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Abstract

We present a new framework for explainable AI systems

(XAI) aimed at increasing human trust in the system’s per-

formance through explanations. Based on the Theory of

Mind, our framework X-ToM explicitly models machine’s

mind (pgM), human’s mind as inferred by the machine

(pgUinM), as well as machine’s mind as inferred by the

human (pgMinU). These mental representations are in-

corporated to (1) learn an optimal explanation policy that

takes into account human’s perception and beliefs; and (2)

quantitatively evaluate human’s trust of machine behaviors.

We have applied X-ToM in the context of visual recognition.

Compared to the most popularly used attribution based ex-

planations (saliency maps), our X-ToM significantly im-

proves human trust in the underlying vision system.

1. Introduction

How to increase human trust and reliance in AI systems

is of great concern in a wide range of applications that de-

pend on the machine’s predictions and decisions. Previous

studies have shown that trust is closely and positively cor-

related to the level of how much human users understand

the system (understandability) and how accurately they

can predict the system’s performance on a given task (pre-

dictability) [4]. Despite an increasing amount of work on

XAI [10, 8, 9], providing explanations that can increase un-

derstandability and predictability remains an important re-

search problem. To address this problem, we propose X-

ToM, a new explainable AI (XAI) framework based on the

Theory-of-Mind [1]. The ability to reason about other’s per-

ception and beliefs, in addition to one’s own perception and

beliefs, is often referred to as the Theory-of-Mind (ToM).

Our X-ToM framework, using ToM, provides explanations

by taking into account the user’s mind to increase under-

standability and predictability.

Cognitive studies [5] have shown an explanation can

only be optimal if it is generated by taking user’s percep-

tion and belief into account. As humans can easily be

Figure 1. XAI as Collaborative Task Solving: Our interactive

and collaborative XAI framework based on the Theory-of-Mind.

The human user seeks visual explanations through a dialog, in the

form of bubbles, from XAI agent for solving a given collaborative

task.

overwhelmed with too many or too detailed explanations,

XAI systems need to understand the user and identify user-

specific content for explanation. Explanation is also not one

shot and often involves interaction between the human and

the system. The context of such interaction plays an impor-

tant role in determining follow-up explanations. Motivated

by these findings, our X-ToM generates interactive and col-

laborative explanations by incorporating machine’s under-

standing of human’s mind; and evaluates human’s trust in

the machine by explicitly measuring human’s understand-

ing of machine’s mind.

As part of this framework, we have designed a new col-

laborative task-solving game for visual recognition. As il-

lustrated in Figure 1, in our X-ToM game, the machine (M )

and the user (U ) are positioned to solve a collaborative task.

The machine is given an original image and is supposed to

detect and localize objects and parts of interest or a human

activity appearing in the image. The user is given a blurred

version of the original image, and the user seeks the ma-

chine’s help essentially through the explanations generated

by the machine in order to recognize objects/parts in the

blurred image. This game provides a unique collaborative
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setting where the system is motivated to provide human-

understandable explanation for its visual recognition and

the user is motivated to seek the system’s recognition and

explanation to help his/her own understanding.

To facilitate this collaborative game, X-ToM explicitly

models mental states of visual understanding (“minds”) of

the machine and user using parse graphs (pg) in the form

of And-Or Graph (AOG). In a pg, nodes represent objects

and parts detected in the image, and edges represent spatial

relationships identified between the objects. X-ToM mind

models include:

• pg
M: the machine’s own inference about objects and

their locations in the image.

• pg
UinM: the human’s mind as inferred by the ma-

chine.

• pg
MinU: the machine’s mind as inferred by the hu-

man.

Our empirical results show that X-ToM allows the user to

achieve a high success rate in visual recognition on blurred

images. We also found that the most popularly used attri-

bution based explanations (saliency maps) [8] are not ef-

fective to improve human trust in AI system, whereas our

Theory-of-Mind inspired approach significantly improves

human trust in AI by providing optimal explanations.

2. X-ToM Framework

Our X-ToM consists of three main components:

• A Performer that generates image interpretations (i.e.,

machine’s mind represented as pgM ) using a set of com-

puter vision algorithms;

• An Explainer that generates maximum utility explana-

tions in a dialog with the user by accounting for pgM and

pgUinM using reinforcement learning;

• An Evaluator that quantitatively evaluates the effect of

explanations on the human’s understanding of the ma-

chine’s behaviors (i.e., pgMinU ) and measures human

trust by comparing pgMinU and pgM .

2.1. XToM Game

An X-ToM game consists of two phases. The first phase

is the collaborative task phase. The user is shown a blurred

image and given a task to recognize what the image shows.

X-ToM has access to the original (unblurred) image and the

machine’s (i.e. Performer’s) inference result pgM . The

user is allowed to ask questions regarding objects and parts

in the image that the user finds relevant for his/her own

recognition task. Using the detected objects and parts in

pgM , X-ToM Explainer provides visual explanations to the

user, as shown in Figure 1. This process allows the machine

to infer what the user sees and iteratively update pgUinM ,

and thus select an optimal explanation at every turn of the

game.

