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Abstract

We explore the application of super-resolution tech-

niques to satellite imagery, and the effects of these tech-

niques on object detection algorithm performance. Specif-

ically, we enhance satellite imagery beyond its native res-

olution, and test if we can identify various types of vehi-

cles, planes, and boats with greater accuracy than native

resolution. Using the Very Deep Super-Resolution (VDSR)

framework and a custom Random Forest Super-Resolution

(RFSR) framework we generate enhancement levels of 2×,

4×, and 8× over five distinct resolutions ranging from 30

cm to 4.8 meters. Using both native and super-resolved

data, we then train several custom detection models us-

ing the SIMRDWN object detection framework. SIMRDWN

combines a number of popular object detection algorithms

(e.g. SSD, YOLO) into a unified framework that is designed

to rapidly detect objects in large satellite images. This ap-

proach allows us to quantify the effects of super-resolution

techniques on object detection performance across multiple

classes and resolutions. We also quantify the performance

of object detection as a function of native resolution and

object pixel size. For our test set we note that performance

degrades from mean average precision (mAP) = 0.53 at 30

cm resolution, down to mAP = 0.11 at 4.8 m resolution.

Super-resolving native 30 cm imagery to 15 cm yields the

greatest benefit; a 13 − 36% improvement in mAP. Super-

resolution is less beneficial at coarser resolutions, though

still provides a small improvement in performance.

1. Introduction

The interplay between super-resolution techniques and

object detection frameworks remains largely unexplored,

particularly in the context of satellite or overhead imagery.

Intuitively, one might assume that super-resolution meth-

ods should increase object detection performance, as an in-

crease in resolution should add more distinguishable fea-

tures that an object detection algorithm can use for discrim-

ination. Detecting small objects such as vehicles in satellite

imagery remains an exceedingly difficult task for multiple

reasons [37] and an artificial increase in resolution may help

to alleviate some of these issues. Some of the issues present

include:

1. Objects such as cars in satellite imagery have a small

spatial extent (as low as 10 pixels) and are often

densely clustered.

2. All objects exhibit complete rotation invariance and

can have any orientation.

3. Training example frequency is low versus other disci-

plines. Few datasets exist that have appropriate labels

for objects within satellite imagery. The most notable

are: SpaceNet [38], A Large-scale Dataset for Object

DeTection in Aerial Images (DOTA) [40], Cars Over-

head With Context (COWC) [27], and xView [18].

4. Most satellite imagine sensors cover a broad area and

contain hundreds of megapixels, thereby producing

the equivalent of an ultra-high resolution image. For

example, the native imagery used in this study was

on average ≈ 57 times larger than benchmark super-

resolution datasets Set5, Set14, BSD100, and Ur-

ban100. When working with modern neural network

architectures these images must be tiled into smaller

chunks for both training and inference.

Although several studies have been conducted using SR

as a pre-processing step [1, 11, 12, 33, 42, 3, 10, 5], none

have quantified its affect on object detection performance

in satellite imagery across multiple resolutions. This study

aims to accomplish that task by training multiple custom ob-

ject detection models to identify vehicles, boats, and planes

in both native and super-resolved data. We then test the

models performance on the native (ground-truth) imagery

and super-resolved imagery of the same Ground Sample

Distance (GSD: the distance between pixels measured on

the ground). Additionally, this is the first study to demon-

strate the output of super-resolved 15 cm GSD satellite im-

agery. Although no native 15 cm satellite imagery exists
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for comparison, this data can be compared against coarser

resolutions to test the benefits provided by super-resolution.

The cost-benefit analysis of such a study is enormous.

Satellite manufacturers spend the majority of their budget

on the design and launch of satellites. For example, the Dig-

italGlobe WorldView-4 satellite cost an estimated $835 mil-

lion dollars when one includes spacecraft, insurance, and

launch [8]. Ideally, one could couple an effective SR en-

hancement algorithm with a smaller, cheaper satellite that

captures images in coarser resolution. The process of cap-

turing and subsequently enhancing coarser data could dras-

tically reduce launch cost, expand satellite field of view, re-

duce the number of satellites in orbit, and improve downlink

speeds between satellites and ground control stations.

