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Abstract

Learning an interpretable representation is an essential

task in machine learning, as many fields, such as legisla-

tion and healthcare, require explainability in the decision-

making process where costly consequences can be easily

incurred. In this paper, we propose a simple embedding

learning method that jointly optimises for an auto-encoding

reconstruction task and for estimating the corresponding

attribute labels associated with the raw data. We restrict

the attribute estimation model to be linear, constraining the

learnt embedding space to be close to the interpretable at-

tribute space. As a result, we are able to interpret the learnt

embedding as a mixture of different attributes, i.e. semantic

information has been embedded in the latent representation.

Furthermore, as the linear mapping is fully invertible, we

are able to generate any data samples from a list of speci-

fied attributes.

1. Introduction

Recently, there has been an increasing interest in the ma-

chine learning community in learning an interpretable la-

tent representation of high-dimensional raw data, such as

natural images. A popular approach focuses on using dis-

entanglement as a means to pursue interpretability for deep

neural networks. The argument is that many generative fac-

tors of a system are independent and a set of disentangled

explanatory factors can be discovered, then a one-to-one

correspondence between the true generative factor and the

discovered explanatory factor might be found and, hence, a

human might be able to interpret these learnt factors.

A key issue of the above claim lies in the mismatch

between the statistical patterns in a dataset and the well-

established human concepts. A fully unsupervised learning

approach is able to discover the statistical regularities of a

dataset and, hence, derive a set of independent (disentan-

gled) factors, but these factors are unlikely to be aligned per-
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Figure 1. Many approaches have been proposed for learning in-

terpretable representations (here we show β-VAE which aims to

learn a disentangled representation – adapted from [3]). Notice

that a single latent code does not correspond to a single human

concept, such as the ’skin tone’ code affects both skin tone and

boldness.

fectly with existing human concepts, because many human

concepts, such as gender, hair length and cloth styles, are in

fact strongly correlated (entangled). This can be shown in

Figure 1 where disentangled factors of variations in human

faces are learnt using β-VAE algorithm [7]; each learnt code

(which is believed to be statistically uncorrelated) actually

embeds multiple human concepts. For example, the codes

interpreted as background brightness, hair colour and hair

length factors are also strongly associated with gender. This

indicates that disentanglement alone does not guarantee in-

terpretability. In fact, we would like to point out that dis-

covering an embedding that incorporates different human

concepts in a completely unsupervised fashion (i.e. with no

reference to any labels of the human concepts) is unlikely

to succeed exactly due to the subtle but prevalent misalign-

ment between the pure statistical patterns in the data and the

human definitions of various concepts.

In this paper, we consider the interpretability of a learnt

latent representation as a key objective. Such latent repre-

sentation is essential for applications in many domains such

as health care, policy making and legislation, where ex-

plainability is a key design factor for any decision-making

algorithms involved. In addition, organizing latent codes in
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such a way allows us to select and reuse specific latent fac-

tors for different downstream tasks. To achieve our goal, we

learn a smooth low dimensional latent embedding using a

variational auto-encoder (VAE) [5] and constrain the learnt

embedding by requiring it to be within a linear mapping

away from a set of human understandable attribute labels.

Such framework allows us to form an embedding space

which is close to a human interpretable attribute space un-

der a very simple and invertible transformation, leading to

certain high-level abstract concepts to be encouraged to be

embedded. At the same time, there is still sufficient flexibil-

ity in the model for low-level details to be abstracted away

through the data-driven bottom-up reconstruction task.

In summary, our contributions are:

• A simple (linear) relationship is imposed between

the embedding and the attribute which acts as a con-

straint to guide the network to learn an interpretable

representation.

• The mapping between the attributes and the latent em-

bedding is invertible, so samples that satisfy a re-

quested list of attributes can be easily generated.

• This is the first work that combines invertible and

non-invertible branches which allows both abstrac-

tion of the raw data as well as conversion between the

learnt embedding and human concepts.

