, and fully occluded. Un-

derstandably, it is an expensive and subjective process to
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Figure 1: Overview of the proposed approach. We present a

fusion method which can fuse multiple images of a region:

these images might have artifacts like missing data or oc-

clusion by clouds. Our method is weakly supervised as we

do not need labels for missing data or clouds, we just need

dense labels for semantic segmentation.

label pixels accurately. Recently, some convolutional neu-

ral networks (CNNs) have shown invariance to clouds while

working on multiple images for the task of vegetation clas-

sification. Alternatively, given the large number of images

captured at the same location, it is possible to fuse infor-

mation of several images into a single image. This single

image can then be used for a variety of tasks.

In this work, we explore the problem of fusing multiple

registered overhead images. The goal is for the fused image

to produce more accurate predictions for the task than the

individual input images. This is performed using a per-pixel

scoring CNN, which we call a quality network, that predicts

quality for each image pixel. A high quality pixel is one

that is more useful for the task. In this work, we consider

semantic segmentation as the final task. Based on scores

from the quality network, we synthesize the fused image

directly from the input images.

We present a general framework which learns to com-

bine multiple input images, based on the quality of every
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pixel, such that the performance of the final task of seman-

tic segmentation is improved. An overview of our method is

shown in Figure 1. We pass all input images through a qual-

ity network that scores each pixel. The final image is syn-

thesized based on these scores. The fused image is then fed

to a standard image segmentation network. This allows us

to train an end-to-end system that learns to predict per-pixel

quality without requiring labels for artifacts in individual

images. We only need semantic segmentation labels, such

as roads and buildings, to optimize our method. We quan-

titatively and qualitatively show that our system learns to

identify image artifacts to make a final image that is cleaner

than any of the individual input image. Since we synthesize

a single fused image which is better than the noisy input

images, it can then be used for any task.

Our main contribution is that we propose a weakly super-

vised learning approach that learns to predict image quality

without requiring image quality labels. To the best of our

knowledge, this is first work that both synthesizes clean im-

ages, without direct supervision, and optimizes for a task

like semantic segmentation using multiple images. We sys-

tematically show the usefulness of our method in various

situations with varying number of input images and amount

of artifacts in images.

2. Related Work

The problem of fusing multiple overhead images of a

region has been explored in various classical and modern

methods. These methods require different levels of input

information and the solutions range from detection of arti-

facts to fusion of multiple noisy image.

2.1. Classical Fusion Methods

A classical, Fourier analysis based interpolation method

was presented by Roerink et al. [13]. In this method,

missing and cloudy regions were filled in by interpolating

images collected at other times. Results were shown on

Normalized Difference Vegetation Index (NVDI) compos-

ite images of agricultural areas in Europe. The method as-

sumes knowledge of frequencies in images based on fast

Fourier transform of previous, presumably clean, imagery.

A patch based method was presented by Lin et al. [10].

This method included several steps including cloud detec-

tion, intensity normalization, and patch-based image syn-

thesis to remove clouds from multiple images. It is a com-

plex method and some steps are slow, e.g. seam selec-

tion is formulated as an optimization problem. A similar

method by Chen et al. [1] proposed a method to merge tar-

get and reference images to remove clouds from given im-

ages. It is assumed that clouds can be perfectly detected

using Fmask [20], a classical detection method for Landsat

imagery.

2.2. Cloud Detection

A key component of most existing methods is a sep-

arate module for cloud detection. Note that these meth-

ods rely on explicit labels of clouds, either available at test

time or through some existing algorithm. Several datasets

have been prepared to evaluate methods of cloud detec-

tion, for example Landsat-8 SPARCS by Foga et al. [3].

In this dataset, pixel-wise dense labels are provided that in-

clude cloud, shadow or clean. A supervised cloud detec-

tion method was presented by Li et al. [9]. This method

requires labels of clouds and cloud shadows. Once trained,

their method can label every pixel as clean, cloudy, or hav-

ing cloud shadow: they do not try to make a clean image

using these masks.