2. Related Work

2.1. Super­Resolution Techniques and Application
to Overhead Imagery

Single-image Super-Resolution (SR) is the process for

deriving high-resolution (HR) images from a single low-

resolution (LR) image. Although super-resolution remains

an ill-posed and difficult problem, recent advances in neural

networks and machine learning have enabled more robust

SR algorithms that exhibit effective performance. These

techniques use high-resolution image pairs to learn the most

likely HR features to map to the LR image features and cre-

ate an output SR product.

Over the past five years, convolutional neural network

approaches have been used to produce state of the art super-

resolution results. Dong et al. [7] was the first to estab-

lish a deep learning approach with SRCNN. This has been

followed up by several successive approaches, major alter-

ations, and improvements. Very Deep Super Resolution

(VDSR) [15] exhibited state of the art performance and was

one of the first to modify the SRCNN approach by creating

a deeper network with 20 layers to learn a residual image

and transform LR images into HR images. Developed con-

currently, the Deeply-Recursive CNN (DRCN) [16] intro-

duced a recursive neural network approach to super-resolve

imagery. The Deeply Recursive Residual Network (DRRN)

[34] builds upon the VDSR and DRCN advancements using

a combination of the residual layers approach and recursive

learning in a compact network.

More complex methods followed, such as the Laplacian

Pyramid Super-Resolution Network (LapSRN) [17]. Ad-

versarial training has also been employed and the SR Gener-

ative Adversarial Network (SRGAN) [19] produces photo-

realistic 4× enhanced images. The use of wider and deeper

networks has also been proposed. The most notable being

Lim et al. [21], which proposed Enhanced Deep Residual

Networks (EDSR). Most recently, the Deep Back Projection

Network (DBPN) [9] showed state of the art performance

for an 8× enhancement by connecting a series of iterative

up- and down-sampling stages. Newer block based meth-

ods such as the Information Distillation Network (IDN) [14]

was developed as a compact network that could gradually

extract common features for fast the reconstruction of HR

images. In another example, the Residual Dense Network

(RDN) [43] uses residual dense blocks to produce strong

performance.

Although new and powerful single image SR techniques

continue to be developed, these techniques have been infre-

quently applied to overhead imagery. One of the most no-

table applications of super resolution to satellite and over-

head imagery remains the recent paper by Bosch et al. [2].

The authors analyze several sources of satellite imagery for

this research and quantify their success in terms of PSNR

for an 8× enhancement using a GAN. In another exam-

ple, [22] use deep neural networks for simultaneous 4×

super-resolution and colorization of satellite imagery. Sev-

eral papers [41, 25, 35, 20, 28] modify or leverage SRCNN

[7] and/or VDSR [15] to successfully super-resolve Jilin-1,

SPOT, Pleiades, Sentinel-2, and Landsat imagery.

Ultimately, a few specific papers are direct precursors

for this work: In the first, [3] use fine resolution aerial im-

agery and coarser satellite imagery with a coupled dictio-

nary learning approach to super enhance vehicles and detect

them with a simple linear Support Vector Machine model.

Their results showed that object detection performance im-

proves when using SR as a pre-processing step versus the

native coarser imagery. Xu et al. [42] use sparse dic-

tionary learning to generate synthetic 8× and 16× super-

resolved imagery from Landsat and MODIS image pairs.

Their results show an increase performance for land-cover

change mapping when using the super-resolved imagery.

Although these approaches are similar to ours, they fail to

use newer neural network based approaches, and are nar-

rower in scope. Finally, [10] super-resolve imagery using

DBPN [9] and detect various objects in traditional photog-

raphy using SSD [23]. They quantify their success in terms

of mAP and also add a novel element to this work of de-

signing a loss function to optimize SR for object detection

performance. Their results show that end-to-end training of

these algorithms gave a performance boost for object detec-

tion tasks, and is a promising avenue to explore for future

research.

Overall, we hypothesized that SR techniques could im-

prove object detection performance, particularly when us-

ing satellite imagery, however no such study has been con-

ducted. To address this question, our study investigates the

relationship between object detection performance and res-

olution, spanning five unique GSD resolutions, with six SR

outputs per resolution. Ultimately, we investigate 35 sepa-

rate resolution profiles for object detection performance.