2. Our Proposal

Our proposed model is illustrated in Figure 2, where we

inherit a simple VAE to learn a smooth latent embedding

z ∈ Rdz of any high dimensional input data x ∈ Rdx and

we require a list of da attributes a to be estimated under an

additional linear mapping from z. An attribute ai can be

represented as either a continuous value, such as tempera-

ture or age, or a discrete value, such as gender or emotion.

We denote the model parameters in the encoder, the decoder

and the linear attribute estimator as θ, φ and γ respectively.

As for the learning objective, the reconstruction of the in-

put data through the auto-encoder leads to a reconstruction

error loss:

Lr(θ, φ) = |x− x̂|2, (1)

where x̂ indicates the reconstructed data at the output of the

auto-encoder. The attribute estimation leads to an attribute

prediction loss. For a continuous attribute, the loss can be

expressed as a simple least square error:

Li
a(θ, γ) = |ai − âi|

2, (2)

and for a discrete attribute as a cross entropy loss:

Li
a(θ, γ) = −

Ki
∑

k=1

pk log qk, (3)

Encoder Decoder

Attribute

Code

W
W-1

Figure 2. In addition to a common auto-encoder learning scheme,

we add a light-weight attribute estimation module which is con-

strained to be a linear model. By jointly training the auto-encoder

and the linear attribute estimator, we are able to learn an embed-

ding that is optimally linearly separable for different attributes,

leading to a semantically meaningful embedding.

where ai is the ground truth attribute label, âi is the pre-

dicted attribute label, p denotes a one-hot vector with 1 ap-

pearing at the index corresponding to the true category, q de-

notes an estimated probability distribution for all categories

given by the linear estimator and Ki denotes the number of

categories for the i-th attribute ai.

The overall loss for our model is the sum of the recon-

struction error given in Equation 1 and the attribution pre-

diction error given in either Equation 2 or 3, i.e.

L(θ, φ, γ) = Lr(θ, φ) +

da
∑

i=1

Li
a(θ, γ). (4)

By minimizing the loss L(θ, φ, γ) w.r.t. θ, φ and γ together,

we are able to find a compact representation of the raw data

while the representation is in a latent space that is closely

related to the interpretable attributes, as the representation

is optimized to be a linear mixture of the given attributes.

The optimization of L(θ, φ, γ) can be done using gradient

descent algorithm with ADAM optimizer. After the model

has been trained, we are able to predict the attributes for any

raw data. At the same time, as the linear attribute estimator

can be easily inverted, we can also generate an input data

sample given a list of specified attributes.

2.1. Direct Inference Using Specified Attributes

The invertability of the attribute estimator is a key com-

ponent of our proposal, which enables direct inference of

input samples given a list of specified attributes. Depend-

ing on whether the attributes are continuous or discrete, the

inversion computation is different. Here we give details for

both situations.

2.1.1 Continuous Attributes

For continuous attributes, the linear attribute estimator can

be modelled as a matrix multiplication, illustrated in Fig-

ure 3, i.e.

Wz + b = a, (5)
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where a weight matrix W
da×dz = [w1, · · · ,wda

]T con-

taining da weight vector wis (each corresponds to the

weights coupled with the latent embedding z to estimate

a specific attribute value), and b
da×1 is a bias vector. This

linear estimator can be implemented using a neural network

of a single fully connected layer with no activation. The in-

verse estimation of predicting a latent embedding z given an

attribute vector a can be made by re-arranging Equation 5,

giving

z = (W T
W )−1

W
T (a− b). (6)

w1

T

wda

T

...
da

dz

Wda   dz

dz

zdz   1

da da
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... ..
. ..... .

continuous attribute estimation
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Ki Ki

da

Ki

Figure 3. Computation of the linear attribute estimator for continu-

ous (red) and discrete (blue) attributes. Discrete attributes require

an additional softmax activation.

