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Abstract

Human pose estimation has dramatically improved

thanks to the continuous developments in deep learning.

However, marker-free human pose estimation based on

standard frame-based cameras is still slow and power hun-

gry for real-time feedback interaction because of the huge

number of operations necessary for large Convolutional

Neural Network (CNN) inference. Event-based cameras

such as the Dynamic Vision Sensor (DVS) quickly output

sparse moving-edge information. Their sparse and rapid

output is ideal for driving low-latency CNNs, thus poten-

tially allowing real-time interaction for human pose estima-

tors. Although the application of CNNs to standard frame-

based cameras for human pose estimation is well estab-

lished, their application to event-based cameras is still un-

der study. This paper proposes a novel benchmark dataset

of human body movements, the Dynamic Vision Sensor Hu-

man Pose dataset (DHP19). It consists of recordings from

4 synchronized 346x260 pixel DVS cameras, for a set of 33

movements with 17 subjects. DHP19 also includes a 3D

pose estimation model that achieves an average 3D pose

estimation error of about 8 cm, despite the sparse and re-

duced input data from the DVS.

DHP19 Dataset

DHP19 dataset and code are available at:

https://sites.google.com/view/dhp19.

1. Introduction

Conventional video technology is based on a sequence

of static frames captured at a fixed frame rate. This comes

with several drawbacks, such as: large parts of the data are
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Figure 1. Examples from DHP19: DVS recordings (left) and Vicon

labels (right) from 5 of the 33 movements. For visualization, the

DVS events are here accumulated into frames (about 7.5 k events

per single camera), following the procedure described in Sec. 4.

redundant, the background information is recorded at ev-

ery frame, and the information related to the moving ob-

jects is limited by the frame rate of the camera. Recently,

event cameras have proposed a paradigm shift in vision sen-

sor technology, providing a continuous and asynchronous

stream of brightness-change events. Event cameras, such

as the Dynamic Vision Sensor (DVS) [7, 17], grant higher

dynamic range and higher temporal resolution at a lower

power budget and reduced data-transfer bandwidth when

compared to conventional frame-based cameras [17]. The

redundancy reduction and high sparsity provided by the



DVS camera can make processing algorithms both mem-

ory and computationally lighter, while preserving the sig-

nificant information to be processed. Indeed, the proper-

ties of the DVS camera have made it an attractive candidate

for applications in motion-related tasks [12, 20]. Moreover,

previous work [21] has demonstrated that the DVS sparse

representation and high dynamic range can facilitate learn-

ing in Convolutional Neural Networks (CNNs) compared to

standard frame-based input. Until now, CNNs applied to the

output of event cameras have been proposed to solve clas-

sification [5, 19, 20] and single output regression tasks [21],

but this has (to our knowledge) never been attempted for

multiple output regression problems.

In this paper, we introduce the first DVS benchmark

dataset for multi-view 3D human pose estimation (HPE),

where the goal is to recover the 3D position of human joints

visible in event streams recorded from multiple DVS cam-

eras. In particular, we aim at exploring the application of

DVS cameras in combination with new HPE techniques for

more efficient online processing. In fact, HPE has broad ap-

plication in the real-time domain, where low-latency pose

prediction is an important attribute, such as virtual reality,

gaming, accident detection, and real-time movement feed-

back in rehabilitation therapy. State-of-the-art techniques

have experimented the use of frame-based cameras in com-

bination with CNNs reaching high level of accuracy. Al-

though CNNs represent the leading method in HPE, and

more generally in the whole visual recognition field, cur-

rent solutions still suffer from drawbacks in terms of large

GPU requirements and long learning phases. Those fea-

tures make them too slow or too power hungry for some

real-time applications. Therefore, there is a growing need

for efficient HPE, while retaining robustness and accuracy.

For these reasons, in this paper we explore the application

of DVS event-based cameras for HPE.

The main contributions of this paper are: we introduce

the Dynamic Vision Sensor Human Pose dataset (DHP19),

the first DVS dataset for 3D human pose estimation. DHP19

includes synchronized recordings from 4 DVS cameras of

33 different movements (each repeated 10 times) from 17

subjects, and the 3D position of 13 joints acquired with the

Vicon motion capture system [2]. Furthermore, a reference

study is presented performing 3D HPE on DHP19. In par-

ticular, we train a CNN on multi-camera input for 2D HPE,

and use geometric information for 3D reconstruction using

triangulation. Our proposed approach achieves an average

joint position error comparable to state-of-the-art models.