2.3. Removal of Translucent Clouds

Several methods, ranging from classical image process-

ing to modern generative adversarial networks (GANs),

have been proposed to remove translucent clouds from over-

head imagery. Enomoto et al. [2] presented a method of

removing thin clouds from aerial images. They built a

synthetic dataset in which Perlin noise is used to simu-

late clouds. They used a multispectral conditional GAN to

remove clouds from images. A major limitation of their

method is that the near IR image is not covered with clouds.

Singh and Komodakis [18] used a conditional GAN on

color images. This paper also used Sentinel-2 imagery.

Tedlek et al. [19] proposed an image processing algorithm

to remove cloud from an image. They showed result on a

single image with a synthetic, translucent cloud.

2.4. Supervised Fusion Methods

These methods either require cloud-free images of the

same region or labelled data indicating cloud pixels in im-

ages. The method proposed by Mateo et al. [12] requires

cloud-free images to estimate a background image. A dif-

ference image is computed from the cloudy input image and

the estimated background is used to predict cloud masks.

Even though specific cloud masks are not required, clean

images without clouds are required by this work. Method

of Li et al. [8] proposed a nonnegative matrix factorization

based algorithm for cloud removal. This method also re-

quires a cloud-free reference image, which might not be

possible. Khan et al. [6] present an inpainting method for

completion of missing data from satellite images of forests.

In this work, the quality label for every pixel is assumed to

be available. Fusion is done using imagery captured at dif-

ferent times based on the available quality maps and spatial

consistency is enforced by solving an optimization problem.

2.5. Cloud Invariant Segmentation

Rußwurm and Körner [17] presented an LSTM and

GRU-based recurrent system that can use multiple images



simultaneously for vegetation classification from overhead

images. Although this work focused on classification, some

qualitative results show that the network learns to ignore

the cloudy images. In a newer work [16], they provided a

quantitative analysis of segmentation results showing that

even with an increase in proportion of clouds in multiple

images, classification results remain largely the same. This

analysis reinforced the claim that the recurrent network had

learned to filter out cloudy images. There were still at least

four images without clouds, in the worst case.

Our work differs in two ways: first we do not assume

the availability of any completely clean images. Secondly,

instead of learning to ignore clouds, we present a more gen-

eral framework that can fuse multiple images to make a sin-

gle, good image which can then be used for any task. We do

so without requiring additional labels for clouds or missing

data.

3. Weakly-Supervised, Multi-Image Fusion

We present a multi-image fusion method that can take

any number of input images to predict a fused image with-

out requiring labels of artifacts in the input images.

3.1. Problem Formulation

For a given geographic region, we assume there exists

a set of noisy images, I = {I1, . . . , IK}, where Ij ∈
R

h×w×3. The goal is to fuse these images so that the com-

bined image F = φ(I) is free of artifacts. We assume

that semantic segmentation labels (e.g., roads and build-

ings) of the region are available. Specifically, for each re-

gion, we have a segmentation mask S ∈ R
h×w×C , whereC

is the number of classes. Neither examples of clean images

nor explicit annotations for artifacts in the input images are

available, making this a weakly supervised task.

3.2. Proposed Framework

Our proposed framework is shown in Figure 2. There are

three main components: a per-pixel quality prediction net-

work, a fusion module, and a semantic segmentation net-

work. The quality network predicts per-pixel quality for

all input images and then a fusion module synthesizes the

fused image. The synthesized image is then used as input to

the segmentation network. We discuss these components in

more detail in subsequent sections.