2.2. Object Detection Techniques

A number of recent papers have applied advanced ma-

chine learning techniques to aerial or satellite imagery, yet

have focused on a slightly different problem than the one

we attempt to address. For example, [24] demonstrated the

ability to localize objects in overhead imagery; yet appli-

cation to larger areas would be problematic, with an in-

ference speed of 10 - 40 seconds per 1280 × 1280 pixel

image chip. Efforts to localize surface to-air-missile sites

[26] with satellite imagery and sliding window classifiers

work if one only is interested in a single object size of hun-

dreds of meters. Running a sliding window classifier across

a large satellite image to search for small objects of inter-

est quickly becomes computationally intractable, however,

since multiple window sizes will be required for each ob-

ject size. For perspective, one must evaluate over one mil-

lion sliding window cutouts if the target is a 10 meter boat

in a DigitalGlobe image. Application of rapid object de-

tection algorithms to the remote sensing sphere is still rela-

tively nascent, as evidenced by the lack of reference to SSD

[23], Faster-RCNN [30], R-FCN [6], or YOLO [29] in a re-

cent survey of object detection in remote sensing [4]. While

tiling a large image is still necessary, the larger field of view

of these frameworks (a few hundred pixels) compared to

simple classifiers (as low as 10 pixels) results in a reduc-

tion in the number of tiles required by a factor of over 1000.

This reduced number of tiles yields a corresponding marked

increase in inference speed. In addition, object detection

frameworks often have much improved background differ-

entiation (compared to sliding window classifiers) since the

network encodes contextual information for each object.

As we seek to study the effect of super-resolution on ob-

ject detection performance in real-world satellite imagery,

and for all of the reasons listed above - rapid object de-

tection frameworks are the logical choice for this study.

The premier rapid object detection algorithms (SSD, Faster-

RCNN, R-FCN, and a modified version of YOLO called

YOLT [36]) were recently incorporated into the unified

framework of SIMRDWN [37] that is optimized for ingest-

ing satellite imagery, typically several hundred megapixels

in size. The SIMRDWN paper reported the highest per-

formance stemmed from the YOLT algorithm, followed by

SSD, with Faster R-CNN and RFCN significantly behind.

3. Dataset

The xView Dataset [18] was chosen for the applica-

tion of super-resolution techniques and the quantification

of object detection performance. Imagery consists of 1,415

km2 of DigitalGlobe WorldView-3 pan-sharpened RGB im-

agery at 30 cm native GSD resolution spread across 56 dis-

tinct global locations and 6 continents (sans Antarctica).

The labeled dataset for object detection contains 1 million

object instances across 60 classes annotated with bound-

ing boxes, including various types of buildings, vehicles,

planes, trains, and boats. For our purposes, we ultimately

discarded classes such as “Building,” “Hangar,” and “Vehi-

cle Lot” because we found that such objects are better rep-

resented by polygonal labels rather than bounding boxes for

foundational mapping [38] purposes.

We chose an aggregation schema due to inconsistent la-

beling within the dataset. Unfortunately, many objects are

mislabeled or simply missed by labelers (see Figure 1). This

leads to an increase in false positive detection rates and ob-

jects being inaccurately tagged as mis-classifications after

inference. In addition, many xView classes have a very

low number of training examples (e.g. Truck w/Liquid

has only 149 examples) that are poorly differentiated from

similar classes (e.g. Truck w/Box has 3653 examples and

looks very similar to Truck w/Liquid). The question of how

many training examples are necessary to disentangle similar

classes is beyond the scope of this paper.

Our classes ultimately consist of the following (orig-

inal xView classes listed in parentheses): Small Air-

craft (Fixed-wing Aircraft, Small Aircraft), Large Air-

craft (Cargo Plane), Small Vehicle (Passenger Vehicle,

Small Car, Pickup Truck, Utility Truck), Bus/Truck (Bus,

Truck, Cargo Truck, Truck w/Box, Truck w/Flatbed, Truck

w/Liquid, Dump Truck, Haul Truck, Cement Mixer, Truck

(a) (b) (c)

Figure 1: Issues with xView ground truth labels. Red = car,

green=truck, orange=bus, yellow=airplane, purple=boat.

Note, the incorrectly sized cars in (a), the erroneous “boat”

ground truth labels in (b), and the missing cars in (c).