2. Related work

2.1. DVS and DAVIS sensors

The DVS camera responds to changes in brightness.

Each pixel works independently and asynchronously. The
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Figure 2. a) A DVS pixel generates log intensity change events,

representing local reflectance changes working in a wide range of

light condition. b) DAVIS grayscale frame and events generated

from a spinning dot; the sparse event output shows the rapidly

moving dot, otherwise blurred in the grayscale frame.

Table 1. Frame- (F) and event-based (E) datasets for 3D HPE.
Name Type # Cam. # Subj. # Mov. Eval. Metric

HumanEva [29] F 3/4 4 6 MPJPE1

Human3.6M [16] F 4 11 15 MPJPE1

MPI-INF-3DHP [22] F 14 8 8 MPJPE1, PCK2

MADS [32] F 3 5 30 MPJPE1

DHP19 (This work) E 4 17 33 MPJPE1

1 Mean per joint position error (mm), 2 Percentage of correct keypoints (%)

pixel generates a new event when the logarithm of the in-

coming light changes by a specific threshold from the last

event, and the new brightness is memorized. In a static-

camera setup, the data generated by the DVS camera con-

tains only information about moving objects and the back-

ground is automatically subtracted at the sensor stage. The

camera output is a stream of events, each represented by the

time it occurred (in microseconds), the (x,y) address of the

pixel, and the sign of the brightness change [7, 17]. More-

over, the logarithmic response provides an intrascene dy-

namic range of over 100 dB, which is ideal for applications

under the wide range of natural lighting conditions. Fig. 2a)

shows the DVS working principle. Events are generated in

a wide dynamic range, responding to contrast changes. The

event cameras used in this paper are of the Dynamic and

Active Pixel Vision Sensor (DAVIS) type, an advanced ver-

sion of the DVS [17]. The DAVIS camera is able to record

both DVS events and standard static APS (Active Pixel Sen-

sor) frames. Fig. 2b) shows the difference between the APS

frame and the DVS stream of events.

2.2. Event-based datasets

To date there are only a limited number of published

event-based datasets, due to the relative novelty of the tech-

nology [1]. Among these, only two relate to human ges-

tures or body movements. [14] includes DVS data for ac-

tion recognition from the VOT2015 and UFC50 datasets

converted from standard video to DVS data by displaying

the frame-based dataset on a 60 Hz LCD monitor in front a

DVS camera (DAVIS240 [7]). [5] introduced a dataset of 11

hand gestures from 29 subjects, for gesture classification. A



DVS128 [17] was used to record the upper-body part of the

subject performing the actions. In this case, the spatial reso-

lution of the DVS128 is relatively low (128x128 pixel) and

the variety of movements is restricted to hand actions. No

existing DVS dataset includes joint positions.

2.3. Human pose datasets

Existing datasets for 3D HPE are recorded using frame-

based cameras, and the large majority include RGB color

channels recordings. The most commonly used datasets are:

HumanEva [29], Human3.6M [16], MPI-INF-3DHP [22]

and MADS [32]. All of these datasets include multi-view

camera recordings of the whole body of subjects perform-

ing different movements, and include ground truth 3D pose

recording from a motion capture system. The datasets are

recorded in a lab environment. In addition, MPI-INF-3DHP

is recorded using a green screen background for automatic

segmentation and allows for wild background addition. Ta-

ble 1 highlights the main characteristics of the existing RGB

frame-based 3D HPE datasets and our DHP19 event-based

dataset.