3.3. PerPixel Quality Prediction

Each image Ij is passed through a quality network which

predicts a quality mask,Qj ∈ R
h×w×1, which is a per-pixel

mask of logits. Any pixel-wise classification network can

be used as the quality network. In this work, we use a vari-

ant of the U-Net [14] architecture with the same number of

layers but with 1/4 as many feature maps. We found lim-

Quality 
Net

Quality 
Net

Quality 
Net

Image 2

Image 1

Image j

Q1

Q2

Qj

Fused 
Image

Quality 
Weighted 
Average

Segmentation
Network

Predicted
Labels

Quality 
Masks

Figure 2: The proposed framework. We train a quality net-

work to predict per-pixel quality of input images and the

fused image is synthesized by computing quality-weighted

average of input images. The fused image is fed into a seg-

mentation network. We train both networks simultaneously

using only the segmentation labels.

ited performance gain if we increase the number of feature

maps.

3.4. Image Fusion Module

Once we have pixel-wise quality scores of all input im-

ages, we can then compute the relative quality score, at each

pixel, by computing the softmax across images:

Q∗

j (x, y) =
eQj(x,y)

K∑
k=1

eQk(x,y)

. (1)

where (x, y) is the pixel location. The final fused image F
is obtained by averaging all images weighted by the relative

quality score:

F (x, y) =

K∑

j=1

Ij(x, y) ·Q
∗

j (x, y). (2)

Since softmax is a differentiable operation, we can use this

operation and train our method in an end-to-end fashion.

3.5. EndtoEnd Learning

We pass the fused image F through the segmentation

network to get classification labels: p = ψ(F ) so that

pi(x, y) is the predicted probability of the pixel (x, y) be-

longing to class i ∈ {1, . . . , C}. ψ can be any arbitrary

semantic segmentation network. We use the same variant

of the U-Net (with 1/4 number of feature maps) for seg-

mentation. Since we only have segmentation labels as su-

pervision, we use crossentropy loss for end-to-end training:

L(p, S) = −
1

h× w

w∑

x=1

h∑

y=1

C∑

i=1

αi · pi(x, y)log(Si(x, y))

(3)



where Si(x, y) is the true probability of class i at (x, y) and

αi is a weight factor for every class. These weights can

be used to give more importance to some classes or to deal

with imbalanced data.

It is important to note that we optimize both the qual-

ity network (φ) and the segmentation CNN (ψ) with seg-

mentation labels, using the loss function (3). Even though

we do not have direct supervision of quality labels, the net-

work learns it implicitly: a good quality prediction leads to

better segmentation results. This is similar to many recent

works which learn some differentiable operation within the

network without direct supervision. For example, spatial

transformer networks [4] learn affine transformation, with-

out explicit supervision, that improve the end goal of object

recognition.

4. Experiments

We now discuss the dataset and implementation details,

followed by qualitative and quantitative analyses. We have

released our code online 1.

4.1. Dataset

We use data from the City-OSM dataset [5]. In this

dataset, aerial imagery is collected from Google Maps and

labels are obtained from Open Street Maps (OSM). The la-

bels include road, building and background. We train on

images covering 10.26 km2 from Berlin. We perform eval-

uations on 2.16 km2 area in Potsdam. The area covered by

Potsdam is the same as in the ISPRS Potsdam dataset [15].

The ground sampling distance for both cities is 9.1 cm.

Following recent studies on removing clouds from im-

ages [18, 19], we make a synthetic dataset. We study the ef-

fect of missing data and clouds. Having a synthetic dataset

allows the provision of having the clean or ground-truth im-

ages. In this work, we do not train using clean images or

even cloud masks: clean images are used only for evaluation

of models. A key benefit of a synthetic dataset is the abil-

ity to conduct systematic empirical studies, without needing

expensive annotations. We examine how the fusion process

is effected by variables such as number of input images and

amount of artifacts in each image.

We simulate missing data by setting values within a re-

gion to zero. We randomly select regions based on the de-

sired area. To synthesize clouds, following existing meth-

ods, we use alpha blending. The process of superimposing

clouds is shown in Figure 3. We select regions of random

sizes at random locations to place clouds. Within each win-

dow, we use Perlin noise as a stochastic method of deciding

cloud shape, as shown in Figure 3(b). While existing meth-

ods use plain white color, we use real cloud images (Fig-

ure 3(c)) for alpha blending to get the final cloudy image

1http://github.com/UkyVision/

weakly-supervised-image-fusion
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(d) Final cloudy image.