Figure 2: Object size histograms (in pixels), recall that each

pixel is 30 cm in extent.



Category Mean Size Counts

(meters) Train Test Total

Boat 16.5 2379 2347 4726

Large Aircraft 36.9 424 294 718

Small Aircraft 13.2 264 178 442

Bus/Truck 8.8 19337 13269 32606

Small Vehicle 4.7 129438 89923 219361

Table 1: Object Counts

Tractor), and Boat (Motorboat, Sailboat, Yacht, Maritime

Vessel, Tugboat, Barge, Fishing Vessel, Ferry). See Table 1

for dataset details and Figure 2 for object size histograms.

3.1. Simulation of Optics and Sensors

All data were preprocessed consistently to simulate

coarser resolution imagery and test the affects of our SR

techniques on a range of resolutions. We intend our results

to showcase what can be reasonably accomplished given

coarser satellite imagery, rather than simply what is possi-

ble given the ideal settings (no blurring, bicubic decimation)

under which most SR algorithms are introduced. We at-

tempt to simulate coarser resolution satellite imagery as ac-

curately as possible by simulating the optical point-spread

function (PSF) and using a more robust decimation algo-

rithm. This is important because the optics of the telescope

greatly impact the appearance of very small objects. The

common practice of simply resizing an image by reducing

its dimensions by a factor of two will simulate a different

sensor containing 1/4 the number of pixels; yet this ap-

proach ignores the different optics present in a properly de-

signed telescope that would be coupled to such a sensor. A

properly designed sensor should have pixel size determined

by the Nyquist sampling rate: half the size of the mirror

resolution determined by the diffraction limit. Given the

cost and complexity of launching satellite imaging constel-

lations to orbit, we assume that all imaging satellites will

have properly designed sensors. We can use the assumption

of Nyquist sampling to determine the PSF of the telescope

optics, which can be approximated by a Gaussian of appro-

priate kernel size:

kernel = 0.5×GSDout /GSDnative (1)

For our study, data were degraded from the native 30 cm

GSD using a variable Gaussian blur kernel to simulate the

point-spread function of the satellite depending upon our

desired output resolution (Equation 1). We then used inter-

area decimation to reduce the dimensions of the blurred im-

agery to the appropriate output size (e.g. 60 cm imagery

will have 1/4 the number of pixels as 30 cm imagery over

the same field of view). We repeat the above procedure

to simulate resolutions of 60, 120, 240, and 480 cm. The

ground truth data and the outputs from the super-resolution

algorithms were randomly split into training (60%) and val-

idation (40%) categories for object detection. The same im-

ages are contained in both the training and test sets regard-

less of resolution to maintain consistency when comparing

validation scores.

4. Super-Resolution Techniques

For this study, super-resolution is conducted with two

techniques for enhancement levels of 2×, 4×, 8× over five

distinct resolutions ranging from 30 cm to 4.8 meters. We

also create 15 cm GSD output imagery using the models

trained to super-resolve imagery from 60 cm to 30 cm and

120 cm to 30 cm.

Our first method is a convolutional neural network

derived technique called Very Deep Super-Resolution

(VDSR) [15]. VDSR has been featured as a baseline for the

majority of recent super-resolution research and was one of

the first to modify the initially proposed convolutional neu-

ral network method SRCNN [7]. This architecture was cho-

sen due its ease of implementation, ability to train for multi-

ple levels of enhancement, use as a standard baseline when

introducing new techniques, and favorable performance in

the past. We use the standard network parameters as set in

the original paper [15] and train for 60 epochs. We chose a

patch size of 41 × 41 pixels and augment by rotations (4)

and flipping (2) for eight unique combinations per patch.

This process is repeated for each enhancement level (2, 4,

and 8×), and each is fed into the same network for concur-

rent training. Average training time for a 2, 4, and 8× en-

hancement on 200 million pixel example is 55.9 hours on a

single Titan Xp GPU. Inference speed on a 544 × 544 pixel

image is very fast ≈ 0.2 seconds on the same hardware, al-

lowing for this method to easily scale to accommodate large

satellite images.