2.4. CNNs for 3D human pose estimation

In recent years CNNs have emerged as the most suc-

cessful method for computer vision recognition, includ-

ing 3D HPE. For 3D HPE, existing approaches reconstruct

the 3D pose from single [9, 23, 24, 27, 30, 33] or multi-

ple [4, 11, 28] camera views. Multi-view methods are su-

perior to single-view in that they reduce occlusion and can

solve ambiguities, increasing prediction accuracy and ro-

bustness. However, they require a more complex setup,

increase the amount of input information, and introduce

higher computational cost. Most of the existing approaches

resolve the 3D pose estimation problem in two stages: first,

a model is used to predict the 2D pose, then the 3D pose

is obtained using different solutions that are based on the

2D information. For the single-view case, the 3D pose can

be predicted through a depth regression model [33], or by

memorization, matching the 3D with the 2D pose [9], or by

using a probabilistic model [30]). The multi-view cases can

project the 2D prediction to the 3D space with triangulation

using the knowledge of geometry and camera positions [4].

Other methods directly predict the 3D pose without sepa-

rately predicting the 2D pose: [23] simultaneously mini-

mizes the 2D heatmaps and 3D pose, while [27] directly

outputs a dense 3D volume with separate voxel likelihoods

for each joint.

3. DHP19 Dataset

3.1. Data acquisition

Setup. Fig. 3 shows the dataset recording setup. The

DHP19 dataset was recorded with four DAVIS cameras and

simultaneous recording from the Vicon motion capture sys-

tem, which provides the 3D position of the human joints.

Recordings were made in a therapy environment in a record-

ing volume of 2x2x2m3. The Vicon setup was composed

by ten Bonita Motion Capture (BMC) infrared (IR) cam-

eras surrounding a motorized treadmill where the subjects

performed the different movements. The high number of

Vicon cameras is necessary in order to avoid marker occlu-

sions. The BMC cameras emit 850 nm infrared light and

sense the light reflected back from passive spherical mark-

ers located on the subject joints. The Vicon can attain a high

sample rate (up to 200 Hz) and sub-millimeter precision.

To collect the dataset, we choose a Vicon sampling rate of

100 Hz. The four DAVIS cameras used during the record-

ing were suspended on the metallic frame, which also sup-

ported the BMC cameras (Fig. 3b) ). The DAVIS cameras

were arranged to provide almost 360-degrees coverage of

the scene around the subject. The arrangement of all DAVIS

and BMC cameras is shown in the design of Fig. 3c)-e). The

DAVIS cameras were equipped with 4.5 mm focal-length

lenses (Kowa C-Mount, f /1.4), and ultraviolet/infrared fil-

ters (Edmund Optics, 49809, cutoff 690 nm) to block most

of the flashing Vicon illumination. We recorded only the

DVS output since the host controller USB bandwidth was

insufficient to capture all DVS and APS outputs simultane-

ously. However in a follow up study, APS and DVS outputs

will be simultaneously collected to better compare CNN

performance between event and frame based cameras. The

motion capture system records the position of 13 labeled

joints of the subject identified by the following markers:

head, left/right shoulder, left/right elbow, left/right hand,

left/right hip, left/right knees, and left/right foot. The output

of Vicon cameras was recorded and processed using Vicon

proprietary software (Nexus 2.6), that we used to visual-

ize the markers, generate the skeleton structure and label

the joints, as shown in Fig. 3d). We obtained the 3D pose

ground-truth by approximating the marker positions as the

true joint positions, without using a biomechanical model

to calculate the joint centers.

Time synchronization. The DAVIS camera event times-

tamps are synchronized with the Vicon. The DAVIS cam-

eras are daisy-chained using 3.5 mm audio cables that carry

a 10 kHz clock, used by the camera logic to keep the in-

ternal timestamp counters synchronized. Camera1 (Fig. 3c)

) is the master for the other cameras and receives a trig-

ger input from the Vicon controller at the start and end of

recording. These times are marked by two special events

easily detectable in the DVS event stream. The Vicon start

and end events allow aligning the camera recordings with

the Vicon data.

Calibration. The motion capture system was calibrated us-

ing Vicon proprietary software and protocol for calibration.



Figure 3. a-b) DAVIS and Vicon IR camera. c) Therapy environment setup at the Swiss Center for Clinical Movement Analysis. d) Vicon

marker positions on the subject and skeleton representation. e) Schematic of the setup, with DAVIS master camera and Vicon origins.