Figure 3: The process of generating cloudy images. We

randomly select a region and generate an alpha mask using

Perlin noise (b). We use a real cloud image (c) to synthesize

the cloudy image (d).

(Figure 3(d)). The real cloud images are split into train and

test sets.

4.2. Metrics and Evaluation

We evaluate our method in terms of the quality of the

fused image and the correctness of the semantic segmen-

tation. For segmentation, we report, mean pixel accuracy,

Jaccard index (also knows as mean intersection over union

(mIoU)), and frequency-weighted intersection over union

(fwIoU) [11]. Even though we do not use clean images

for training, we show similarity of the fused images with

the clean images in terms of mean L1-error. For compari-

son, we use an unweighted average as a fusion strategy. The

baseline method includes the same U-Net variant segmen-

tation network as our approach.

To conduct systematic analysis, for every test of a partic-

ular number of images and artifact quantity, we train both

our model and the baseline method. The baseline method

only has the segmentation network while our method trains

both the segmentation network as well as the quality net-

work.

To get a rough upper bound on segmentation results, we

also train a segmentation network with clean data without

any artifacts. An ideal fusion system should have segmen-

tation results as good as that of clean data.



S1: 2 images, 25%

area

S2: 6 images, 50%

area

Acc. mIoU fwIoU Acc. mIoU fwIoU

Clean

Data

73.25 49.20 59.07 73.25 49.20 59.07

Baseline 69.20 42.78 53.94 61.96 25.15 41.36

Ours 72.91 49.44 58.64 72.15 49.90 57.96

Table 1: Quantitative results on two different scenarios.

Clean data show results of a network trained on a single

good image without any cloud or occlusion.

4.3. Implementation Details

We use the same variant of U-Net with 1/4 number of

feature maps for both the quality and segmentation net-

works. Specifically, in 2D convolutional layers, number of

output feature maps are: 32, 64, 128, 128, 64, 32, 16, 16,

and 1.

The images in this dataset are large and of different sizes.

We split every tile in the original dataset into sixteen im-

ages, giving us 3200 images in Berlin. Every image is re-

sized to 300× 300. We train our method, and the baseline,

on images from Berlin, using 2560 images for training and

640 images for validation. We test our method on 384 im-

ages from Potsdam. Since location, orientation, and aspect

ratios of artifacts are chosen randomly, we conduct test set

evaluation 10 times and present mean values. The dataset

has a class imbalance problem: most of the pixels belong to

the background class and there are very few road pixels. To

deal with this, we use weight factors αi of 2, 1, and 0.5 for

road, building, and background, respectively.

We train all models for 20 epochs with the Adam [7]

optimizer using β1 = 0.9 and β2 = 0.999. We set an initial

learning rate of 1× 10−4 , The learning rate is halved after

every 5 epochs. We train both networks from scratch with

random initialization.

5. Results

5.1. Quantitative Results

We present segmentation results of our method, baseline,

and a network trained on clean data in Table 1. We consider

two different scenarios. First, we have two input images

and artifacts up to 25% of each image (S1). Secondly, we

consider a scenario (S2) in which there are six input im-

ages, each having clouds or missing data up to 50% of the

total area. In Table 1, we can see that our proposed fusion

method outperforms the baseline with a significant margin.

We present segmentation results of clean data, as a refer-

ence, in the top row.

