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Abstract

Deep neural decision forest (NDF) achieved remarkable

performance on various vision tasks via combining deci-

sion tree and deep representation learning. In this work,

we first trace the decision-making process of this model

and visualize saliency maps to understand which portion

of the input influence it more for both classification and

regression problems. We then apply NDF on a multi-task

coordinate regression problem and demonstrate the dis-

tribution of routing probabilities, which is vital for inter-

preting NDF yet not shown for regression problems. The

pre-trained model and code for visualization will be avail-

able at https://github.com/Nicholasli1995/

VisualizingNDF

1. Introduction

Traditional decision trees [5, 3] are interpretable since

they conduct inference by making decisions. An input is

routed by a series of splitting nodes and the conclusion is

drawn at one leaf node. Training these models follow a lo-

cal greedy heuristic [5, 3], where a purity metric such as

entropy is adopted to select the best splitting function from

a candidate set at each splitting node. Hand-crafted features

were usually used and the model’s representation learning

ability is limited.

Deep neural decision forest (NDF) [4] and its later

regression version [6] formulated a probabilistic routing

framework for decision trees. As a result the loss function

is differentiable with respect to the parameters used in the

splitting functions, enabling gradient-based optimization in

a global way. Despite the success of NDF, there is few ef-

fort devoted to visualize the decision making process of it.

In addition, the deep representation learning ability brought

by the soft-routing framework comes with the price of vis-

iting every leaf node in the tree. The model will be more

similar to traditional decision tree and more interpretable

if few leaf nodes contribute to the final prediction. Fortu-

nately, the desired property was demonstrated by the distri-
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Figure 1: Illustration of the decision-making process in

deep neural decision forest. Input images are routed (red

arrows) by splitting nodes and arrive at the prediction given

at leaf nodes. The feature extractor computes deep repre-

sentation from the input and send it (blue arrows) to each

splitting node for decision making. Best viewed in color.

bution of routing probabilities in [4] for a image classifica-

tion problem. To our best knowledge, this property has not

yet been validated for any regression problem.

In this paper, we trace the routing of input images and

apply gradient-based technique to visualize the important

portions of the input that affect NDF’s decision-making pro-

cess. We also apply NDF to a new multi-task regression

problem and visualize the distribution of routing probabili-

ties to fill the knowledge blank. In summary, our contribu-

tions are:

1. We trace the decision-making process of NDF and

compute saliency maps to visualize which portion of

the input influences it more.

2. We utilize NDF on a new regression problem and visu-

alize the distribution of routing probabilities to validate

its interpretability.
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2. Related works

Traditional classification and regression trees make pre-

dictions by decision making, where hand-crafted features

[5, 3] were computed to split the feature space and route the

input. Deep neural decision forest (NDF) and its regression

variant [6] were proposed to equip traditional decision trees

with deep feature learning ability. Gradient-based method

[7] was adopted to understand the prediction made by tra-

ditional deep convolutional neural network (CNN). How-

ever, this visualization technique has not yet been applied to

NDF. Another orthogonal line of research attempts to learn

more interpretable representation [9] and organize the infer-

ence process into a decision tree [10]. Our work is different

from them since it is more of a visualization-based model

diagnosis and no other loss function is used in the training

phase to drive semantically meaningful feature learning as

in [9].

3. Methodology

A deep neural decision forest (NDF) is an ensemble of

deep neural decision trees. Each tree consists of splitting

nodes and leaf nodes. In general each tree can have un-

constrained topology but here we specify every tree as full

binary tree for simplicity. We index the nodes sequentially

with integer i as shown in Figure 1.

A splitting node Si is associated with a recommendation

(splitting) function Ri that extracts deep features from the

input x and gives the recommendation score (routing prob-

ability) si = Ri(x) that the input is recommended (routed)

to its left sub-tree.

We denote the unique path from the root node to a leaf

node Li a computation path Pi. Each leaf node stores one

function Mi that maps the input into a prediction vector

pi = Mi(x). To get the final prediction P, each leaf node

contributes its prediction vector weighted by the probability

of taking its computation path as

P =
∑

i∈Nl

wipi (1)

and Nl is the set of all leaf nodes. The weight can be ob-

tained by multiplying all the recommendation scores given

by the splitting nodes along the path. Assume the path Pi

consists of a sequence of q splitting nodes and one leaf node

as {Sj1
i1
,Sj2

i2
, . . . ,S

jq
iq
,Li}, where the superscript for a split-

ting node denotes to which child node to route the input.

