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Abstract

In this work, we focus on explaining the PointNet [4], the

first deep learning framework to directly handle 3D point

clouds. We raise two issues based on the nature of PointNet

and give solutions. First, we visualize the activation of point

functions to examine the issue how global features represent

different classes? Then, we propose a derivative of Point-

Net, named C-PointNet, to generate the class-attentive re-

sponce maps to explore that based on what information in

the point cloud is the PointNet making a decision? The ex-

periments on ModelNet40 demonstrate the efficacy of our

work for getting better understanding of PointNet.

1. Introduction

PointNet is a pioneer in studying deep learning on point

sets. Although PointNet and its derivatives [5, 1, 8, 11] have

achieved superior performance in various 3D tasks, we can-

not explain their representations in a way that humans can

understand due to the highly nonlinear nature of deep learn-

ing methods. Recently, a growing number of researchers

have studied the interpretability of 2D deep learning meth-

ods. However, few prior works study the interpretability of

deep learning on 3D point clouds.

In [4], per-point functions was visualized to show what

have been detected. However, it does not invert the point

functions to original point clouds, therefore, we can only

see a group of irregular shapes, while can not achieve the

visualization results like “the wing of the aircraft can ac-

tivate a particular point function”. In addition, t-SNE was

used to embed point cloud global features into a 2D space

and visualizes the correlation between point clouds. These

work is not enough for explaining what has been learned

inside the PointNet.

For this reason, we focus on exploring visual patterns

hidden inside the PointNet and extracting point set regions

that directly contribute the decision-making. The basic

idea of PointNet is to aggregate all per-point features to a
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global feature and then output classification scores through

a multi-layer perceptron (MLP). This basic idea of PointNet

raises questions which we are interested in:

• How global features represent different classes?

• Based on what information in the point cloud is the

PointNet making a decision?

To examine the first issue, we gain insights on what the

learnt per-point function’s detect [4] and visualize the ac-

tivation of the point sets on it. To examine the second

issue, we change the network structure of PointNet and

make the global feature class-attentive for understanding

the decision-making process of PointNet.

2. Related work

2.1. Deep learning on point sets

There has been a growing number of work in recent years

in deep learning on point sets [3, 10, 4, 5, 1]. Among them,

PointNet [4] is becoming a module similar to a convolu-

tion layer and is used directly as the base of many net-

woks. Therefore, explaining PointNet is an appropriate

breakthrough to interpreting the deep networks for 3D point

sets.

2.2. Interpretability for deep learning

Zhang and Zhu [16] roughly define the scope of the in-

terpretability for deep learning into five researh directions:

visualization of CNN representations [12, 18], diagnosis

of CNN representations [2, 15], disentanglement of CNN

representations [14], building explainable models [6], and

semantic-level middle-to-end learning [13]. Among all, vi-

sualization of CNN representations is the most direct way

and is the foundation of interpretability for network. Com-

pared with the well developed interpretability learning for

deep learning on 2D data, the interpretability study of deep

learning on 3D data is getting started. Some work visual-

izes the intermediate features by inverting features to point

sets [9, 5], which helps people to understand the representa-

tions of a network. [4] use t-SNE clustering method to em-

bed features to low-dimensional space and visualize sam-

ple correlations. [7] learns kernel correlations to represent
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Figure 1. The procedure for explaining the PointNet, including two main parts, visualizing point function and generating class-attentive

response maps. First, we visualize the point functions to show what has each point function learnt. Then, we use the proposed C-PointNet

to extract the class-attentive global feature, containing per-point feature extraction and class-attentive global feature extraction. Finally, we

compute the class-attentive response maps to explore the decision-making process. The class-attentive response maps can verify which

point function learns the important information for classification.

complex local geometric structures, which captures various

structures (such as plane, edge, corner, concave and convex

surfaces). [17] proposes an unsupervised 3D point-capsule

network based on the 2D capsule network [6]. By visual-

izing the iterations of AE training, it finds that fandomly

initialized capsules gradually identify meaningful parts.

To the best of our knowledge, no previous work exists

that simultaneously visualizes the PointNet representations

and understands the decisions made by PointNet.

3. Explaining the PointNet

In this section, we clarify the procedure for explain-

ing the PointNet, as Fig. 1 shows. The procedure can be

summarized as follows. First, visualize the point functions

(Sec. 3.1). Then, use the proposed C-PointNet to extract

the class-attentive global feature, including per-point fea-

ture extraction and class-attentive global feature extraction.

Finally, compute the class-attentive response maps to ex-

plore the decision-making process (Sec. 3.2).

3.1. How global features represent different classes?

This section tackles the first question: how global fea-

tures represent different classes? We think about the ques-

tion from two different sides: what each dimension of

global feature have learned, and how important each dimen-

sion of global feature is.

