
Relevance Regularization of Convolutional Neural Network for Interpretable

Classification

Chae Hwa Yoo, Nayoung Kim, and Je-Won Kang

Department of Electronic and Electrical Engineering, Ewha W. University, Seoul, Korea.

yulove3274@ewhain.net, 12skdud21@ewhain.net, and jewonk@ewha.ac.kr

Abstract

Conventional end-to-end learning algorithm considers

only the final prediction output and ignores layer-wise rela-

tional reasoning during the training. In this paper, we pro-

pose to use a forward and backward interacted-activation

(FBI) loss function that regularizes training a CNN so that

the prediction model can provide interpretable results for

classification. From our best knowledge, the proposed al-

gorithm is the first work to use a regularization function

without any prior knowledge or pre-defined terms to allow

for a CNN to be more explainable. It is demonstrated with

quantitative and qualitative analysis that the proposed tech-

nique can be used for efficiently train a CNN with more in-

terpretability, applied to a well-known classification prob-

lem.

1. Introduction

Convolutional Neural Network (CNN) gains much atten-

tion as it has shown substantially improved prediction ac-

curacy and apparently intelligent behaviors to solve many

challenging problems [10]. Despite the excellent perfor-

mance, however, the CNNs are not readily employed in

industries such as medical services and autonomous driv-

ing because the prediction models provide little informa-

tion why they make certain decisions. The large number of

model parameters and nonlinear activation functions may

maximize the prediction accuracy but make the prediction

model hardly interpretable [13]. To improve more inter-

pretability to the CNN, various researches are actively car-

ried out in this field, namely explainable artificial intelligent

(AI) [1, 12, 4].

Conventional end-to-end learning through a forward and

a backward propagation considers only the final prediction

output and ignores layer-wise relational reasoning during

the training. In this paper, we propose a novel regulariza-

tion technique using a new training loss function called a

forward and backward interacted-activation (FBI) loss func-

tion to improve the interpretability of a CNN. The FBI is

defined as a sum of layer-wise differences between neu-

ron activations to the forward and the backward directions.

The activation maps are propagated from the previous lay-

ers during a training, and, thus an intermediate run between

a conventional forward and a back propagation is presented

to reflect the loss in the proposed algorithm. It is demon-

strated with quantitative and qualitative results that the pro-

posed technique can be used for efficiently train a CNN with

more interpretability, applied to a well-known classification

problem [9].

2. Related work

As many domains of industries are interested in apply-

ing AI systems and having benefits from them, interpretable

deep learning models become quite important topics in the

literatures. The studies can be categorized to intrinsic inter-

pretation methods [12, 11, 3, 7, 4, 14] and post-hoc inter-

pretation methods [2, 6, 15, 5].

Intrinsic interpretable methods focus on modifying an

internal structure of a complex black-box model for more

interpretability [12]. Palm et al. [11] develop relation net-

works (RN) as additive sub-architectures to the original net-

works. The sub-networks are designed explicitly for com-

puting relational reasoning. Goudet et al. [7] propose a

causal network model to infer how a model can learn joint

distributions of input data generatively. In [4, 3, 14], the au-

thors introduce semantic templates from the human descrip-

tions and use them as training constraints, so that learned

kernels cannot be much deviated from human expectation.

However, they need pre-defined semantic descriptions, re-

quiring extra human labors.

Post-hoc interpretable methods are used for reverse en-

gineering processes or visualization purposes to verify the

reasoning of a system and give detailed analysis to human

experts. In [6] Partial Differential Plot that is to visualize

a partial relationship between one or more input variables

and their impacts to the prediction results is presented. In

[2], Layer-wise Relevance Propagation (RLP) is proposed
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to visualize contributions of local pixels in an image to clas-

sification performance. Zhang et al. [15] and Fisher et al.

[5] try to record how the model performance can vary with

changing inputs or internal components.

3. Proposed Algorithm

3.1. Proposed Loss Function

We propose to use a FBI loss function that regularizes a

training of a CNN so that the prediction model can yield ex-

plainable results for a classification. From our best knowl-

edge, the proposed algorithm is the first work to use a reg-

ularization function without any prior knowledge or pre-

defined terms to allow for a CNN to be more explainable.

We compute relational layer-wise costs recursively in a way

that the current activation is distributed from the previous

layer back and forth. The distribution is determined de-

pending on the activations and filter weights, motivated by

an important insight from the work of Bach et al. [2].

We define a set of forward activation maps a
+

i =
[a+i,1, a

+

i,2, ..., a
+

i,Ci
] of i-th layer during forward propagation

as

a
+

i = f(a+i−1
,wi), (1)

where Ci is a size of the channels in the i-th layer, and

wi = [wi,1, wi,2, ...wi,Ci
] is a convolutional kernel in each

channel. f presents a functional layer, e.g. a convolution

layer or a fully connected layer, depending on the current

layer. It is noted that a+i is the same activation map ob-

tained from the conventional forward propagation in a deep

neural network.

We also define a set of backward activation maps a−i =
[a−i,1, a

−
i,2, ..., a

−

i,Ci−1
] of the i-th layer. a−i is calculated with

a
−
i = f(a+i−1

,

Ci∑

j=1

wi,j

a−i+1,j

a+i,j
), (2)

where the kernels are re-normalized with the ratios of a+i
and a

−
i+1

. As shown in Fig. 1, a+i and a
−
i+1

are the inward

activation maps to the i-th layer.