The second method is an approach that we have called

Random-Forest Super-Resolution (RFSR) and was de-

signed for this work; it requires minimal training time and

exhibits high inference speeds. RFSR is an adaptation of

other random forest super-resolution techniques such as

SRF [32] or SRRF [13] and can process both georeferenced

satellite imagery or traditional photography. We chose to in-

clude this simpler, less computationally intensive algorithm

that does not require GPUs to test its effectiveness against

a near state of the art SR solution. The hypothesis is that

even a simple technique may improve object detection per-

formance.

Our method uses a random forest regressor with a few

standard parameters. The number of estimators is set to

100, the maximum depth to 12, and the minimum samples

to split an internal node equal to 200. Finally, we use boot-

strapping and out-of-bag samples to estimate the error and

R2 scores on randomly selected unseen data during training.

These parameters were finely tuned using empirical testing



VDSR RFSR

Inference Time

(per image) 0.16 seconds 0.7 seconds

Training Time

(for 2, 4, 8×) 55.9 hours 10.8 hours

Table 2: Average inference time per 544×544 pixel image

and training time for a set of 1,500 images at native 30 cm

GSD resolution. RFSR used a 64GB RAM CPU and VDSR

used a NVIDIA Titan Xp GPU for inference and training.

to maximize PSNR scores (see Section 6 for details on met-

rics) while maintaining minimal training time (4 hours or

less per level of enhancement on a 64GB RAM CPU). It

should be noted that PSNR scores could be mildly improved

using a deeper tree with more estimators, at the cost of train-

ing time.

Like several other SR techniques, RFSR is trained only

using the luminance component from a YCbCr converted

image. HR images are degraded to create LR and HR im-

age pairs. The degraded LR image is then shifted by one

and then two pixels in each direction versus the HR image

and then compressed into a 3-dimensional array. The orig-

inal up-sampled LR image is then subtracted from the 3-D

LR array, and from the HR image for a residual training

schema. This normalizes the LR stack and HR image pair

and also removes homogeneous areas, emphasizing impor-

tant edge effects. After training and inference the interpo-

lated LR image is then added back to the models’ output

image to create the super-resolved output. RFSR can only

produce one level of enhancement (2, 4, or 8×) at a time.

Average training time for all three enhancements on ∼ 200

million pixel examples is 10.8 hours on a 64GB RAM CPU.

Average inference speed on a 544×544 pixel image is 0.7

seconds for this same hardware (Table 2).

5. Object Detection Techniques

As discussed in Section 1, advanced object detection

frameworks have only recently been applied to large satel-

lite imagery via the SIMRDWN framework. In the SIM-

RDWN paper, the authors reported the highest performance

stemmed from the YOLT algorithm, followed by SSD, with

Faster R-CNN and RFCN significantly behind. Therefore,

we opt to utilize the YOLT and SSD models within SIM-

RDWN for this study. For the YOLT model we adopt the

dense 22-layer network of [36] with a momentum of 0.9,

and a decay rate of 0.0005. We use a 544× 544 pixel train-

ing input size (corresponding to 164 × 164 meters). Train-

ing occurs for 150 epochs. For the SSD model we follow

the TensorFlow Object Detection API implementation with

the Inception V2 architecture. We adopt a base learning rate

of 0.004 and a decay rate of 0.95. We train for 30,000 iter-

ations with a batch size of 16, and use the same 544 × 544

Figure 3: The effects of super-resolution on a plane

and neighboring objects. As resolution degrades super-

resolution becomes a less tractable solution.

pixel input size as YOLT. For both YOLT and SSD we train

models on the “native” imagery (original 30 cm data, the

convolved and resized imagery described in Section 3.1), as

well as on the outputs of RFSR and VDSR applied to the ob-

ject detection training set. This approach yields a multitude

of models across the myriad architectures, super-resolution

techniques, and resolutions (see Figure ??, thus enabling a

detailed study of performance.

6. Metrics

Overall, super-resolution remains an active field of re-

search with rather limited direct focus on end application.

Typical performance metrics include Peak Signal-to-Noise

Ratio (PSNR) or the Structural SIMilarity (SSIM) Index

(which we report in Section 7.1), however these measures

do not quantify the enhancement to object detection perfor-

mance [39]. Although these images may be more visually

appealing as a result of super-resolution, such techniques

may have little impact on object detection performance.