We are not directly optimizing for the fused images to be

closer to the clean images, since we do not assume avail-

S1: 2 images,

25% area

S2: 6 images,

50% area

L1-Error L1-Error

Clean Data 0.0 0.0

Baseline 0.2820 0.7608

Ours 0.0177 0.0372

Table 2: Quantitative results on two different scenarios (S1

and S2) on the test set. We present clean data information as

a reference, showing that ideal fusion process would lead to

mean L1-error of zero. We can see that our L1-error of our

proposed method is 15 to 20 times lower than the baseline.

ability of such data for training. Still, we can see how well

our method is doing in terms of synthesizing fused images

that are similar to the true, clean images. We present this

similarity in terms of mean per-pixel L1-error, in Table 2.

We can see that our method has significantly lower error

than the baseline method.

5.2. Varying Number of Input Images

We analyze the effect of number of input images, keep-

ing the area of occlusion and clouds fixed to roughly half

of the image. The results are shown in Figure 4. Under-

standably, the hardest case is with two input images, given

that roughly half of each image has artifacts. As we in-

crease number of images, the segmentation results slightly

improve (Figure 4(a)). Even though there are some varia-

tions in results, overall, the segmentation results are stable

at much higher values than the baseline. On the other hand,

segmentation results of the baseline method consistently get

worse as number of input images increases. The trend is

highlighted when we consider L1-error between the fused

image and the clean image. While our method converges

to nearly zero, error in baseline keeps rising, as shown in

Figure 4(b).

5.3. Increase in Occlusions and Clouds

Next, we evaluate the effect of different proportions of

occlusions and clouds in images while fixing the number of

images to two. In this study, one image is cloudy and the

other is occluded. The performance of our method is com-

pared to the baseline, as shown in Figure 5. We can see that

as relative area of artifacts increase in the input images, the

results get worse. However, segmentation and reconstruc-

tion results of the proposed method significantly outperform

the baseline.

5.4. Qualitative Results

We now present some qualitative results. First, we show

the case of two input images in Figure 6. It can be seen

that the relative quality masks ((b) and (d)) can successfully
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Figure 4: Test set performance of our method vs baseline as input images vary in number. Segmentation results (a) and

L1-error (b) show the superiority of our method. We can see that our method gets similar results to a network trained with

clean images.
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Figure 5: Performance of our method vs baseline, on the test set, as quantities of occlusion and clouds increase. As clouds

(and occlusions) increase, the performance of all methods degrades. However, we show that for as large amounts as 50% of

image is cloud/occlusion, our method is quite robust.

capture artifacts including clouds and missing data. While

artifacts are obvious in the baseline method (c), the fused

images (f) very closely match the true, clean images. The

last rows shows a challenging case where cloud and missing

data overlap. Despite the artifact in the fused image, the

result looks much better than the baseline.

We now present the case of four input images. In ad-

dition to the fused image, we show the predicted and true

segmentation labels.

6. Conclusion

We presented a robust fusion method which can learn

to combine multiple overhead images of a region. We for-

mulated the problem as a weakly supervised task where

only segmentation labels, which are readily available from

sources like Open Street Maps, are used for training. We

showed that our end-to-end training method gives better

segmentation results than the baseline. A major benefit of

our method is that the fused image matches the true rep-

resentation (in terms of L1-error) without requiring direct

supervision of artifacts or annotations of clean regions of

images. We conducted a systematic analysis to study the ef-

fect of varying input images and different proportions of ar-

tifacts in each image. For systematic evaluations and proof

of concept, we used a synthetic dataset is this work. How-

ever, this is a limitation and we plan to work on real data in

the future.
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(a) Image 1 (b) Mask 1 (c) Image 2 (d) Mask 2 (e) Baseline (f) Fused (Ours) (g) Target

Figure 6: Qualitative results with two input images (a) and (c). We can see that predicted relative quality masks (b) and (d)

have learned to locate missing data and clouds. The last row shows a case where it is impossible to synthesize a clean image;

performance of our method degrades gracefully and the fused image is still better than the baseline.
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labels are sown in (f) and (g), respectively. Last two rows show the imperfect road classification. In all cases, the fused image

seems to avoid artifacts in input images.
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