Table 2. List of recorded movements
Session 1 Session 2 Session 3 Session 4 Session 5

1 - Left arm abduction 9 - Walking 3.5 km/h 15 - Punch straight forward left 21 - Slow jogging 7 km/h 27 - Wave hello left hand

2 - Right arm abduction 10 - Single jump up-down 16 - Punch straight forward right 22 - Star jumps 28 - Wave hello right hand

3 - Left leg abduction 11 - Single jump forwards 17 - Punch up forwards left 23 - Kick forwards left 29 - Circle left hand

4 - Right leg abduction 12 - Multiple jumps up-down 18 - Punch up forwards right 24 - Kick forwards right 30 - Circle right hand

5 - Left arm bicep curl 13 - Hop right foot 19 - Punch down forwards left 25 - Side kick forwards left 31 - Figure-8 left hand

6 - Right arm bicep curl 14 - Hop left foot 20 - Punch down forwards right 26 - Side kick forwards right 32 - Figure-8 right hand

7 - Left leg knee lift 33 - Clap

8 - Right leg knee lift

To map the camera space to 3D space, each DAVIS cam-

era was individually calibrated using images acquired from

the APS output. The position of 38 Vicon markers was ac-

quired in 8 different position and the 2D marker positions

were manually labelled on the APS frames. The camera

projection matrix P and the camera position C were cal-

culated for each camera. P maps 3D world coordinates to

image coordinates. It can be estimated using corresponding

points in 3D and 2D space by solving the following system

of equations:
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where (u,v) defines the position of the 2D point on the cam-

era plane, pi,j are the coefficients that need to be deter-

mined, with p3,4 equal to 1, and (X,Y, Z) is the position

of the 3D point in the world (Vicon) coordinate system. We

marked the (u,v) positions in a set of images and solved the

Eq. 1 system using least squares to obtain P for each cam-

era. Once P is known, it is possible to calculate the camera

position C. P can be defined as being made up of a 3x3

matrix (Q) and a 4th column (c4). In this way, C is derived

from Eq. 2:

P = (Q|c4) =⇒ C = Q−1c4 (2)

3.2. Data description

Dataset contents. The DHP19 dataset contains a total of

33 movements recorded from 17 subjects (12 female and 5

male), between 20 and 29 years of age. The movements,

listed in Table 2, are classified in: upper-limb movements

(1, 2, 5, 6, 15-20, 27-33), lower-limb movements (3, 4, 7,

8, 23-26), and whole-body movements (9-14, 21, 22). The

movements are divided into 5 sessions. Each movement is

composed of 10 consecutive repetitions. We split the 17

subjects into 12 subjects for training and validation (9 fe-

male, 3 male), and 5 for testing (3 female, 2 male). The me-

dian duration of each 10-repetition file is 21 s. The median



DVS event rate per camera before noise filtering is 332 kHz.

DVS data format. The dataset contains only DVS data

from the four DAVIS cameras. We adapted the standard

DVS data format to the multi-camera setup case. We

merged the streams of DVS events from each camera to en-

sure monotonic timestamp ordering, and included the iden-

tification (ID) number of each camera in the two least sig-

nificant bits of the raw address. In this way, each event is

represented by a tuple e = (x, y, t, p, c). Where (x, y) is

the address in the pixel array, t is the time information in

microsecond resolution, p is the polarity of the brightness

change, and c is the camera ID number. This arrangement

makes it much easier to process all the DVS data together

in single data files.

DVS events preprocessing. The raw event streams are pre-

processed using a set of filters to clean them from the un-

wanted signal. In particular, we apply filters to remove the

uncorrelated noise (background activity), to remove the hot

pixels (pixels with abnormally low event thresholds), and

to mask out spots where events are generated due to the

infrared light emitted from the BMC cameras (not all the

Near-IR signal from the BMC was removed by the IR fil-

ters). Fig. 1 shows representative samples from the applica-

tion presented in Sec. 4. The left panels show DVS images

from the four camera views and the right panels show the

3D Vicon ground truth skeleton synchronized with the DVS

frame. The skeleton is generated using the mean value of

the 3D joints in the time window of the accumulated frame.