For object detection metrics, we compare the ground

truth bounding boxes to the predicted bounding boxes for

each test image. For comparison of predictions to ground

truth we define a true positive as having an intersection over

union (IOU) of greater than a given threshold. An IoU of

0.5 is often used as the threshold for a correct detection,

though we adopt a lower threshold of 0.25 since most of

our objects are very small (e.g.: cars are only 10 pixels in

extent). This mimics Equation 5 of ImageNet [31], which



Figure 4: Examples of 15 cm GSD super-resolved output

from RFSR and VDSR versus the original 30 cm GSD na-

tive imagery.

sets an IoU threshold of 0.25 for objects 10 pixels in ex-

tent. Precision-recall curves are computed by evaluating

test images over a range of probability thresholds. At each

of 30 evenly spaced thresholds between 0.05 and 0.95, we

discard all detections below the given threshold. Non-max

suppression for each object class is subsequently applied

to the remaining bounding boxes; the precision and recall

at that threshold is tabulated from the summed true posi-

tive, false positive, and false negatives of all test images.

Finally, we compute the average precision (AP) for each

object class and each model, along with the mean average

precision (mAP) for each model. One-sigma error bars are

computed via bootstrap resampling, using 500 samples for

each scenario.

7. Experimental Results

7.1. Super­Resolution Performance

As expected, super-resolution performance was

strongest for the VDSR method, although RFSR produces

comparable results in some circumstances (Table 3). As

in other studies, the metrics degrade as the amount of

enhancement increases. Both techniques performed the

strongest on the 60 cm imagery, likely because initial

bicubic interpolation scores are high and the fact that the

image resolution is situated between a coarse and fine scale

where the image features are easier to detect and enhance.

GSDout Scale Bicubic VDSR RFSR

30cm 2× 38.68 / 0.8108 42.39 / 0.8925 39.79 / 0.8582

30cm 4× 35.86 / 0.6610 38.79 / 0.7795 35.85 / 0.7064

30cm 8× 33.82 / 0.5394 35.69 / 0.6117 34.32 / 0.5874

60cm 2× 41.26 / 0.9275 45.08 / 0.9635 43.03 / 0.9408

60cm 4× 36.98 / 0.8082 40.50 / 0.8904 37.41 / 0.8330

60cm 8× 33.99 / 0.6771 35.44 / 0.7293 33.78 / 0.6799

1.2m 2× 36.73 / 0.9151 39.33 / 0.9497 38.17 / 0.9448

1.2m 4× 32.49 / 0.7738 35.25 / 0.8633 33.47 / 0.8332

1.2m 8× 29.41 / 0.6097 30.58 / 0.6709 29.84 / 0.6700

2.4m 2× 35.26 / 0.8848 41.50 / 0.9624 36.67 / 0.9250

2.4m 4× 31.09 / 0.6898 33.75 / 0.8117 32.00 / 0.7659

2.4m 8× 28.46 / 0.5004 30.78 / 0.6089 28.87 / 0.5572

4.8m 2× 34.14 / 0.8404 37.01 / 0.9097 35.45 / 0.8953

4.8m 4× 30.42 / 0.6079 33.13 / 0.7527 31.24 / 0.6934

4.8m 8× 27.98 / 0.4013 30.22 / 0.5110 28.39 / 0.4488

Table 3: Average PSNR / SSIM scores for scale 2×, 4×,

and 8× across five super-resolution output GSDs. All test

imagery is the xView validation dataset (281 images). Bicu-

bic indicates the scores if LR images are just upscaled using

bicubic interpolation to match the HR image size.

A few specific examples of super resolution performance

are visible in Figure 3, where we test the effects of our al-

gorithm on a large object like a plane. Visually, VDSR and

RFSR both perform strongly at 30 cm for both a 2× (60

cm input → 30 cm SR output) and 4× (120 cm input → 30

cm SR output) enhancement, where both the fine details of

the plane, and small neighboring objects can be accurately

recovered. Recovering the plane at coarser resolutions is ex-

tremely difficult, particularly at 4.8 m with an 8× enhance-

ment. In this case the input for the SR algorithm is 38.4 m

GSD; at this resolution the satellite is simply insufficiently

sensitive to resolve finer objects. Overall, we observe that

when the imagery possesses fewer fine features to identify

in coarser resolutions, algorithms are unable to hallucinate

and recover all object types. A different algorithm such as

a GAN may be able to hallucinate visually finer features,

however previous studies [2] have shown that these algo-

rithms are unable to exactly recover specific features of var-

ious object types.