Here jm = 0 means the input is routed to the left child and

jm = 1 otherwise. Then the weight can be expressed as

wi =

q∏

m=1

(sim)✶(jm=0)(1− sim)✶(jm=1) (2)

Note that the weights of all leaf nodes sum to 1 and the

final prediction is hence a convex combination of all the pre-

diction vectors of the leaf nodes. In addition, we assume the

recommendation and mapping functions mentioned above

are differentiable and parametrized by θi at node i. Then

the final prediction is a differentiable function with respect

to all the parameters which we omit above to ensure clarity.

A loss function defined upon the final prediction can hence

be minimized with back-propagation algorithm.

Note here all computation paths will contribute to the fi-

nal prediction of this model, unlike traditional decision tree

where only one path is taken for each input. We believe the

model is more interpretable and similar to tradition deci-

sion trees when only a few computation paths contribute to

the final prediction. This has been shown to be the case for

classification problem in [4]. Here we also demonstrate the

distribution of routing probabilities for a regression prob-

lem.

To understand how the input can influence the decision-

making of this model, we take the gradient of the routing

probability with respect to the input and name it decision

saliency map (DSM),

DSM =
∂si

∂x
(3)

For classification problem, the prediction vector pi for

each leaf node Li is a discrete probability distribution vec-

tor whose length equals the number of classes. The yth

entry pi(y) gives the probability P(y|x) that the input x

belongs to class y. For regression problems, pi is also a

real-valued vector but the entries do not necessarily sum

to 1. The optimization target for classification problems

is to minimize the negative log-likelihood loss over the

whole training set containing N instances D = {xi, yi}
N
i=1,

L(D) = −
∑N

i=1 log(P(yi|xi)). For a multi-task regression

problem with N instances D = {xi,yi}
N
i=1, we directly use

the squared loss function, L(D) = 1
2

∑N

i=1||Pi − yi||
2.

In the experiment, we use deep CNN to extract features

from the input and use sigmoid function to compute the rec-

ommendation scores from the features. The network pa-

rameters and leaf node prediction vectors are optimized al-

ternately by back propagation and update rule, respectively.

Details about the network architectures, training algorithm

and hyper-parameter settings can be found in our supple-

mentary materials (included in the GitHub repository).

4. Experiments

4.1. Classification for MNIST and CIFAR­10

Standard datasets provided by PyTorch1 are used. We

use one full binary tree of depth 9 for both datasets, but

the complexity of the feature extractor for CIFAR-10 is

higher. Adam optimizer is used with learning rate specified

1https://pytorch.org/docs/0.4.0/_modules/

torchvision/datasets
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Pred:2 (N1, P1.00) (N2, P1.00) (N4, P1.00) (N8, P1.00) (N16, P1.00) (N32, P1.00) (N65, P1.00) (N130, P1.00) (N260, P1.00)

Pred:0 (N1, P1.00) (N2, P1.00) (N4, P1.00) (N8, P1.00) (N16, P1.00) (N33, P1.00) (N66, P1.00) (N132, P1.00) (N264, P1.00)

Pred:9 (N1, P1.00) (N2, P1.00) (N5, P1.00) (N10, P1.00) (N21, P1.00) (N43, P1.00) (N87, P1.00) (N175, P1.00) (N351, P1.00)

Pred:5 (N1, P1.00) (N2, P1.00) (N4, P0.72) (N8, P0.72) (N16, P0.72) (N32, P0.72) (N64, P0.71) (N129, P0.71) (N259, P0.71)

Pred:6 (N1, P1.00) (N2, P1.00) (N5, P0.99) (N11, P0.99) (N22, P0.99) (N44, P0.99) (N89, P0.99) (N179, P0.99) (N359, P0.99)

Figure 2: Decision saliency maps for MNIST test set. Each row gives the decision-making process of one image, where the

left-most image is the input and the others are DSMs along the computation path of the input. Each DSM is computed by

taking derivative of the routing probability with respect to the input image. Model prediction is given above the input image

and (Na, Pb) means the input arrives at splitting node a with probability b during the decision-making process.