Given an unordered point set {x1, x2, ..., xn}, PointNet

can be defined as a set function f that maps a point set to a

vector:

f({x1, x2, ..., xn}) = γ(MAX{h(x1), h(x2), . . . , h(xn)})
(1)

where γ and h are MLP networks.

To analysis what each dimension of global feature have

learned, we visulize the activation on each point function

h. Unlike [4] that directly visualizes the activation of points

of any position, we only show the activation of a particular

point set, which can more intuitively reflect what each di-

mension of global feature have learned for a specific point

cloud. For point function h, we visualize the point xi that

h(xi) > T , T is a threshold, to view what the dimension of

global feature corresponding to h has learned.

3.2. Based on what information in the point cloud
is the PointNet making a decision?

The above issue focuses on what the global feature

learns, in this section, we further exploring that based on

what information in the point cloud is the PointNet making

a decision?

Inspired by [2], we modify the PointNet structure to

extract class-attentive global features and generate class-

attentive response maps, the class-attentive model is named

C-PointNet (architecture see Fig. 1).

C-PointNet retains the per-point feature extraction part

of PointNet, but change the max-pooling layer. We add a

MLP to reduce the dimension of per-point features to the

number of classes, and then perform global averaging pool-

ing to generate a categorical output. Each dimension can
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be thought of being associated with a particular class. The

procedure of generating class-attentive response maps can

be summarized as follows. First, extract the per-point class-

attentive features fcls ⊆ R
n×K , n and K are the numbers of

points and classes respectively. Then, based on fcls, com-

pute the class-attentive map R(P ).

R(P ) = A[R1(fcls), R2(fcls), . . . , RK(fcls)]. (2)

where Ri(fcls) is a mapping operation that assigns the

class-attentive feature values to the origin point sets, the

output of which is a single class response map. A(·) find-

ing the class at each point that maximizes the class-attentive

feature value.

4. Experiments

4.1. Point function visualization

It has been proved in [4] that different point functions

can detect different regions of a point cloud and the differ-

ent points being deteced by the same point function have

different activation values. In this work, we visualize the

activated points in different colors according to their acti-

vation values, as Fig. 2 shows. We find that each point

function can detect a range of points with different activa-

tion values. Specific to a point cloud, each point funtion

can activate a certain region of the point cloud. Taking air-

plane as the example, different point functions can activate

the wing, the head, the tail, and so on. Another finding

is that the activation regions of point funtions are of great

overlapping. There are totally 1024 point functions, but a

point cloud only has several parts. It is possible that a part

can activate a large number of point functions at the same

time. The advantage of having a lot of overlapping is that

when a point function fails to detect, another point function

can still detect the important part. However, a large number

of repeated detection generate too much redundant informa-

tion, which will damage the interpretability of the network.

4.2. Class-attentive response maps

In this section, we train the proposed C-PointNet to gen-

erate class-attentive response maps and explore the desion-

making process of PointNet. Our C-PointNet achieves re-

markable accuracy of 88.0% on Modelnet40 dataset, only

0.7% lower than the retrained PointNet. Without affecting

the classification accuracy, the proposed C-PointNet can

explore the desion-making process. As shown in Fig. 3,

the most points of the correctly classified point clouds are

contributing to predicting the groundtruth label, while the

points of the misclassified point clouds may contribute to

predicting many different labels. Fig. 4 further demon-

strates that a pair of point clouds with the similar shape

may have the similar class-attentive response maps, which

Figure 2. Point function visualization. The first and third rows

are the visualization of point functions and the second and forth

rows are the point clouds and their activations on the correspond-

ing point functions. For all the points p in a point cloud, we calcu-

late the activation values h(p) of each point function. We visualize

the points that h(p) > 1 and assign different colors depending on

the activation value (red represents large activation value and pur-

ple represents small activation value).
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Figure 3. Class-attentive response maps. Each row shows the

class-attentive response maps of a certain point cloud class. For

each point cloud class, we give correctly classified and misclassi-

fied samples. We represent the original point cloud in black dots,

represent the points which contribute to predicting the correct class

in red dots, and represent other points that contribute to predicting

wrong classes in different colors’s dots.

means that the two point clouds are easily misclassified to

each other.

5. Conclusion

In this work, we explain the PointNet by examining

two issues to study what has been learned inside the net-

work. We first visualize the activation of point functions to

learn how the global feature of PointNet represents different
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Figure 4. Example point clouds that are easy to be misclassified.

(a) vase vs. (b) flower pot and (c) bench vs. (d) sofa are two pairs

of point clouds that have the similar class-attentive response maps

with each other, which are represented by green dots vs. yellow

dots and red dots vs. blue dots respectively.

classes. Then, we propose the C-PointNet based on Point-

Net architecture to visualize the regions that affecting the

decision-making process. Experiments on ModeNet40 indi-

cate that our method can get better insight into the PointNet

while maintain high classification accuracy. In the future,

we will exploring our method with different 3D netwroks.
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