Finally, in Figure 4 we demonstrate the visual enhance-

ment provided by simulated 15 cm super-resolved output

from both VDSR and RFSR. Both methods improve the

visual quality by reducing pixelization and enhancing the

clarity of features and characters. RFSR appears to produce

slightly brighter edge effects than VDSR.

7.2. Object Detection Performance

For each model we compute mean average precision

(mAP) performance on a 338-image test set spanning 6 con-

tinents ( 632 sq. km) at each resolution. Example precision

recall curves are shown in Figure 6. The YOLT model is

clearly superior to SSD, particularly for small objects.

Repeating the computation shown in Figure 6 for all

models allows us to determine the degradation of perfor-



Figure 5: Example output of YOLT model at native 30 cm

resolution. Cars are in green, buses/trucks in blue, and air-

planes in orange.

(a) YOLT (b) SSD

Figure 6: Precision-recall curves for native 30 cm imagery

for both YOLT and SSD.

mance as a function of resolution, as shown in Figure 7. In

this plot we display 1σ bootstrap error bars for each model

group. Results for SSD models are significantly worse than

YOLT models, with a mAP of 0.30 at native 30 cm reso-

lution. The YOLT model (mAP = 0.53) at this resolution

is 77% better than SSD, which aligns fairly well with the

findings of [37]. Ultimately, object detection performance

decreases by 22 − 27% when resolution degrades from 30

cm to 120 cm, and another 73− 100% from 120 cm to 480

cm when looking across broad object classes.

We also plot the results of the effects of 2× super-

resolution models when using both YOLT and SSD (Figures

8 and 9). When using YOLT, performance improvements

are statistically significant only in the finest resolutions (Ta-

ble 4) with comparable results for both VDSR and RFSR.

In Figure 11 we show the change in mAP versus the orig-

inal 30 cm and 60 cm imagery. The largest performance

boosts can be seen when enhancing imagery from 30 cm to

15 cm (+13% vs 30 cm) and 60 cm to 15 cm (14 − 20%

improvement vs 60 cm). Interestingly, enhancing imagery

Figure 7: Performance of YOLT and SSD at the native sen-

sor resolution for all object classes.

Figure 8: Performance change over original resolution (Fig-

ure 7-Blue Line) using YOLT and 2× super-resolved data.

Figure 9: Performance change over original resolution (Fig-

ure 7-Red Line) using SSD and 2× super-resolved data.

from 60 cm to 30 cm was much less effective than enhanc-

ing imagery from 60 to 15 cm. These findings showcase the

value of super-resolution as a pre-processing step in these

GSDs. Combined with a state of the art object detection

framework, super-resolution has the ability to improve de-

tection rates beyond what is possible with the best commer-

cially available satellite imagery.

Furthermore, although performance is much worse with

SSD, super-resolution techniques are much more effective.



Model Data 30 cm 60 cm 120 cm 240 cm 480 cm

YOLT Native 0.53 ± 0.03 0.49 ± 0.03 0.41 ± 0.03 0.21 ± 0.02 0.11 ± 0.01

YOLT RFSR 2× 0.60 ± 0.03 (+1.7σ) 0.52 ± 0.03 (+0.7σ) 0.39 ± 0.03 (-0.5σ) 0.24 ± 0.02 (+1.1σ) 0.12 ± 0.01 (+0.7σ)

YOLT VDSR 2× 0.60 ± 0.03 (+1.7σ) 0.52 ± 0.03 (+0.7σ) 0.41 ± 0.03 (+0.0σ) 0.22 ± 0.01 (+0.4σ) 0.13 ± 0.01 (+1.4σ)

YOLT RFSR 4× 0.56 ± 0.03 (+1.6σ) 0.40 ± 0.03 (-0.2σ) 0.23 ± 0.01 (+0.9σ) 0.12 ± 0.01 (+0.7σ)