2.1.2 Discrete Attributes

The inversion process for discrete attributes is slightly less

straight-forward. This is because for discrete attributes, we

need to implement a multi-class classifier and this requires

a softmax function σ(·) to be applied on the output vector

a of the matrix multiplication defined in Equation 5. Note

that the dimension of a is different in the continuous and

discrete cases. As illustrated in Figure 3, we consider an

attribute classification at a time and the output of the soft-

max r ∈ RKi×1 represents a discrete probability distribu-

tion over all Ki categories for the current attribute. The

category associated with the highest probability will be the

prediction of the attribute estimator. The k-th dimension of

r is defined as

rk = σ(a)k =
exp (wT

k z + bk)
∑Ki

j=1 exp (w
T
j z + bj)

. (7)

It is clear that non-linearity has been introduced by the

softmax activation, but we illustrate here that the inverse

estimation from r to z can be computed in a closed form.

Firstly, we compute the ratios between all r’s elements and

its final element, denoting the results as r̂. Then we have

r̂k =
rk

rKi

=

{

exp (ŵT
k z + b̂k), 1 ≤ k ≤ Ki − 1

1, k = Ki

where ŵ
T
k = w

T
k −w

T
Ki

and b̂k = bk − bKi
. Now consid-

ering the first (Ki − 1) elements of r̂ and taking the natural

logarithm, we have Ki − 1 of the following equations:

ŵ
T
k z + b̂k = ln

(

r̂k
)

, 1 ≤ k ≤ Ki − 1. (8)

We can organise them as a matrix equation similar to the

one given in Equation 6, i.e. Ŵz + b̂ = r̂1:Ki−1, where

Ŵ
(Ki−1)×dz = [ŵ1, · · · , ŵKi−1]

T and b̂
(Ki−1)×1 =

[b̂1, · · · , b̂Ki−1]
T . Therefore, the latent embedding for a

discrete attribute can be estimated from a discrete proba-

bility distribution by

z = (Ŵ T
Ŵ )−1

Ŵ
T
(

r̂1:Ki−1 − b̂

)

. (9)

3. Related Work

Visually grounded imagination is defined in [9] as the

ability to generate images based on some given semantic

concepts. Several works [10, 9, 8] have attempted this task

in a VAE framework with the objective of learning a latent

embedding that contains information of both the raw data

(images) and the semantic attribute labels. [10] takes the

semantic labels as a conditional input for the latent embed-

ding, while [9, 8] learn a joint generative model shared be-

tween the images and semantic labels. Our work shares a

similar objective, but differs in the inference process where

an image is generated given a requested list of attributes.

Our method has a closed-form inversion to complete the in-

ference task, whereas all above works have to learn a sepa-

rate inference model for such inference.

Flow-based generative models are proposed by [1, 2] to

refer to generative models with invertible and easily differ-

entiable transformations between the data and latent vari-

able, naturally leading to the benefit of exact inference of

a new data observation given a query latent embedding.

[4] has shown that high-resolution realistic images can be

generated using a well designed flow model. Our idea of

keeping the transformation between the learnt embedding

and the attribute space invertible and differentiable is in-

spired by Flow. However, our work differs in that we allow

the transformation between the raw data and the embedding

to be non-invertible, leaving more freedom for the low level

details to be abstracted out. We believe a sensible com-

bination between invertible and non-invertible functions is

likely to lead to the optimal learning outcome, i.e. a latent

embedding with preferrable properties.

4. Experiment

We carried out two experiments on the MNIST hand-

written digit dataset [6] to demonstrate the performance of

our method. Firstly, we show that learning through our

method can form a latent embedding that is significantly

more linearly separable for the human understandable se-

mantic information, in comparison with a different learn-

ing approach where the latent embedding and the linear

classifier are trained separately. As shown in Table 1, our
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learning approach gives a clear better classification accu-

racy than both AE or VAE on a held-out test set of 10k

images. Specifically, the huge gap of about 31% in the

classification accuracy between our approach and the sepa-

rate training approach in an AE case indicates that the addi-

tional attribute estimator acts to organize the latent space to

be significantly more linearly separable. Furthermore, the

significant improvement on accuracy from the variational

training indicates that the smooth constraint imposed by the

VAE objective helps to form an embedding close to the ideal

attribute space and with our linear classification constraint

we are able to push the learnt embedding one step closer.