The second phase is specifically designed for evaluating

whether the explanation provided in the first phase helps

the user understand the system behaviors. The Evaluator

shows a set of original (unblurred) images to the user that

are similar to (but different from) the ones used in the first

phase of the game (i.e., the set of images shows the same

class of objects or human activity). The user is then given

a task to predict in each image the locations of objects and

parts that would be detected by the machine (i.e., in pgM )

according to his/her understanding of the machine’s behav-

iors. Based on the human predictions, the Evaluator esti-

mates pgMinU and quantifies human trust in the machine

by comparing pgMinU and pgM .

2.2. XToM Explainer (for Explanation Generation)

The explainer, in the first phase of the game, makes the

underlying α, β, and γ inference process of the performer

more transparent to the human through a collaborative

dialog. At one end, the explainer is provided access to an

image and the performer’s inference result pgM on that

image. At the other end, the human is presented a blurred

version of the same image, and asked to recognize a body

part, or pose, or human action depicted (e.g., whether

the person is running or walking). To solve the task, the

human may ask the explainer various “what”, “where”

and “how” questions (e.g., “Where is the left arm in the

image”). We make the assumption that the human will

always ask questions that are related to the task at hand

so as to solve it efficiently. The explainer answers these

questions using pgM and justifies the answers by showing

the corresponding visual explanations in the image.

As visual explanations, we use “bubbles”, where each

bubble reveals a circular part of the blurred image to the

human. The bubbles coincide with relevant image parts

for answering the question from the human, as inferred by

the performer in pgM . For example, a bubble may unblur

the person’s left leg in the blurred image, since that image

part has been estimated in pgM as relevant for recognizing

the human action “running” occurring in the image. Fol-

lowing the “principle of least collaborative effort” and the

aforementioned findings [5] that explanations should not

overwhelm the human, our X-ToM explainer utilizes pgM

and pgUinM (i.e., the contextual and hierarchical relation-

ships explicitly modeled in the AOG) for controlling the

depth and breadth of explanations. To enable this control,

each bubble is characterized by a number of parameters,

including the amount of image reveal (i.e., the unblurring

level), size, and location in the image, to name a few.

We use reinforcement learning to train the explainer to

optimize these parameters and thus provide optimal visual

explanations.
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2.3. XToM Evaluator (for Trust Estimation)

The second phase of the X-ToM game serves to assess

the effect of the explainer on the human’s understanding of

the performer. This assessment is conducted by the evalua-

tor. The human is presented with a set of (unblurred) images

that are different from those used in the first phase. For ev-

ery image, the evaluator asks the human to predict the per-

former’s output. The evaluator poses multiple-choice ques-

tions and the user clicks on one or more answers. Based on

responses from the human, the evaluator estimates pgMinU .

By comparing pgMinU with the actual machine’s mind pgM

(generated by the performer), we have defined the follow-

ing metrics to quantitatively assess human trust in the per-

former:

Justified Positive and Negative Trust: It is possible for

humans to feel positive trust with respect to certain tasks,

while feeling negative trust (i.e. mistrust) on some other

tasks. The positive and negative trust can be a mixture of

justified and unjustified trust [4]. We compute justified pos-

itive trust (JPT) and negative trust (JNT) as follows:

JPT =
1

N

∑

i

∑

z=α,β,γ

∆JPT(i, z),

∆JPT(i, z) =
‖pgMinU

i,z,+ ∩ pgMi,+‖

‖pgMi,+‖
,

JNT =
1

N

∑

i

∑

z=α,β,γ

∆JNT(i, z),

∆JNT(i, z) =
‖pgMinU

i,z,− ∩ pgMi,−‖

‖pgMi,−‖
,

where N is the total number of games played. z is the

type of inference process. ∆JPT(i, z), ∆JNT(i, z) denote

the justified positive and negative trust gained in the i-th

turn of a game on the z inference process respectively.

Reliance: Reliance (Rc) captures the extent to which a

human can accurately predict the performer’s inference re-

sults without over- or under-estimation.

3. Experiments

We conduct human subject experiments to assess the

effectiveness of the X-ToM Explainer, that is trained on

AMT, in increasing human trust through explanations. We

recruited 120 human subjects from our institution’s Psy-

chology subject pool. These subjects have no background

on computer vision, deep learning and NLP. We applied

between-subject design and randomly assigned each sub-

ject into one of the three groups. One group used X-ToM

Explainer, and two groups used the following two baselines

respectively:

• ΩQA: we measure the gains in human trust only by re-

vealing the answers for the tasks without providing any

explanations to the human.

• ΩSalience: in addition to the answers, we also provide

saliency maps generated using attribution techniques to

the human as explanations.