Pred:airplane (N1, P1.00) (N2, P1.00) (N5, P1.00) (N11, P1.00) (N23, P1.00) (N46, P1.00) (N93, P1.00) (N186, P1.00) (N372, P1.00)

Pred:bird (N1, P1.00) (N2, P0.68) (N5, P0.57) (N11, P0.57) (N23, P0.57) (N47, P0.57) (N95, P0.57) (N190, P0.57) (N381, P0.57)

Pred:bird (N1, P1.00) (N2, P1.00) (N5, P1.00) (N11, P1.00) (N23, P1.00) (N47, P1.00) (N95, P1.00) (N190, P1.00) (N381, P1.00)

Pred:bird (N1, P1.00) (N2, P1.00) (N5, P1.00) (N11, P1.00) (N23, P1.00) (N47, P1.00) (N95, P1.00) (N190, P1.00) (N381, P1.00)

Pred:horse (N1, P1.00) (N3, P1.00) (N7, P1.00) (N15, P1.00) (N31, P1.00) (N62, P1.00) (N125, P1.00) (N250, P1.00) (N501, P1.00)

Figure 3: Decision saliency maps for CIFAR-10 test set using the same annotation style as Figure 2.

as 0.001. Test accuracies for different datasets and feature

extractors are shown in Table 1. We record the computa-

tion path for each test image that has the largest probability

been taken, and compute DSMs for some random samples

as shown in Fig. 2 and Fig. 3. The tree is very decisive

as indicated by the probability of arriving at each splitting

node. In addition, the foreground usually affect the decision

more as expected and also similar to [7]. Interestingly, the

highlight (yellow dots) for different DSMs along the com-

putation path vary a lot for some examples. This means the

network is trying to look at different regions of the input

while deciding how to route the input. Another interesting

observation is that the model mis-classify dog as bird when

it is not certain about its decision.

4.2. Cascaded regression on 3DFAW

Here we study the decision-making process for a more

complex multi-coordinate regression problem on 3DFAW

dataset [2]. To our best knowledge, this is the first time NDF

is boosted and applied on a multi-task regression problem.

For an input image xi, the goal is to predict the position of

66 facial landmarks as a vector yi. We start with an ini-

tialized shape ŷ0 and use a cascade of NDF to update the

After Initialization
Prediction
Ground truth

After stage 10
Prediction
Ground truth

Figure 4: Face alignment using a cascade of NDFs. A

coarse shape initialization can be updated to well fit the

ground truth after 10 stages. Best viewed in color.

estimated facial shape stage by stage. The final prediction

ŷ = ŷ0 +
∑K

t=1 ∆yt where K is the total stage number

and ∆yt is the shape update (model prediction) at stage t.

We concatenate 66 local patches cropped around current es-

timated facial landmarks as input and every leaf node stores

a vector as the shape update. We use a cascade length of 10,

and in each stage an ensemble of 3 trees is used where each
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Figure 5: Distribution of recommendation scores for

boosted regression with NDF. Three stages are visualized

and the model is very decisive as the distribution is peaked

around 0 and 1.

Dataset Feature extractor Accuracy

MNIST Shallow CNN 99.3%

CIFAR-10 VGG16 [8] 92.4%

CIFAR-10 ResNet50 [1] 93.4%

Table 1: Accuracies for the classification experiments with

different feature extractors.

has a depth of 5. The model prediction is shown in Fig. 4.

The distribution of recommendation scores for this re-

gression problem is shown in Fig. 5, which is consistent

with the results for classification in [4]. This means NDF

is also decisive for a regression problem and the model can

approximate the decision-making process of traditional re-

gression trees. The input patches to the model and their

corresponding DSMs for a randomly chosen splitting node

are shown in Fig. 6. From these maps we can tell which part

of the face influence the decision more during the routing of

the input.

5. Conclusion

We visualize saliency maps during the decision-making

process of NDF for both classification and regression prob-

lems to understand with part of the input has larger impact

on the model decision. We also apply NDF on a facial land-

mark regression problem and obtain the distribution of rout-

ing probabilities for the first time. The distribution is con-

sistent with the previous classification work and indicates a

decisive behavior.
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