Moreover, learning with our approach can also improve the

reconstruction quality of the latent embedding, as shown by

the clear gap in Figure 4(b).

Linear Classification Accuracy

Training Method AE VAE

Separate 39.1 % 76.5%

Joint (Ours) 70.1% 79.1%

Table 1. Comparison in classification accuracy for MNIST dataset

between our learning approach and a learning approach where the

latent embedding and the linear classifier are trained separately.

The result shows that learning using our approach forms a latent

embedding that is closest to the ideal attribute space.
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Figure 4. Comparison in validation error for the linear classifica-

tion (a) and the VAE reconstruction (b) on MNIST dataset between

our model (blue line) and a separate training learning approach

(red line). The embedding learnt using our model is more linearly

separable (hence, better embedding of the attribute information)

and reaches a better reconstruction quality.

Secondly, we also demonstrate the ability of our method

to generate input samples from user specified attribute la-

bels. In the MNIST example, the learnt attribute is a dis-

crete probability distribution over all 10 classes of digits.

As shown in Figure 5, we list several examples from a set

of randomly generated attribute requests using the inversion

process offered by our approach. In cases where the re-

quested distributions are certain about one class, the gener-

ated images show sensible forms of the corresponding dig-

its. In cases where the distribution has uncertainty across

several classes, the generated images are more like in tran-

sition states between the digits.

High 

Certainty

Low 

Certainty

a) b) c) d) e) f) g) h) i)

High Certainty (Row 1) Query Probability Distributions
a) [0.9, 0, 0, 0, 0, 0, 0.1, 0, 0, 0] b) [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

c) [0, 0, 0.6, 0, 0.1, 0.1, 0, 0, 0.2, 0] d) [0, 0, 0, 0.8, 0, 0.2, 0, 0, 0, 0]

e) [0, 0, 0, 0, 0.7, 0, 0, 0, 0, 0.3] f) [0, 0, 0, 0.3, 0, 0.5, 0, 0, 0.2, 0]

g) [0.1, 0, 0, 0, 0, 0, 0.9, 0, 0, 0] h) [0, 0, 0, 0, 0, 0, 0, 1, 0, 0]

i) [0, 0, 0, 0, 0.2, 0, 0, 0, 0.1, 0.6]

Low Certainty (Row 2) Query Probability Distributions
a) [0.5, 0, 0, 0.3, 0, 0.1 ,0, 0, 0, 0] b) [0, 0.6, 0, 0, 0, 0, 0.2, 0.1, 0, 0.1]

c) [0, 0, 0.4, 0.3, 0, 0.1, 0.1, 0, 0.1, 0] d) [0.1, 0, 0.1, 0.6 0, 0.1, 0, 0, 0.1, 0]

e) [0, 0, 0.1, 0, 0.7, 0, 0, 0, 0, 0.2] f) [0,7, 0, 0, 0.2, 0, 0, 0.1, 0, 0, 0]

g) [0.2, 0, 0.4, 0, 0, 0, 0.4, 0, 0, 0] h) [0, 0, 0, 0, 0.2, 0, 0, 0.3, 0.1, 0.4]

i) [0, 0, 0, 0, 0.2, 0, 0, 0.2, 0.1, 0.4]

Figure 5. Generated images given a query attribute as a probabil-

ity distribution over 10 digit categories. High certainty indicates

the query distributions are peaked at one category, whereas low

certainty refers to distributions activated over several categories.

5. Conclusion and Future Work

In this paper, we propose a novel learning approach to

deriving a semantically meaningful latent embedding. We

restrict the transformation between the latent embedding

and the attribute space to be simple (linear) and this natu-

rally forms an abstract latent representation that embeds the

semantic information expressed in the attribute labels. In-

ference of different input samples given a list of request at-

tributes is easy in our model, as the transformation between

the latent embedding and the attributes is fully invertible.

In the future, we would like to extend the linear transforma-

tion to more complex invertible mappings, allowing more

flexibility in the semantic embedding.
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