YOLT VDSR 4× 0.59 ± 0.02 (+2.8σ) 0.39 ± 0.03 (-0.5σ) 0.25 ± 0.02 (+1.4σ) 0.10 ± 0.01 (-0.7σ)

SSD Native 0.30 ± 0.01 0.32 ± 0.01 0.22 ± 0.01 0.08 ± 0.01 0.00 ± 0.00

SSD RFSR 2× 0.36 ± 0.01 (+4.2σ) 0.33 ± 0.02 (+0.4σ) 0.24 ± 0.01 (+1.4σ) 0.13 ± 0.01 (+3.5σ) 0.07 ± 0.01 (+7.0σ)

SSD VDSR 2× 0.41 ± 0.03 (+3.5σ) 0.32 ± 0.02 (+0.0σ) 0.26 ± 0.01 (+2.8σ) 0.14 ± 0.01 (+4.2σ) 0.08 ± 0.01 (+8.0σ)

Table 4: Performance for each data type in mAP. For both RFSR and VDSR at each resolution we note the error and statistical

difference from the baseline model (e.g. +0.5σ). The native sensor resolution of our original imagery and the input into the

super-resolution models is shown on the X-axis. We then compare the super-resolved outputs vs. the original native imagery

to test the change in object detection performance.

(a) Large Aircraft- Native Res-

olution Performance

(b) Buses/Trucks- Native Reso-

lution Performance

(c) Large Aircraft - AP Change (d) Buses/Trucks - AP Change

Figure 10: YOLT performance curves for Large Aircraft

(a) and Buses/Trucks (b) at native resolution. Performance

change versus these curves when super-enhancing imagery

2× (c and d).

With SSD, for both RFSR and VDSR performance boosts

are evident for all resolutions, except for 60 cm to 30 cm.

VDSR is generally shown to be slightly superior to RFSR

when detecting objects with SSD. For SSD the improve-

ment at 480 cm is statistically quite significant, though this

is primarily due to the mAP of 0.0 for native imagery. Per-

formance increases significantly once objects are greater

than ≈ 20 pixels in extent. This trend extends across object

classes, as shown in the performance curves for individual

object classes (See Supplemental Material).

8. Conclusions

In this paper we undertook a rigorous study of the utility

provided by super-resolution techniques towards the detec-

tion of objects in satellite imagery. We paired two super-

resolution techniques (VDSR and RFSR) with advanced ob-

ject detection methods and searched for objects in a satel-

lite imagery dataset with over 250,000 labeled objects in

a diverse set of environments. In order to establish super-

resolution effects at multiple sensor resolutions, we degrade

this imagery from 30 cm to 60, 120, 240, and 480 cm resolu-

Figure 11: Performance boost of enhancing 30 and 60 cm

imagery to 15 cm GSD.

tions. Our baseline tests with both the YOLT and SSD mod-

els of the SIMRDWN object detection framework indicate

that object detection performance decreases by 22 − 27%

when resolution degrades from 30 cm to 120 cm.

The application of SR techniques as a pre-processing

step provides an improvement in object detection perfor-

mance at most resolutions (Table 4). For both object detec-

tion frameworks, the greatest benefit is achieved at the high-

est resolutions, as super-resolving native 30 cm imagery to

15 cm yields a 13−36% improvement in mAP. Furthermore,

when using YOLT, we find that enhancing imagery from 60

cm to 15 cm provides a significant boost in performance

over both the native 30 cm imagery (+13%) and native 60

cm imagery (+20%). The performance boost applies to all

classes, but is most significant for boats, large aircraft, and

buses/trucks. Again with YOLT, in coarser resolutions (120

cm to 480 cm) SR provides little to no boost in performance

(-0.02 to +0.04 change in mAP). When using SSD, super-

resolving imagery from 30 to 15 cm provides a substantial

boost for the identification of small vehicles (+56%), but

provides mixed results for other classes (See supplemental

material). In coarser resolutions, with SSD, SR techniques

provide a greater boost in performance however the perfor-

mance for most classes is still worse compared to YOLT

with native imagery. Overall, given the relative ease of ap-

plying SR techniques, the general improvement observed in

this study is noteworthy and suggests SR could be a valu-

able pre-processing step for future object detection applica-

tions with satellite imagery.
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