3.3. Evaluation metric

For evaluation purposes we use the mean per joint po-

sition error (MPJPE), commonly used in HPE. MPJPE

is equivalent to the average Euclidean distance between

ground-truth and prediction, and can be calculated both in

2D and 3D space (respectively in pixel and mm) as:

MPJPE =
1

J

J
∑

i

‖xi − x̂i‖, (3)

where J is the number of the skeleton joints, and xi and x̂i

are respectively the ground-truth and predicted position of

the i-th joint in the world or image space.

4. DVS 3D human pose estimation

In this section we discuss our experiment with DHP19,

demonstrating for the first time an application of HPE based

on DVS data. In our experiment we use data from the two

front views out of the four total DVS cameras (camera 2

and 3 in Fig. 1). Our choice is motivated by using the min-

imum number of cameras to make a 3D projection using

triangulation. Future work will focus on using the two ad-

ditional lateral cameras, more challenging due to a higher

degree of self occlusion. We trained a single CNN on all

the 33 movements for the 12 training subjects. Fig. 4 shows

an overview of our approach to solve the problem of 3D

HPE. In the proposed method we decompose the 3D pose

estimation problem in 2D pose estimation based on CNN,

and 2D-to-3D reconstruction using geometric information

about the position of the cameras. First, a single CNN is

trained on the two camera views. Then, we project each

of the 2D predictions from the pixel space to the physical

space through triangulation, knowing the projection matri-

ces P and the camera positions C. The section is organized

as follows: first, we discuss image and label preprocessing.

Then, we introduce our method for 3D HPE, describing the

CNN architecture, training setup, and prediction processing

to obtain the final 3D human pose.

4.1. DVS frame generation

To leverage frame-based deep learning algorithms for

event cameras, we need to turn the event stream representa-

tion into frames, referred to as DVS frames. Here we fol-

low the strategy from [25] to generate DVS frames by accu-

mulating a fixed number of events, which we call constant

count frames. This allows us to have an adaptive frame rate

that varies with the speed of the motion, and gives a constant

amount of information in each frame. We fixed a number of

30 k events for the 4 DVS views (about 7.5 k events per sin-

gle camera). Finally, the DVS frames are normalized in the

range [0,255]. Following this procedure, about 87 k DVS

frames were generated for each DVS camera.

4.2. Label preprocessing

Our CNN model predicts a set of 2D heatmaps, repre-

senting the probability of the joint presence at each pixel

location, as proposed in [31]. To create the heatmaps from

the 3D Vicon positions, we preprocess the Vicon labels as

follows. Raw Vicon labels are collected at a sampling fre-

quency of 100 Hz. In order to have input/output data pairs

for training, the labels need to be temporally aligned to DVS

frames. By knowing the DVS-frame initial and final event

timestamps, we first take the Vicon positions at the clos-

est sampling time, then we calculate the average position

in that time window. We consider this average position as

the 3D label of the corresponding DVS frame. Then, we

use the projection matrices to project the 3D labels to 2D

labels for each camera view, rounding to the nearest pixel

position. The projected 2D labels represent the absolute po-

sition in pixel space. We create J heatmaps (one per joint,

initialized to zero). For each 2D joint, the pixel correspond-

ing to the (u,v) coordinate of the relative heatmap is set to

1. Finally, we smooth each heatmap using Gaussian blur-

ring with a sigma of 2 pixels. This procedure is repeated for

each joint and for each timestep.



Figure 4. Overview of our proposed approach. Each camera view is processed by the CNN, joint positions are obtained by extracting the

maximum over the 2D predicted heatmaps, and 3D position is reconstructed by triangulation.

4.3. Model

The proposed CNN has 17 convolutional layers (Ta-

ble 3). Each layer has 3x3 filter size and is followed by

Rectified Linear Unit (ReLU) activation. The DVS resolu-

tion is used as the CNN input resolution, and it is decreased

with two max pooling layers in the first stages of the net-

work. Then, it is recovered in later stages with two trans-

posed convolution layers with stride 2. The convolutional

layers of the network do not include biases. This architec-

tural choice was motivated by an increase in the activation

sparsity at a negligible decrease in performance. As dis-

cussed in Sec. 6, activation sparsity could be exploited for

faster processing. The CNN has about 220 k parameters and

requires 6.2 GOp/frame, where one Op is one multiplication

or addition. In designing the CNN, we paid attention both

to its prediction accuracy and computational complexity, to

minimize model size for real-time applications.

