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Abstract 

 
Interpreting a deep Convolutional Neural Network 

(CNN) involves identifying the features in a hierarchy of 
layers that contribute to recognition. Although the current 
approaches serve as methods to interpret a deep CNN, 
further advancement is required for a more accurate and 
efficient way of understanding how a hierarchy of features 
formed by a deep CNN contributes to recognition. In this 
paper, we propose attaching a feedback CNN to a 
pretrained feedforward CNN as a means of learning how 
recognition is performed by the feedforward CNN. In other 
words, the features reconstructed in a hierarchy of the 
feedback CNN represent those learned by the feedforward 
CNN. By analyzing how clusters are formed in the layers of 
feature spaces in the feedback CNN, we can interpret which 
features critically contribute to recognition. It also helps to 
evaluate whether or not recognition is done successfully. In 
order to show this, we experimentally verify the capabilities 
of the proposed approach in terms of identifying incorrectly 
recognized input data by pinpointing the source of the error 
in feature spaces. Experiments conducted on the ModelNet 
datasets indicate that the proposed approach offers an 
extended capability of interpreting a deep CNN as 
described above with higher accuracy than conventional 
approaches. 

1. Introduction 
Deep neural networks offer tremendous benefits under 

the available resources, however, this end-to-end training 
process with highly nonlinear functions of deep networks 
treats them as black boxes which lack proper information 
about the internal representation of the data. The activities 
of neurons toward the representation of the internal 
structure of the data as well as their behavior in terms of 
collaboration with each other in such complex models are 
obscure, and the model learning is based on trial-and-error. 
This is a substantial limitation of deep networks in 
understanding the classification applications, as it hinders 
the human experts in carefully verifying the classification 
decision. In summary, the unreasonable properties of 

assessing the model based on the binary or real-valued 
one-dimensional answer at the decision layer make it hard to 
interpret the activities of neurons at different layers. 
Furthermore, the black-box nature of deep networks makes 
it nearly impossible for one to know about the collaboration 
of neurons or fix problems when errors occur while 
performing different tasks. Therefore, meaningful 
interpretation of a deep neural network is required which 
allows the user to learn the behavior of the network and trust 
its ability in terms of interacting with the system using deep 
networks in different applications.  

In this paper, we take advantage of the clustering-based 
evaluation of the recognition probabilities by reconstructing 
them from the selected cluster to the testing samples while 
using feature extraction and reconstruction CNN.  

Figure 1: FER-CNN model, the top represents the encoder part, 
whereas the bottom represents the decoder part along with skip 
connections between the encoder and decoder. Both the encoder 
and decoder have five convolution layers and deconvolution 
layers, respectively, along with three fully connected layers. 

2. Feature extraction and reconstruction CNN 
For automatic local and global feature extraction along 

with automatic reconstruction, we use feature extraction and 
reconstruction (FER-CNN) as a basic platform as shown in 
Fig. 1 for the purpose of interpretation. 

FER-CNN is composed of two sub-networks: the 
Encoder and Decoder. Both the Encoder and Decoder are 
mirrored, where each consist of five convolution layers with 
the parameters of 6x6x6, 5x5x5, 4x4x4, 3x3x3, 2x2x2, and 
1x1x1, as well as fully connected layers with dimensions of 
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1500, 500, and 10/40. The filter dimensions are [64, 196, 
512, 1024, 2048, 1500, 500] respectively. 

Figure 2.  The first row shows the feature location in the feature 
space which is mapped back to the input space, the second row 
shows the response field from the corresponding input receptive 
field, the third row shows the reconstruction from the effective 
response field, and the last row represents the required receptive 
field. 

3.   Response field-based reconstruction 
In order to assess the performance of the deep 

convolutional neural network, the activities of each neuron 
in the intermediate layers must first be known. FER-CNN is 
composed of convolutional layers, so reconstruction from a 
single feature is not straightforward. The receptive field in 
input space is not only the function of the given feature in 
that particular layer, but is also dependent on the 
neighboring features in that spatial location. This is due to 
the fact that overlapping convolution windows are dictated 
by the choice of layer configuration (i.e. window size and 
stride). In order to address this problem, we use a response 
field-based reconstruction algorithm, which is presented in 
Fig. 2. 
Algorithm 1 Response Field-Based Reconstruction 
Algorithm 

