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Abstract

Myotonia, which refers to delayed muscle relaxation af-

ter contraction, is the main symptom of myotonic dystrophy

patients. We propose a hierarchical attention-based tempo-

ral convolutional network (HA-TCN) architecture for my-

otonic dystrohpy diagnosis from handgrip force time series

data, and introduce mechanisms that enable model explain-

ability. We compare the performance of the HA-TCN model

against that of benchmark TCN models, LSTM models with

and without attention mechanisms, and SVM approaches

with handcrafted features. In terms of classification accu-

racy and F1 score, we found deep learning models have

similar levels of performance, and they all outperform SVM.

Further, the HA-TCN model outperforms its TCN counter-

part with regards to computational efficiency regardless of

network depth, and in terms of performance particularly

when the number of hidden layers is small. Lastly, HA-

TCN models can consistently identify relevant time series

segments in the relaxation phase of the handgrip force time

series, and exhibit increased robustness to noise when com-

pared to attention-based LSTM models.

1. Introduction

Artificial intelligence (AI) techniques, along with the

ever-increasing availability of healthcare data, have opened

numerous new avenues of research. Deep learning mod-

els are currently preferred as they avoid handcrafted fea-

tures required by traditional machine learning approaches

[3, 6] and have shown promising results and state-of-the-art

performance. In spite of their superior performance, deep

learning models have been criticized for their lack of in-

terpretability, particularly in the healthcare community, for

which model explainability is as important as accuracy. The

certainty needs to exist that the diagnosis of a disease is

made based on real causes instead of systemic biases in the

data. Doctors and patients want to understand the reasoning

process that leads to suggested treatment avenues.

In this study, we focus on interpretable classification of

medical time series data, more specifically, diagnosis of

myotonic dystrophy from handgrip force time series data.

Myotonic dystrophy is an autosomal dominant, progressive

neuromuscular disorder caused by gene mutation. Its core

feature, myotonia, consists in delayed muscle relaxation

following contraction, which heavily impacts a patient’s

daily life. The diagnosis of Myotonic dystrophy (Type

1) relies on handgrip time series data collected from stan-

dardized quantitative myotonia assessment (QMA) hard-

ware equipped with a force transducer. Reasoning based

on handcrafted features can be inaccurate, and medical ex-

perts are often required to verify resulting diagnoses. Our

main contributions are as follows:

• We propose an end-to-end hierarchical attention-based

temporal convolutional network (HA-TCN) to auto-

mate the handgrip time series data analysis task.

• We empirically show that the proposed HA-TCN

framework performs similarly to Temporal Convolu-

tional Network (TCN) [2] and Long Short-term Mem-

ory (LSTM) approaches, and that the deep-learning-

based methods outperform support vector machines

(SVM) that rely on handcrafted features.

• We demonstrate through experimental validation that

HA-TCN models outperform TCNs in shallow archi-

tectural regimes because their hierarchical attention

mechanisms enable them to better summarize relevant

information across a wider range of time steps.

• We empirically show that the HA-TCN model can

highlight key time series segments in the relaxation

phase of an individual handgrip sample that differenti-

ate patients from healthy individuals.

The remainder of this paper is organized as follows:

Sec. 2 delves into technical details regarding the proposed

HA-TCN framework; Sec. 3 presents the experimental

setup and results; lastly, Sec. 4 concludes the paper.
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Figure 1: HA-TCN Architecture. This example network

has one input layer and K hidden layers. The size of the

kernel filter at each layer is 3. Dilation factor d increases

exponentially with depth.

2. HA-TCN Model

Let X ∈ R
T , X = {x0, x1, ..., xT } denote a time series

sequence. The decision-making task of interest consists in

determining whether the subject whose time series is being

analyzed suffers from myotonic dystrophy. Let y ∈ (0, 1)
denote the output of the network, and f(·) denote the input-

output functional mapping effected by the network, i.e., y =
f(X). The architecture of HA-TCN is shown in Fig. 1.

2.1. Causal Convolutions and Dilated Convolutions

The basic convolutional operations in the proposed HA-

TCN architecture are identical to those described in the

original TCN publication [2]. Causal convolutions and di-

lated convolutions are applied. The former ensures that only

present (i.e., at time t) and past (i.e., before time t) sam-

ples are involved in the computation of the output at time

t. The latter introduces a fixed dilation factor d between

every pair of adjacent filter taps. As in previous work, d is

increased exponentially with the depth of the network, e.g.,

d = O(2i) for the i-th network layer.