Within each group, each subject will first go through

an introduction phase where we introduce the tasks to the

subjects. Next, they will go through familiarization phase

where the subjects become familiar with the machine’s un-

derlying inference process (Performer), followed by a test-

ing phase where we apply our trust metrics and assess their

trust in the underlying Performer. Figure 2(a) compares the

justified positive trust (JPT), justified negative trust (JPT),

and Reliance (Rc) of X-ToM with the baselines. As we

can see, JPT, JNT and Rc values of X-ToM are significantly

higher than ΩQA and ΩSalience (p < 0.01). Also, it should be

noted that attribution techniques (ΩSalience) did not perform

any better than the ΩQA baseline where no explanations are

provided to the user. This could be attributed to the fact that,

though saliency maps help human subjects in localizing the

region in the image based on which the performer made a

decision, they do not necessarily reflect the underlying in-

ference mechanism. In contrast, X-ToM Explainer makes

the underlying inference processes (α, β, γ) more explicit

and transparent and also provides explanations tailored for

individual user’s perception and understanding. Therefore

X-ToM leads to the significantly higher values of JPT, JNT

and Rc.

3.1. Gain in Reliance over time

We hypothesized that, human trust and reliance in ma-

chine might improve over time. This is because, it can be

harder for humans to fully understand the machine’s under-

lying inference process in one single session. Therefore,

we conduct an additional experiment with eight human sub-

jects where the subjects’ reliance is measured after every

session. Note that each session consists of a familiarization

phase followed by a testing phase. The results are shown in

Figure 2(b). As we expected, subjects’ reliance increased

over time. Specifically, reliance with respect to α inference

process significantly improved only after 2.5 sessions. Re-

liance with respect to β and γ inference processes signifi-

cantly improved after 4.5 sessions.

4. Related Work

Most prior work has focused on generating explanations

using feature visualization and attribution.

Feature visualization techniques typically identify qualita-

tive interpretations of features used for making predictions

or decisions. For example, gradient ascent optimization is

used in the image space to visualize the hidden feature lay-

ers of unsupervised deep architectures [2]. Also, convolu-

tional layers are visualized by reconstructing the input of

each layer from its output [9]. Recent visual explanation
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(a) (b)

Figure 2. (a) Gain in Justified Positive Trust, Justified Negative Trust and Reliance: X-ToM vs baselines (QA, Saliency Maps). Error bars

denote standard errors of the means. (b) Gain in Reliance over sessions w.r.t α, β and γ processes.

models seek to jointly classify the image and explain why

the predicted class label is appropriate for the image [3].

Attribution is a set of techniques that highlight pixels of

the input image (saliency maps) that most caused the output

classification. Gradient-based visualization methods [11, 7]

have been proposed to extract image regions responsible for

the network output. The LIME method proposed by [6] ex-

plains predictions of any classifier by approximating it lo-

cally with an interpretable model.

5. Conclusion

This paper presents X-ToM – a new framework for Ex-

plainable AI (XAI) and human trust evaluation based on the

Theory-of-Mind (ToM). X-ToM generates explanations in a

dialog by explicitly modeling, learning, and inferring three

mental states based on And-Or Graphs – namely, machine’s

mind, human’s mind as inferred by the machine, and ma-

chine’s mind as inferred by the human. We demonstrated

the superiority of X-ToM in gaining human trust relative to

baselines.

References

[1] Sandra Devin and Rachid Alami. An implemented

theory of mind to improve human-robot shared plans

execution. In Human-Robot Interaction (HRI), 2016

11th ACM/IEEE International Conference on, pages

319–326. IEEE, 2016. 1

[2] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and

Pascal Vincent. Visualizing higher-layer features of a

deep network. Technical report, University of Mon-

treal, 1341(3):1, 2009. 3

[3] Lisa Anne Hendricks, Zeynep Akata, Marcus

Rohrbach, Jeff Donahue, Bernt Schiele, and Trevor

Darrell. Generating visual explanations. In Euro-

pean Conference on Computer Vision, pages 3–19.

Springer, 2016. 4

[4] R.R. Hoffman. A taxonomy of emergent trusting in the

humanmachine relationship. Cognitive systems engi-

neering: The future for a changing world, 2017. 1,

3

[5] Tim Miller. Explanation in artificial intelligence: In-

sights from the social sciences. Artificial Intelligence,

2018. 1, 2

[6] Marco Tulio Ribeiro, Sameer Singh, and Carlos

Guestrin. Why should i trust you?: Explaining the pre-

dictions of any classifier. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, pages 1135–1144.

ACM, 2016. 4

[7] Ramprasaath R Selvaraju, Michael Cogswell, Ab-

hishek Das, Ramakrishna Vedantam, Devi Parikh, and

Dhruv Batra. Grad-cam: Visual explanations from

deep networks via gradient-based localization. ICCV,

2017. 4

[8] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Ax-

iomatic attribution for deep networks. 34th Interna-

tional Conference on Machine Learning, 2017. 1, 2

[9] Matthew D Zeiler and Rob Fergus. Visualizing

and understanding convolutional networks. In Euro-

pean conference on computer vision, pages 818–833.

Springer, 2014. 1, 3

[10] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu.

Interpretable convolutional neural networks. The

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 8827–8836, 2018. 1

[11] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude

Oliva, and Antonio Torralba. Learning deep features

for discriminative localization. In Computer Vision

and Pattern Recognition (CVPR), 2016 IEEE Confer-

ence on, pages 2921–2929. IEEE, 2016. 4

94