1. Select a location at a specific layer for which we need 
to find the response field. 

2. Find the receptive field for that specific response in 
the given layer. 

3. Calculate the response field in that layer for all of the 
neurons in the input space. 

4. Copy that response field and make the rest of the 
feature space zero. 

5. Reconstruct the input space from the computed 
response field at that particular layer. 

6. Crop the receptive field obtained in the second step.  

4. Implications of feedback weights as a mean of 
interpretation 

The proposed feedback network with its weights trained 
based on the input dataset plays an important role in 
interpreting what is learned in the feedforward network to 
which it is attached. The reconstruction of an input sample 
through the feedback network connotes the way in which the 

feedforward network clusters a hierarchy of features for 
classification. As such, the reconstruction ignores the noise 
deformation of input samples but generates more typical 
representatives corresponding to the classification result. 
FER-CNN provides an effective means for achieving the 
desired goal of interpreting the cluster formed in the 
feedforward path of the classification network, where the 
feedback layers preserve information about the individual 
samples locally as well as their mean representation 
globally. The clustering-based interpretation explores the 
effect of feedback weights on the interpretation of deep 
neural networks, where we first cluster the feature space in 
each layer along the filter dimensions using the k-means 
clustering algorithm. As we used the ModelNet10 dataset, 
which has 10 classes, for this analysis, we set k=10 in the 
last fully connected layer. For the rest of the layers, we set 
k= [60,50,40,30,30,20,20] as appropriate. Upon completion 
of the clustering of the feature space, we select the testing 
samples and pass them through the network, then find the 
nearest cluster in each layer at each location, as shown in 
Fig. 3. The representative clusters at each layer are implicit 
in the feedforward path, as shown in the odd rows of Fig. 3. 
By contrast, the even rows represent the representative 
clusters in the feedback path, which are more biased to the 
typical representation of the input sample, and contains 
information about their representative classes which we 
explain further in the following section. 

Figure 3.  The implication of feedback weights as a mean of the 
interpretation of deep neural network using clustering-based 
analysis. The top row represents layer-wise representative clusters 
in the feedforward path while the bottom row represents the 
layer-wise representative clusters in the feedback path. 

Figure 4.  Clustering-based analysis of the correctly classified 
input testing samples from layers 3 to 7. The first column 
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represents the clustering in the feedforward direction. The second 
column represents the clustering in the feedback direction. 

Figure 5.  Clustering-based analysis of the correctly classified 
input testing samples by reconstructing them from the local layers 
as well as from the correctly classified class probabilities. The first 
row shows the input testing samples and the corresponding 
columns in the second row represent the generated samples from 
the local layers, while the third and fourth rows show the nearest 
ground truth and their corresponding reconstructed samples to the 
cluster centroid based on the recognition probabilities, 
respectively 

4.1. Clustering based interpretation and FER-CNN 
reconstruction 

In order to perform the clustering-based analysis for the 
interpretation of a deep neural network, we cluster the 
feature space of all of the layers along the filter dimensions 
using feedforward and feedback weights. First, we cluster 
the feature space of all of the layers along the filter 
dimensions using the feedforward parameters of the 
network, then pass the testing sample through the network. 
In this step, we select the cluster centroid at each spatial 
location nearest to the corresponding location in the input 
testing sample and then pick the selected clusters as 
representatives of that testing sample. The cluster 
distribution at the local layers provides us with information 
about the features which are more biased to the intraclass 
feature similarities than the specific object class. The cluster 
distribution becomes more representative of that class as we 
go up the network, and the last layer cluster represents the 
class of that object. Second, we cluster the feature space of 
all of the layers along the filter dimensions using the 
feedback parameters of the network. After clustering the 
feature space in the feedback path, we pass the input testing 
sample through the network, then obtain its code at each 
layer using the feedback parameters. Then, using the KNN 
algorithm, the nearest representative cluster centroids at 
each layer and each spatial location to the corresponding 
spatial location in the input testing sample are obtained.  