2.2. Hierarchical Attention Mechanism

When TCNs are used for classification tasks, the last

sequential activation from the deepest layer is used (see

red cell in Fig. 1) [1]; as in RNNs, such activation con-

denses the information extracted from the entire input se-

quence into one vector. We posit this representation may

be too abbreviated for complex sequential problems. With

this in mind, we propose the addition of hierarchical at-

tention mechanisms across network layers. As shown in

Fig. 1, suppose the HA-TCN has K hidden layers, and Hi is

the matrix consisting of convolutional activations at layer i,

i = 0, 1, ...,K; Hi = [hi
0, h

i
1, ..., h

i
T ], Hi ∈ R

C×T , where

C is the number of kernel filters at each layer. The within-

layer attention weight αi ∈ R
1×T is calculated as follows:

αi = softmax(tanh(wT
i Hi)) (1)

where wi ∈ R
C×1 is a trained parameter vector and (·)T

denotes the transpose operation.

The combination of convolutional activations for layer i

is calculated as:

γi = ReLU(Hiα
T
i ) (2)

where γi ∈ R
C×1.

After executing each within-layer attention layer, the

convolutional activations are transformed into M =
[γ0, γ1, ..., γi, ..., γK ], M ∈ R

C×K . Similarly, the across-

layer attention layer takes M as the input to calculate the

final sequence representation used for classification:

α = softmax(tanh(wTM)) (3)

γ = ReLU(MαT ) (4)

where w ∈ R
C×1, α ∈ R

1×K , γ ∈ R
C×1.

2.3. Relevant Time Series Segment Identification

In previous attention-based RNN studies, the relevant se-

quence segments corresponding to large attention weights

were difficult to identify. This is due to the fact that the

hidden state of a LSTM/RNN cell not only includes infor-

mation from the current time step, but also from historical

time steps, the receptive field (i.e., time span) of which is

for the most part unknown [5].

In contrast, the HA-TCN model can track the origin of

relevant segments once the within-layer and across-layer at-

tention estimates are available. This is because the architec-

ture of the HA-TCN mainly consists of feedforward convo-

lutional blocks. Specifically, if d = 2i in the dilated causal

convolution operation, then the start of the receptive field at

the input layer covered by a filter at time t, layer i can be

calculated as follows:

s = max(0, t− (2i+1 − 1) ∗ (l − 1)) (5)

where s is the start time step of the receptive field at the

input layer and l is the size of the kernel filter.

The receptive field at the input layer for a filter at time

step t and layer i can be then represented as RF i
s→t, t =

0, 1, ..., T , i = 0, 1, ...K. As an example, the receptive field

for the filter at time step T , hidden layer 1 is highlighted in

blue in Fig. 1.

Given a series of handgrip force data points, the within-

layer attention αi and across-layer attention α can be gener-

ated with a trained HA-TCN. We rank hidden layers based

on their α value, and identify the relevant layers RL with

larger attention weights (e.g., the top 10 percentile attention

weights in α). Similarly, we identify the relevant time steps

RT with larger attention weights based on αi, i ∈ RL.

Subsequently, we can calculate the frequency of each

time step j that belongs to the relevant field RF i
s→t, i ∈
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Model Accuracy F1 Score

SVM 88.40% 0.85

LSTM 92.38%± 2.49% 0.94± 0.01

Bi-LSTM 93.26%± 1.85% 0.94± 0.01

TCN [2] 93.02%± 2.38% 0.93± 0.01

LSTM + Attention 93.58%± 1.64% 0.94± 0.01

Bi-LSTM + Attention [6] 94.00%± 2.20% 0.94± 0.01

HA-TCN 93.82%± 2.30% 0.95± 0.01

Table 1: Performance comparison: Accuracy and F1 Score

(mean ± standard deviation). SVM performs the worst.

Deep learning models perform similarly. Attention mech-

anisms slightly improve model classification accuracy.

RL, and t ∈ RT :

Freqj =
∑

i∈RL,t∈RT

Ij(RF i
s→t), j = 0, 1, ..., T (6)

where Ij(∗) is the indicator function (i.e., valued 1 if j be-

longs to RF i
s→t and 0 otherwise). Lastly, the relevant time

series segment can be identified based on corresponding

high frequencies (e.g., the top 10 percentile frequencies).

3. Experiments

3.1. Dataset and Experimental Setup

467 individual handgrip time series samples from 37 pa-

tients and 270 samples from 18 healthy subjects were ac-

quired. The baseline performance benchmark is a SVM op-

erating on handcrafted features. The relaxation time from

the 90th percentile to the 5th percentile of the strength in

the relaxation phase, i.e., RT90-5, is extracted and the SVM

trained on the extracted feature.

We also build LSTMs and Bidirectional LSTMs (Bi-

LSTM), attention-based LSTMs [4] and attention-based Bi-

LSTMs [6], as well as the traditional TCN [2] for compari-

son. The HA-TCN model consists of two hidden layers with

dilated causal convolutions and dilation factors of 1 and 2,

respectively, and a kernel size of 50. Ten-fold cross vali-

dation at the subject level is conducted, meaning that each

subject is ensured to be included in the test set at least once.

