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1. Introduction

We discuss how the concept of “explainability” may be

applied to Content-Based Image Retrieval (CBIR) systems.

CBIR typically transforms an image into a feature represen-

tation for which a similarity distance metric may be com-

puted; recent systems have improved performance by us-

ing features from deep learning networks [11, 6, 3]. How-

ever, as these representations have no direct semantic inter-

pretability, the behavior of the system can be difficult for

the user to understand in terms of semantically significant

objects in the scene which may have no significant pres-

ence in the feature representation. Conversely, the similarity

metric for two images may be dominated by pixel content

which is not the semantic focus of the images, such as the

background. We propose Similarity Based Saliency Maps

(SBSM) to illustrate which areas in an image the CBIR sys-

tem uses when retrieving and ranking results; the SBSM

thus serves to “explain” the CBIR’s decisions to the user.

We have implemented SBSMs in our open-source Social

Media Query Toolkit (SMQTK) [4], and have conducted

preliminary user studies to demonstrate that SBSMs allow

the user to more efficiently retrieve images.

(a) Query image (b) Retrieved images (c) SBSM results

Figure 1: (a). A query image containing a dog and a car

mirror. (b) Two retrieved images; both containing dogs and

car mirrors. (c) SBSM maps indicating relevance of image

regions to the match.

Figure 3 illustrates examples of SBSMs computed on the

query and results from Figure 1. The query and results all

contain both a dog and a car mirror; however, the system has

no mechanism to communicate if the results were chosen

due to the presence of the dog, or the mirror, or something

else entirely. Informally, the SBSM is a heatmap; “hotter”

regions contribute more to the match score with the query,

while “cooler” areas have less impact.

In this paper, we describe SBSMs and their integration

into SMQTK, and describe some preliminary user stud-

ies conducted using Amazon Mechanical Turk (AMT). Our

findings suggest that SBSMs can help a CBIR user increase

the precision of their search.

2. Approach

Our SBSM is a variant image region pertubation saliency

maps, used to indicate importance of regions against some

criteria [2, 9, 12, 8]. In the context of CBIR, a saliency map

should indicate how a particular region on the retrieved im-

age impacts the similarity. However, a classification-based

saliency map indicates how image regions impact the clas-

sification probability, which is irrelevant to the image simi-

larity. Our SBSM instead measures how result regions con-

tribute to the distance metric used by the CBIR when com-

puting similarity.

We perturb a retrieved image by applying a binary mask

to block out the region of interest. Inside the binary mask,

the region of interest has value 0; all other pixels have value

1. In general, the region of interest can be of any shape. In

our setup, we simply use a b x b square block. By sliding

the square block over the retrieval image by a stride step s,

we are able to show the importance of the blocked areas on

impacting the similarity. In order to leverage parallel com-

puting resources (e.g. GPUs), we generate a set of binary

masks M , each of which represents a state of sliding the

square block.

Mathematically, given a query image Q, a retrieval im-

age A and a binary mask mi ∈ M , the importance of the

region blocked out by mi is estimated as follows:

K(Q,A,mi) = max(D′ −D, 0)(I −mi), (1)

D′ = ‖f(Q), f(A⊙mi)‖, (2)

D = ‖(f(Q), f(A)‖, (3)

where, f : I → R
n is a black-box model, which maps

a input image I to a n dimensional vector; ⊙ denotes

element-wise multiplication; ‖~v1, ~v2‖ is the similarity be-

tween the two vectors ~v1 and ~v2 based on a user-defined
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Figure 2: SBSM generation. Result image R is masked by mi and run through feature extractor f ; the distance between this

new feature vector and the original query/result distance is how relevant masked region mi is in the final SBSM.

distance metric (e.g. L2 distance); I is a matrix with all en-

tries are 1 and the same shape as mi. Given a binary mask

set M with N binary masks, the SBSM is calculated as:

SBSM(Q,A,M) =
N
∑

i

K(Q,A,mi)⊙
1

∑N

i
(I −mi)

.

(4)

Intuitively, Eq. 4 says that when a region is overlapped

by multiple masks, the mean value is used to express the

importance of the region. The overview of the proposed

SBSM approach is illustrated in Figure 2.

We have experimented with various popular CNNs and

distance metrics; Figures 3a-3d illustrate SBSMs generated

using the features from avgPool layer of the the ImageNet

pretrained ResNet50 [7] and VGG19 [7] networks, and both

the histogram intersection distance [10] and L2 norm to

measure distance between feature vectors.

3. User study

Our user study aims to show that SBSMs effectively and

intuitively convey how the similarity metric affects the re-

trieved images, and that the user can leverage this to in-

crease their search efficiency. We used SMQTK [4] as our

base CBIR system; one of its main features is Interactive

Query Refinement, or IQR, which allows a user to provide

relevance feedback by interacting directly with the GUI to

mark particular images ”relevant” or ”not relevant”, as seen

in Figure 5. This feedback trains an ad-hoc support vector

machine (SVM) classifier which is used to re-rank the re-

sult set so that higher-ranked results are more likely to be

relevant.

The archive image corpus was chosen from the training

split of the COCO 2017 dataset [5]. For the query image,

we randomly choose 12 images from the same dataset. Each

query image contains only two different classes; one class

is selected as the query target. A query task is then defined

as retrieving images which contain the query target, using

only the query image. The retrieval accuracy is defined as:

∑N

i
1Ai

(l)

N
, and 1Ai

(l) :=

{

1 if l ∈ Ai,

0 if l 6∈ Ai,
(5)

where, l is the query target label, Ai is the set of annotations

of the retrieved image i, and N is the top N retrieval images

returned by the CBIR. Our user study used N = 50, the

avgPool layer of ImageNet pretrained ResNet50 [7] CNN,

and the histogram intersection distance [10] to measure the

similarity distance. The binary mask mi ∈ M block size

is set to 20x20 and the stride step is set to 4. In the SVM,

Histogram Intersection Kernel (HIK) [1] is used to define

the hyperplane between positive and negative feedback.