The clusters formed in the feedback path carry information 
about the misclassified samples to the input space as a mean 
of qualitative and quantitative analysis for the interpretation 
of the network. Figs. 4 to 7 shows the interpretation of the 
deep neural network based on the above discussion. First, we 
analyze the correctly classified input testing sample using the 
cluster-based interpretation shown in Fig. 4. The first row 
shows clustering in the feedforward direction whereas the 
second row shows the clustering in the feedback direction. 
Each column in Fig. 4 represents a layer-wise analysis. This 
analysis indicates that the selected clusters are specific to the 
corresponding class based on the above discussion. In the 
second analysis, we used the wrongly classified input testing 
sample, and the candidate clusters obtained from the 
feedback weights in the designated layers represent the wrong 
class of the objects as shown in the second row, whereas the 
feedforward candidate clusters show the correct class 
corresponding to the input testing sample, as shown in the 
first row of Fig. 6. The qualitative analysis for the 
interpretation of the deep neural network using feedback 
weights is shown in Figs 5 and 7. In Fig. 5, we first analyze 
the samples which have been correctly classified by the 
recognition network. As the first step of the analysis, we 
provide these input testing samples to the network then 
reconstruct these from the local layers using the feedback 
weights. As discussed previously, the local layers are more 
biased to the feature similarities than the classification 
objective; therefore, it reconstructs the samples having 
similarities with the input testing samples. The reconstructed 
input testing samples are shown in the corresponding columns 
in the second row in Fig. 5. The recognition network 
generates the class probabilities based on the input testing 
samples. These class probabilities are fed to the feedback 
network, which generates their features at each layer. The 
features at each layer then pick the nearest cluster centroids 
and reconstruct them. The nearest sample to the cluster 
centroid and its corresponding reconstructed results are 
shown in the third and fourth rows of Fig. 5, respectively, and 
the results indicate that the feature similarity-based 
reconstructions from the local layers as well as from the 
generated class probability match each other, hence, proving 
the correct classification accuracy. For example, the bed, 
bookshelf, bottle, car, chair, airplane, and bathtub are all 
correctly classified by the recognition network and their 
reconstructed results from the correct class codes show 
similarities with the input testing samples, as shown in Fig. 5. 
In Fig. 7, we analyze the samples which have been wrongly 
classified by the recognition network. During this analysis, 
the network reconstructs these input testing samples from the 
local layers using the feedback weights as shown in the 
corresponding columns in the second row of Fig. 7, which 
shows similarities to the input testing samples regardless of 
their classification. Based on these input testing samples, the 
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recognition network generates the class probabilities. These 
class probabilities are fed to the feedback network, which 
generates their features at each layer. The features at each 
layer then pick the nearest cluster centroids and reconstruct 
them. The nearest sample to the cluster centroid and its 
corresponding reconstructed results are shown in the third 
and fourth rows of Fig. 7, respectively. The results show that 
the samples reconstructed from the local layers match the 
input testing samples regardless of their recognition 
probability, whereas the samples generated from the cluster 
centroids using the class probabilities as input to the feedback 
network do not match the input testing samples, and it selects 
the clusters belonging to the recognition probabilities 
generated by the network. This analysis further elaborates 
that the samples which are wrongly classified show structural 
similarities to the input testing samples. For example, the 
bathtub, cone, table, bookshelf, bottle, car, and chair are 
wrongly classified as a bed, bottle, bathtub, bench, cone, 
bookshelf, and bed, respectively. The misclassified samples 
show structural similarities with the input testing sample. 
Such analysis provides insight into the classification of the 
recognition network by qualitatively interpreting its 
recognition.  

Figure 6.  Clustering-based analysis of the wrongly classified 
input testing samples from layers 3 to 7. The first column 
represents the clustering in the feedforward direction. The second 
column represents the clustering in the feedback direction. 

 
 

Figure 7.  Clustering-based analysis of the wrongly classified 
input testing samples by reconstructing them from the local layers 
as well as from the correctly classified class probabilities. The first 
row shows the input testing samples and the corresponding 
columns in the second row represent the generated samples from 

the local layers, while the third and fourth row show the nearest 
ground truth and their corresponding reconstructed samples to the 
cluster centroid based on the recognition probabilities, 
respectively. 
We also performed quantitative analysis in terms of the mean 
square error of the misclassified input testing sample and the 
generated sample from the wrong recognition probabilities 
presented in Table. I. This analysis shows that the error 
between the input testing sample and the reconstructed 
sample from the misclassified class probability is almost 
double the error between the input testing sample and its 
reconstruction from the local layers. This error difference 
provides information about the misclassification of the input 
testing samples. 

TABLE I 
MEAN SQUARE ERROR BETWEEN THE INPUT SAMPLE AND RECONSTRUCTED 

SAMPLES. 
Error between input representative and 
reconstructed output 

19.185 

Error between the misclassified sample and 
reconstructed output 

22.610172  

Error between reconstructed input representative 
sample and reconstructed misclassified 

26.466608   

Error between the input representative and 
reconstructed misclassified sample 

35.837 
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