4.4. Training

The CNN was trained for 20 epochs using RMSProp

with Mean Square Error (MSE) loss and an initial learning

rate of 1e-3. We applied the following learning rate sched-

ule: 1e-4 for epochs 10 to 15, 1e-5 for epochs 15 to 20. The

training took about 10 hours on an NVIDIA GTX 980 Ti

GPU.

4.5. 2D prediction

The output of the CNN is a set of J feature maps, where

J is the number of joints per subject. Each output pixel rep-

resents the confidence of the presence of the J-th joint, as

done in [26]. For each output feature map, the position of

the maximum activation is considered as the joint predicted

position, while the value of the maximum activation is con-

sidered as the joint confidence. In this work we first eval-

uate the performance of the CNN instantaneous prediction.

Then, we propose a simple method to keep into account past

predictions, to account for immobile limbs. By looking at

the DVS frames structure (Fig. 1), we observe that limbs

that are static during the movement do not generate events:

this can hence result in ambiguities in the pose estimation

problem. The problem of static limbs could be mitigated

by updating the CNN prediction of each joint at timestep

T only when the confidence of that joint is above a certain

threshold (confidence threshold), otherwise the CNN pre-

diction from timestep (T -1) is retained. Despite its simplic-

ity, this conditional update allows for an improvement in the

2D pose estimation performance, as discussed in Sec. 5.1.

4.6. 3D projection

For each camera of the two we used, we project the 2D

position in 3D space using the inverse of the projection

matrix P (Eq. 1). The 3D joint position is calculated as

the point at minimum distance from the two rays passing

through the back-projected point of each camera and the re-

spective camera center C (Eq. 2).

5. Results

This section reports the results for HPE on the 5 test sub-

jects. First, we present the CNN 2D pose prediction results,

then those for the 3D pose estimation with geometrical pro-

jection of the CNN predictions. Finally, we present consid-

erations in term of computational requirements and activa-

tion sparsity.

5.1. 2D pose estimation

Table 4 shows the 2D results on the test set, expressed as

MPJPE (in pixel). We evaluate the prediction error both for

instantaneous CNN prediction as well as for different values

of confidence threshold, ranging from 0.1 to 0.5. We select a

confidence threshold of 0.3, for which we observe a relative

improvement of 7 % and 10 % in 2D MPJPE for camera 2

and 3 respectively. The CNN obtains a 2D MPJPE of about

7 pixels (camera 2: 7.18, camera 3: 6.87). Referring to

Fig. 4, this average error in 2D joint position is about the

size of the blobs in the HEATMAPS images.



Table 3. CNN architecture details. Changes in spatial resolution (Res.) are due to 2x2 max pooling (MP) or transposed convolution (TC)

with stride 2. Dilation refers to the dilation rate in convolutional layers. The input is a constant-count DVS frame with shape 344x260x1.

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Stride 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1

Dilation 1 1 1 1 2 2 2 2 1 2 2 2 2 1 1 1 1

Res. MP MP TC TC

Output ch 16 32 32 32 64 64 64 64 32 32 32 32 32 16 16 16 13

Output H 130 130 130 65 65 65 65 65 130 130 130 130 130 260 260 260 260

Output W 172 172 172 86 86 86 86 86 172 172 172 172 172 344 344 344 344

Table 4. Test set 2D MPJPE (pixel) for the CNN, trained on the

two frontal camera views (camera 2 and 3). In bold the selected

confidence threshold (Conf. thr.) for 3D projection.