Then, the FBI loss function is defined as

LFBI =
1

K

K∑

i=1

L1(a
+

i−1
,a−i ), (3)

where K is the number of layers in a network. The index

i starts from the first layer, so a
+

0 is an input image of a

network. L1(.) is an l1 loss function, computing an absolute

difference of the two input terms.

Then, the overall loss function is formulated as follows.

L = (1− λ)LTSK + λLFBI , (4)

where LTSK is a task-specific loss, e.g. a cross-entropy loss

between an actual label and a predicted label in an image

classification problem. λ controls a weight of a FBI loss,

set to 0.001 in our experiments. Finally, we train a set of

network parameters Y to minimize the loss in (4), i.e.,

Y
∗ = arg min

Y∈Y

L. (5)

3.2. Network Training

The proposed algorithm trains a network using three

steps: (1) a forward pass, (2) a relevant computing pass,

and (3) a backward pass. The forward pass is the same as

the conventional training scheme, where an input training

sample goes through the network to the end. A task-specific

loss is computed after a forward pass. The relevant comput-

ing pass is conducted between a forward and a backward

pass to collect a FBI loss in each layer, as shown in Fig. 1.

While starting from the neurons of the final layer to the first

layer, the pass collects each loss in the corresponding layer.

After all, the backward pass is performed once all the loss

terms are summed up.

Figure 1. The proposed training scheme.

Since the terms regarding the relevance computing pass

are not stabilized enough in an early stage of learning, we

need to train the network using only the task-specific loss

as a conventional training to some extents. Once the train-

ing is saturated with enough epoch numbers and validation

errors, the FBI loss begins to be considered in the training.

In our experiments, we set the moment when the validation

accuracy becomes above 70%.

4. Experimental Results

4.1. Experimental Configurations

We evaluate the interpretability of the proposed algo-

rithm quantitatively and qualitatively. For this, we apply

the proposed algorithm for an image classification problem

using MNIST [9]. We use an AlexNet [8] model with minor

modification in kernel and channel sizes.

4.2. Visualization of Neuron Activations

We show kernel activations of the first three convolu-

tional layers to understand classification decisions using the
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Figure 2. Activations of filters in the three convolution layers, using the “conventional training”(left) and the “proposed training”(right).

From the top to the bottom, filter activations of the first, second, and third convolutional layers of the tested network.

pixel-wise decomposition. For comparisons, we train the

network using a task-specific loss with a back-propagation

algorithm, denoted by “conventional training” and a FBI

loss with the three-step training algorithm, denoted by “pro-

posed training.” Fig. 2 show the results of the conventional

training (left) and the proposed training (right). Note that

the heatmaps of both training are normalized within same

range for better comparison. From the top to the bottom,

those figures present the activations in the three convolu-

tional layers, where a number of the corresponding filters

as 16, 16, and 32, respectively.

As shown in the heat maps, the red color implies higher

activations, where the filters actually see. In contrast, the

green implies lower activations close to 0. It is clearly seen

that the proposed algorithm facilitates the CNN to learn a

region or a feature which it actually expects. For instance,

the number 7 has distinguished features near edges and con-

tours from the other letters. However, the CNN trained with

the conventional algorithm often shows strong activations

in the background, as depicted in the first row of the fil-

ter responses. On the contrary, the proposed algorithm tries

to avoid any confusion to predict the character by focusing

on a region of interest. We also observe in the last rows

(i.e., the filter activations of the last convolution layers) that

there are more zero-out filters in the proposed algorithm.

It implies that the proposed algorithm achieves more en-

ergy compaction, and, thus gives more confidence to spe-

cific neurons.

conventional / relevance

layer conv1 conv2 conv3 conv4 conv5

max
1.377 /

2.576

1.270 /

1.205

0.941 /

1.647

2.355 /

3.883

14.741 /

16.524

skew-

ness

0.603 /

2.576

1.484 /

2.086

0.806 /

1.484

0.707 /

1.314

0.651 /

1.012

Table 1. Maximum and skewness of activations from all convolu-

tional layers in the Alexnet, using “conventional training” and the

“proposed training”.

4.3. Quantitative Analysis of Neuron Activations

For a quantitative analysis, we measure the energy com-

paction of the activations of all convolutional layers of the

Alexnet. In Fig. 3 blue and red curves indicate the conven-

tional training algorithm and the proposed relevant training

algorithm, respectively. In Fig. 3, the x-axis and the y-axis

present an activation value and a density, respectively. The

activation values are always positive since they are obtained

after the rectification in the layer. As shown, the curves

of the proposed algorithm are more skewed to 0 because

the activations are more focused to specific regions. For

quantitative comparison, we measure the maximum and the

skewness, denoting the maximal value and the inverse of

the variance in the energy-normalized curves. The values

are shown in Table 1. The larger the skewness value is,

the more skewed the distributions are. It is shown in Ta-

ble 1 that the values are larger when using the proposed

training. This is because that the trained model has higher
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Figure 3. probability density estimation of layer-wise activations. Blue and red lines indicate the conventional algorithm and the proposed

algorithm, respectively.

confidence (a larger maximum value) and lower confusion

(a large skewness).

5. Conclusion

We proposed a new regularization method to enhance in-

terpretability of a CNN model. For this, we introduced a

FBI loss function and the relevance computing pass during

the training. It was demonstrated with qualitative and quan-

titative analysis that the proposed algorithm provides more

interpretability with the trained filters. In the future work,

we will evaluate the proposed technique with more datasets

and various network models.
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