
Powering Robust Fashion Retrieval with Information Rich Feature Embeddings

Ayush Chopra∗, Abhishek Sinha∗, Hiresh Gupta∗, Mausoom Sarkar∗, Kumar Ayush, Balaji K

Media and Data Science Research

Adobe Inc.

(ayuchopr, abhsinha, hiregupt, msarkar, kayush, kbalaji)@adobe.com

Abstract

Visual content-based product retrieval has become in-

creasingly important for e-commerce. Fashion retrieval, in

particular, is a challenging problem owing to a wide range

of visual distortions in their product images. In this pa-

per, we propose a Grid Search Network (GSN) for learn-

ing feature embeddings for fashion retrieval. The proposed

approach posits the training procedure as a search prob-

lem, focused on locating matches for a reference query im-

age in a grid containing both positive and negative images

w.r.t the query. The proposed framework significantly out-

performs existing state-of-the-art methods on benchmark

fashion datasets. We also utilize a reinforcement learning

based strategy to learn a specialized transformation func-

tion which further improves retrieval performance when ap-

plied over the feature embeddings. We also extend the re-

inforcement learning based strategy to learn custom ker-

nel functions for SVM based classification over FashionM-

NIST and MNIST datasets, showing improved performance.

We highlight the generalization capabilities of this search

strategy by showing performance improvement in domains

beyond fashion.

1. Introduction

The 2018 Fashion United [21] analysis values the global

fashion industry at $3 trillion, an approximate 2% of the

world GDP. The PWC retail newsletter from the same year

estimates an annual growth rate (CAGR) of 7.6% for the

worldwide fashion commerce market [13] with the pro-

jected revenue for apparel and clothing segment itself to rise

by $257.8 billion over the next 2 years [16]. The State of

Fashion report by McKinsey [11] in 2018 emphasizes the

critical role of intelligent systems in driving this growth.

Consequently, several recent efforts have been directed

towards robust clothing retrieval [5] [24] [6] [25] [10] [22].

Generating robust visual embeddings for fashion retrieval

∗Equal Contribution

Figure 1. Input to the proposed Grid Search Network includes a

Query Image and a Target Grid consisting of positive and negative

images with respect to the Query Image.

is a particularly challenging problem owing to a wide vari-

ety of visual distortions and deformable nature of clothing

items.

Deep learning models have performed remarkably well

in several domains such as computer vision [8, 2], natural

language processing [3, 17], and speech recognition [12].

In the present work, we introduce a deep learning based

grid search network to learn robust visual embeddings to

facilitate fashion retrieval. The proposed framework posits

the training procedure as a search problem w.r.t a refer-

ence query image, focused on identifying all matches from

a target grid containing positive and negative samples. To

achieve this, we optimize a grid search loss adapted from

a double hinge contrastive objective to enable concurrent

comparison of multiple feature embeddings corresponding

to image instances in the target grid with the reference query

image. A sample query image and target grid pair is shown

in Figure 1. The 3 × 3 target grid here consists of 2 posi-

tive samples (in green boxes) and 7 negative samples w.r.t

the query image. A positive image for the query image cor-

responds to the same product as the query and a negative

image corresponds to a different product (from the same or

different category) than the query.

We also use deep reinforcement learning to learn a com-

posite function for element-wise transformation of the em-

beddings from our grid search network for improved re-

trieval performance. Deep reinforcement learning based

search mechanisms have been recently used for discover-

ing neural optimization methods [1], neural activation func-

tions [14] and neural architecture designs [26]. In this work,

we build on these existing works allowing for the auto-

matic discovery of a function for element-wise transforma-

tion of the learned visual embeddings. Numerical experi-

ments show that such an approach is able to discover a spe-

cialized transformation function that is more efficient and

the transformed feature embeddings achieve better retrieval

performance on thhe considered datasets.

We also propose to use the automated search techniques

to discover custom kernel functions for SVM based Fash-

ionMNIST [23] and MNIST [4] classification. Using the

reinforcement learning-based search approach, we find a

custom kernel function (by using the data of a particular

problem) that shows promising performance.

Our main contributions in this work are summarized be-

low:

• We introduce a novel Grid Search Network (GSN)

framework for generating robust visual embeddings.

• We validate the effectiveness of GSN for fashion re-

trieval by achieving state-of-the-art results on bench-

mark fashion datasets - Inshop retrieval and Consumer-

to-Shop retrieval datasets [10].

• We leverage a reinforcement learning based search

strategy to learn composite functions to be used as

element-wise transformations and kernel functions in

improving performance on retrieval and SVM classifi-

cation respectively.

2. Related Work

2.1. Fashion Retrieval

Triplet and Contrastive losses have proven to be success-

ful in several recent works [5] [24] [6] [25]. Triplets are

defined as a combination of a reference input, a positive ex-

ample and a negative example. Networks are trained with

the objective of minimizing distance of the reference image

from the positive sample and maximizing distance of the

reference image from the negative sample.

FashionNet[10] augments visual content with landmark

and category annotations and trains on a triplet objective.

Generating annotations, however, requires a lot of supervi-

sion thereby significantly limiting its practical usability.