Conf. thr. None 0.1 0.2 0.3 0.4 0.5

Camera 2 7.72 7.45 7.25 7.18 7.27 7.47

Camera 3 7.61 7.13 6.92 6.87 6.88 7.11

Table 5. 3D MPJPE (in mm) on the 5 test subjects on the 33 move-

ments (M), over separate subjects (S) and whole sessions (Se). In

bold the overall mean 3D MPJPE.
Test Subject Number Mean Mean

Se M S1 S2 S3 S4 S5 M Se

1

1 89.48 134.38 70.31 123.27 146.67 115.04

87.54

2 60.57 77.95 78.14 128.37 147.50 99.65

3 68.71 105.79 92.83 71.32 84.37 84.65

4 68.20 89.58 70.70 78.96 80.59 78.35

5 78.20 104.76 119.21 119.79 94.02 103.29

6 128.18 125.78 114.38 127.40 105.62 121.06

7 62.25 78.36 70.10 85.49 76.24 74.97

8 58.77 77.34 67.20 77.17 79.17 71.95

2

9 27.39 62.63 45.26 70.49 62.16 58.75

66.47

10 41.24 48.16 49.79 75.34 129.85 82.23

11 68.34 55.46 54.86 79.53 113.04 80.53

12 29.34 51.05 44.13 76.88 55.78 53.57

13 45.97 50.94 50.79 70.10 56.42 55.56

14 31.25 52.38 46.27 69.88 61.70 54.21

3

15 168.10 174.79 130.20 151.63 99.43 148.57

124.01

16 127.25 139.56 121.22 147.53 116.49 135.92

17 72.54 157.16 90.42 115.44 99.98 111.35

18 109.84 120.48 117.14 114.36 209.16 131.46

19 67.88 124.43 91.76 107.28 111.82 106.92

20 70.26 100.34 73.32 112.47 90.92 98.28

4

21 33.76 56.74 57.31 70.87 55.35 55.16

80.25

22 56.67 73.21 70.30 100.49 73.29 76.23

23 99.74 150.30 96.40 97.72 102.59 111.66

24 106.96 130.38 118.13 104.67 85.26 112.49

25 91.33 105.81 162.77 81.98 135.30 118.00

26 76.87 88.54 140.02 83.47 139.78 104.67

5

27 56.01 108.41 75.53 104.40 111.56 96.22

110.98

28 73.75 108.68 65.46 126.57 95.58 101.32

29 68.66 ∗ 91.40 150.94 120.34 110.59

30 78.14 103.33 99.08 157.88 102.11 112.44

31 64.82 98.76 118.08 168.75 104.66 110.69

32 94.29 132.31 95.17 146.34 130.89 123.59

33 93.27 90.47 169.01 161.56 108.25 122.93

Mean 59.79 81.46 75.67 89.88 85.58 79.63

∗: video missing due to the absence of special event.

5.2. 3D pose estimation

Next we use the 2D pose estimates obtained from the

CNN to calculate the 3D pose estimates. We calculate

the 3D human pose by projecting the predicted 2D joint

positions to 3D space with triangulation, as explained in

Sec. 4.6. Table 5 reports the 3D MPJPE results for all sub-

jects and movements, together with averages over single

subject, movement, and session. Using a confidence thresh-

old of 0.3, the average 3D MPJPE over all trained move-

ments and test subjects is about 8 cm.In general, we notice

that the best results are obtained for whole-body movements

(movements 9-14, 21, 22, column Mean M in Table 5), for

which all the human shape is visible in the DVS frames.

Using a confidence threshold leads to improvements in the

3D prediction error (from 87.9 mm with no threshold, to

79.6 mm with a 0.3 threshold), but the absence of moving

limbs in frames still represents a challenge for our model.

This shortcoming becomes more evident when comparing

the averages of whole-body movements against the other

movements: 65.2 and 106.2 mm, respectively.

Table 6 compares our result on DHP19 with results from

state-of-the-art models for multi-view settings. The signifi-

cant differences across datasets, such as the type and range

of movements, and subject orientation, do not allow for a

direct comparison between the methods reported in Table 6.

In particular, subjects in DHP19 keep the same orientation

with respect to the cameras during all the movements. On

the other hand, DHP19 provides a wider range of move-

ments and subjects compared to the other datasets. As a

general consideration, we observe that our prediction er-

rors are within the range of current state-of-the-art methods.

We believe this goes in favor of further exploring the DVS

camera for HPE, and to develop new methods to take into

account missing information due to non-moving parts.