We carried out our user study on Amazon Mechanical

Turk (AMT). Each query task was tested with and with-

out SBSM; without SBSM is regarded as a baseline. Each

MTurk worker was given four unique Human Intelligence

Task (HITs) (two with-SBSM, two without) to reduce query

task bias and to expose the worker to both setups. For a fair

comparison, each worker must give feedback to all the re-

trieved top-20 images in each IQR round, and to conduct

two rounds of IQR. Here, three different MTurks are as-

signed for each four unique HITs.
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(a) ResNet50,L2 (b) ResNet50,HID

(c) VGG19,L2 (d) VGG,HID

Figure 3: Similarity Based Saliency Maps (SBSMs) com-

puted between the result and the query with various feature

represenations and metrics.

To understand the user’s perspective on effectiveness, we

asked the question ”I have high confidence the correct ob-

ject in the retrieved image is matched to the target object in

the query image”, at the end of each IQR round; the answer

was a 5-point Likert scale (i.e., Strongly agree = 5, Strongly

disagree=1). The hypothesis is if the SBSM perfectly over-

lays the query target in most retrieved images, we expect

the worker would vote strongly agree (i.e. score 5). For the

baseline, without the assistance of the overlay illustrating

how the CBIR operated, we would expect a lower score.

Figure 4 illustrates two patterns. Firstly, IQR always im-

proves retrieval accuracy for both with- and without-SBSM.

The results are well aligned with other relevance feedback

approaches. Secondly, the relative ordering of the Likert

scores for (with, without) SBSM are strongly correlated to

the relative ordering of the (with, without) retrieval scores

across the labels. For query tasks with red color labels in

Figure 4 (i.e. 1, 2, 6, 9, 10, 11), with-SBSM gives higher

retrieval accuracy. Correspondingly, the Likert scores with-

Figure 4: Top graph: retrieval accuracy of the target label within

the top-50 returned results after the initial query (black bar), and

after two rounds of IQR with (red) and without (blue) SBSM. Bot-

tom graph: average Likert score; each label was processed by

three unique workers with SBSM and three unique workers with-

out. The x-axis labels are the query target; red indicates SBSM

outperformed baseline for retrieval accuracty; blue indicates the

opposite.

SBSM are also higher than the one without, which means

the SBSMs overlay the query object in more retrieved im-

ages. As shown in Figure 5c, only one broccoli is not over-

laid by the corresponding SBSM, and the Likert score is 4.

In this case, a user is more likely to mark the corresponding

images as positive feedback. However, without SBSM, the

semantic gap leaves an AMT worker uncertain how to give

feedback (as shown in Figure 5b). Hence, compared to the

ones with SBSM, the Likert score is lower, and the retrieval

accuracy is also lower.

The query tasks with blue color labels in Figure 4 (i.e. 3,

4, 5, 7, 8, 12) show the same correlation but in an opposite

direction; with SBSM, they have lower Likert scores and

lower retrieval accuracy except for the fourth query. The

lower Likert score indicates the SBSM does not overlay the

query object on the majority of retrieved images; the non-

overlaid area (e.g. other objects, background) has more im-

pact on the similarity distance, making the image less criti-

cal for query target training. During the user study, an AMT

worker, most likely, votes these images as negative feed-

back since a worker must give feedback for every retrieved

image. However, less critical does not mean it should be a

negative feedback. In the case without SBSM, a worker’s

feedback is mainly based on his/her semantic sense of the

relationship between the query and retrieved image. There-

fore, as long as the query target is present in an image, they

are likely to give positive feedback to the image. We hy-

pothesize this is why retrieval accuracy with SBSM is lower
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(a) Broccoli

query

(b) Feedback w/o SBSM; LS=3; (36%→44%) (c) Feedback w/ SBSM; LS=4; (36%→52%)

Figure 5: SMQTK IQR GUI and user’s relevance feedback. (a): query image. In (b), (c), red background means the

user marked the image “not relevant”; green indicates “relevant”. LS is Likert Score; (x%→y%) means that after applying

relevance feedback, the top-50 retrieval accuracy changes from x% to y%.

than without.

We observe a strong correlation between the Likert score

and the retrieval accuracy, indicating the SBSM connects

the user’s perception of the image and the underlying fea-

ture vectors driving the CBIR. Note that the main purpose

of the proposed SBSM is not to improve the CBIR perfor-

mance, but to give the user insight into why a certain image

is retrieved. However, bridging this semantic gap does not

mean the base model and a user agree on semantic correct-

ness; one person understanding another’s semantic concept

does not mean the person must think the semantic concept

is correct. Therefore, in this work, the correlation between

the Likert score and retrieval accuracy is more important.

4. Conclusion

We have identified two semantic barriers inhibiting effi-

cient use of CBIR systems: first, that between image fea-

tures used to represent images in the CBIR and the se-

mantic concepts in the viewer’s perception; secondly, the

similarity metric used to retrieve images cannot be directly

explained to the user. We propose the Similarity Based

Saliency Map (SBSM), which visually explains the feature

distance between query and result images, illustrating pre-

cisely which areas of the result most affect the distance.

Our method is label-free and can be implemented using

any feature source. We have implemented our method on

top of an open-source CBIR system (SMQTK), and lever-

aged SMQTK’s feedback-based interactive query refine-

ment study to conduct a user study which highlights how

SBSMs allow the user to more efficiently give feedback,

leading to higher retrieval scores.
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