3.2. Experimental Results

The average classification accuracy and F1 score of each

model are shown in Table 1. For deep learning models, each

fold is executed five times to account for model dependence

on random weight initialization. The results show that the

deep learning models outperform the SVM-based approach,

which leverages handcrafted features resembling those used

by doctors. All deep learning models have similar classifi-

cation accuracies and F1 scores.

Next, we compared the performance of HA-TCNs with

that of TCNs [2]. A kernel size of 50 was used in both mod-

els, as well as the same dilation factor of 2i. The main dif-

ference between the models is that the former implements

a hierarchical attention mechanism to combine information

across time steps, while the latter only uses the activation

from the last cell of the deepest hidden layer for classifica-

tion. Five runs of 10-fold cross validation were conducted

with network depths ranging from 2 to 8 hidden layers.

The results in Fig. 2 show that the proposed HA-TCN

model achieves high classification accuracy with only two

hidden layers, and that increasing network depth does not

have a significant impact on model performance. In con-

trast, with two hidden layers, the classification accuracy of

the TCN is relatively low. While its performance increases

more significantly with network depth, it is lower than that

of the HA-TCNs independently of network depth. We hy-

pothesize this consistent difference in performance may be

due to the reliance of the TCN on a single activation; this

disadvantage can only be partially overcome with increas-

ing network depth. Fig. 2(b) also shows that the HA-TCN

model always takes less time for training than the TCN

models.

(a) (b)

Figure 2: Comparison of the HA-TCN and TCN models.

(a) Average classification accuracy. (b) Total running time

for five runs of 10-fold cross validation.

Figs. 3(a) and 3(b) show the average attention weights

for each time step for the LSTM models. Fig. 3(c) shows

the average frequency that a time step belongs to a specific

receptive field. Because the HA-TCN model in this study

only has two hidden layers, we select the one with the larger

across-layer attention weight as the relevant layer RL, then

choose those with the top 10 percentile attention weights as

the relevant time steps RT . The frequency of a time step

belonging to the receptive fields is calculated based on Eqs.

(5) and (6). The plots in Fig. 3 also show the corresponding

curves for patients and healthy subjects separately.

In Fig. 3(a), the maximum average attention weight for

patients occurs at around time step 400. For healthy pa-

tients, that maximum occurs at time step 310. Similarly,
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in Fig. 3(b), the peak of the average attention weight curve

for the healthy group is at around the 300th time step. The

peak of the curve for the patients is flatter, and the time

steps around the 200th time step all have large attention

weights. These inconsistencies indicate that the attention-

based LSTMs cannot be used for interpretable diagnosis of

myotonic dystrophy. In contrast, it can be seen in Fig. 3(c)

that the curves for the HA-TCN model across subjects, in-

cluding patients and healthy subjects, align extremely well,

with peaks taking place at around the 350th time step.

(a) LSTM+Attention (b) Bi-LSTM+Attention (c) HA-TCN

Figure 3: Explainability Comparison of Deep learning mod-

els: average attention weights per time step for (a) LSTM

and (b) Bi-LSTM; (c) average frequency that the time step

is within the receptive fields based on the HA-TCN.

Fig. 4 shows relevant time series segments identified by

attention-based deep learning models for two examples, one

belonging to a patient (Fig. 4(a)), and one sampled from

a healthy subject (Fig. 4(b)). Segments not identified as

relevant by any model are plotted in blue, while segments

marked with colors correspond to those with the top 10 per-

centile attention weights or frequencies for their respective

model as indicated in the legend. It can be seen that the one-

directional LSTM model with attention highlights the most

relevant segment at the end of the relaxation phase for the

patient in Fig. 4(a), which is inconsistent with the definition

of myotonia. Although the strength decreasing part for the

healthy subject in Fig. 4(b) is identified by this model, it

also identifies the beginning of the curve as important. For

relevant segments identified by the Bi-LSTM model with

attention in Figs. 4(a) and 4(b), the segments correspond-

ing to the squeezing stage are assigned high weights, which

again shows that such a model is not usable for interpretable

diagnosis of myotonic dystrophy. Only the HA-TCN model

can consistently identify the deceasing portion of the time

series as the part most relevant for disease classification.

4. Conclusion

In this paper, we introduced the HA-TCN architecture

for a case study of myotonic dystrophy diagnosis. The HA-

TCN model achieves performance comparable with state-

of-the-art deep learning models. All deep learning models

outperform traditional machine learning approaches rely-

ing on handcrafted features. However, only the HA-TCN

(a) (b)

Figure 4: Relevant segment identification with attention-

based deep learning models: (a) sample from a patient, and

(b)sample from a healthy subject. Segments marked with

different colors are identified as relevant segments from the

deep learning models.

can highlight the relaxation phase in the handgrip time se-

ries data, which is consistent with the diagnosis criterion

that clinicians have been using. Furthermore, we show that

the HA-TCN outperforms the TCN in terms of performance

particularly when the number of hidden layers is small, and

is more computationally efficient in general.
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