6. Discussion

Presence of movement and its speed. The DVS microsec-

ond time resolution provides a continuous temporal infor-

mation not limited by a fixed frame rate, which can be ad-

vantageous for HPE by alleviating the motion blur present

for fast movements (e.g. in MADS dataset [32]). In addi-

tion, static scenes generate only a few noise events and the

CNN computation is not triggered, providing an adaptive

frame rate that changes according to the speed of the move-

ment being recorded. The frame-free, data-driven nature of

the DVS event-stream means that the computational effort



Table 6. Qualitative comparison of 3D MPJPE (in mm) of our

method on DHP19 and a variety of multi-view state-of-the-art

models.
Dataset Method 3D MPJPE

HumanEva [29]

Walk Box

Amin et al. [4] 54.5 47.7

Rhodin et al. [28] 74.9 59.7

Elhayek et al. [11] 66.5 60.0

Belagiannis et al. [6] 68.3 62.7

MADS [32] Zhang et al. [32] 100-200

DHP19
(Ours) All movements 79.6

(Ours) Whole-body 65.2

is high only when needed, and at other times the hardware

becomes idle and burns less power.

Immobile limbs. The problem of immobile limbs with

DVS is partially mitigated by the introduction of the con-

fidence threshold, but our results still show a significant gap

in accuracy between partial-body and whole-body move-

ments. Future work will focus on the pose estimate integra-

tion in time to better deal with the absence of limbs. Using

model-based and learning approaches, such as constrained

skeletons and Recurrent Neural Networks, on the instanta-

neous pose estimates provided by the CNN can constrain

inference to possible pose dynamics.

Computational complexity. CNN power and latency also

play a critical role for real-world applications. This section

compares the requirements of our CNN with state-of-the-art

CNNs that process RGB images, in terms of model param-

eters and operations. We compare our model to CNNs for

2D HPE because the 2D-to-3D component of our method is

purely based on geometric properties, and does not include

any learning. The DHP19 CNN requires 6.2 GOp/frame

for an input resolution of 260x344 pixels, and has 220k pa-

rameters. For the same input resolution, a DeeperCut [15]

part detector ResNet50 CNN [13] would requires about 20

GOp/frame and has 20M parameters. A Part Affinity Fields

(PAF) 6-stage CNN [8] would require 179 GOp/frame and

has 52M parameters. The DHP19 CNN has more than 100X

fewer parameters and runs at least 3X faster than these other

body part trackers. The discussed architectures are designed

for different problems in the same context of HPE, hence a

direct comparison is difficult. However, the reported num-

bers underline the importance of efficient CNN processing

for real-time application. Additionally, by using constant-

count DVS frames, the computation would be driven by

movement, unlike conventional HPE systems that operate

at constant frame rate.

Sparsity. Another way to reduce the latency of a CNN is

to exploit the properties of the ReLU activation function,

namely the clamping to zero of all the negative activations.

The zero-valued activations of a layer do not contribute to

the pre-activations of the next layer, and represent com-

putation that can be avoided. Several hardware accelera-

tors [3, 10] have been developed to take advantage of the

activation sparsity by skipping over the zero activations. We

calculate the activation sparsity, comparing our method with

the PAF network. The DHP19 CNN has a sparsity of 89%

(using a random sample of 100 DHP19 training images),

while the PAF network sparsity is 72% (using images from

the MS-COCO dataset [18]). The 2.5X sparser activation

in the DHP19 CNN might result from the sparser DVS in-

put. This result is encouraging in view of real-time HPE

using custom hardware accelerators capable of exploiting

sparsity.

7. Conclusion

The central contribution of this paper is the Dynamic Vi-

sion Sensor Human Pose dataset, which is the first dataset

for 3D human pose estimation with DVS event cameras and

labeled ground truth joint position data. We also provide

the first deep network for human pose estimation based on

the DVS input. Our proposed model is a proof of concept

for demonstrating the usability of the dataset, but it also

achieves joint accuracy within the range of multi-view state-

of-the-art methods. Despite the limitations of the proposed

approach due to static limbs, which will be addressed as fu-

ture work, DVS cameras could enable more efficient human

pose estimation towards real-time and power-constrained

application. Furthermore, the high dynamic range of the

DVS opens the possibility of HPE in embedded IoT sys-

tems that cannot use active illumination and must operate

in all lighting conditions.
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