VAM [22] trains a two-stream network with an attention

branch and a global convolutional branch, and then concate-

nates the generated vectors to optimize a standard triplet

objective. However, it requires additional semantic class

annotations as prior for pre-training attention maps.

HDC [24] uses an ensemble of models with increasing

complexities in a cascaded manner to mine negative sam-

ples at different levels during training. Feature vectors com-

ing from each sub-network are scaled by constant weights

and concatenated to generate representations which are used

for retrieval.

HTL [25] introduces an adversarial approach for mining

hard negative using GAN and optimizes a standard triplet

objective.

In the present work, we posit the training procedure as

a search problem. We propose a grid framework that lever-

ages concurrent comparison of the reference input against

multiple negative and positive samples to produce robust

feature embeddings for improved retrieval performance.

The proposed grid search loss is trained with an interleaved

offline sampling procedure for mining of hard negatives.

Variable hard negative samples are introduced into the grid

in a probabilistic manner during training iterations. Further,

instead of trivial concatenation of feature vectors, we learn

transformations over these vectors, to generate representa-

tions that improve retrieval performance.

2.2. Learning Feature Transformations

We use automated search techniques to discover com-

posite functions for element-wise transformation of the

learned feature embeddings to improve fashion retrieval

performance. To this end, we use deep reinforcement learn-

ing based search mechanisms that have recently been used

for discovering neural optimization methods [1], neural ac-

tivation functions [14] and neural architecture designs [26].

For example, [26] uses a recurrent neural network to gen-

erate the model descriptions of neural networks and trains

this RNN with reinforcement learning to maximize the ex-

pected accuracy of the generated architectures on a valida-

tion set. We follow a similar approach and use an RNN to

generate functions (to be used for element-wise transforma-

tion of feature embeddings) and use reinforcement learning

to train the RNN to maximize top-1 retrieval performance.

We verify the effectiveness of our approach by conducting

an empirical evaluation with the discovered transformation

function. Our experiments show that the learned transfor-

mation function shows improvement on the retrieval perfor-

mance.

3. Proposed Framework

3.1. Network Inputs

The proposed Grid Search Network (GSN) architecture

consists of 2 inputs, a query image and a target grid. The

query image is of shape 227× 227× 3. The target grid is of

shape (K∗227)×(K∗227)×3. The target grid is generated

Figure 2. GSN (a) Network Inputs (b) Network Architecture and Search Loss. For the grid here, K=3. Cosine Map, Low Mask and High

Mask all have shape K ×K. The target network is detailed in Figure 3

by randomly sampling positive and negative samples w.r.t to

the query image and arranging them into a K × K grid of

images. The number of positive and negative samples are

determined using:

#positives = min(rand(1,K2 − 1), maxPos) (1)

#negatives = K2 −#positives (2)

Here, maxPos is the maximum number of positive

matches for the reference query image in the train dataset.

Sample inputs are presented in Figure 1 where the grid has 2

positive samples and 7 negative samples w.r.t the reference

query image.

3.2. Network Architecture

The network architecture is visualized in Figure 2. The

grid search network is characterized by two trunks, a query

trunk and a target trunk. Both query and target trunks have

Inception-v1 [20] as the base architecture. The target trunk

base architecture can be substituted with a fully convolu-

tional trunk that has output stride=32. The target trunk net-

work is visualized in Figure 3. The query and target trunks

do not share weights. This design choice is validated empir-

ically. The input for the query trunk is the query image and

for the target trunk is the target grid. The query trunk gener-

ates a 1024-dim query vector. For a (K∗227)×(K∗227)×3
target grid, the target trunk generates a K×K×1024 target

volume. The target trunk is specifically designed to ensure

receptive field consistency such that each depth vector of

the output target volume corresponds to a single image of

the input grid. We validate this design through experiments

discussed in Section 5.

3.3. Grid Search Loss

The idea of search is to scan through a set of items and

concurrently figure out what is similar and what is not.

We incorporate this by having a query image and a grid

of K × K search images. To do this, we L2-normalize

the vectors and then perform a similarity search operation

(Equation 3). We carry out this search similarity operation

by performing a convolution of the 1 × 1 × d query vector

(u), over the K × K × d feature volume (v). This search

operation generates a K×K similarity grid, that consists of

similarity scores between the query image and each of the

corresponding target grid image. Equation 4 describes the

final grid search loss computation, on the similarity grid S,

and the corresponding low and high threshold masks, L and

H , for the query-grid pair.

S(u, v) = u⊗ v (3)

loss =

k
∑

i=1

k
∑

j=1

(max(0, L[i, j]− S[i, j])2 +

max(0, S[i, j]−H[i, j])2)

(4)

As in [9] [15], we use low and high thresholds to pre-

vent the distance between embeddings of similar instances

from collapsing to zero. Our formulation of these threshold

masks, as shown in Figure 2, provides a range for oscilla-

tion of cosine similarities during training. For a K × K
target grid, the low and high threshold masks are also of

shape K × K where each element corresponds to the spe-

cific threshold value for each of the images in target grid.

We empirically determine the low thresholds for similar and

dissimilar image instances to be 0.9 and -1 respectively and

the high thresholds to be 1 and 0.2 respectively.

The grid search loss is trained with an interleaved of-

fline sampling procedure where hard negatives are mined

for query images at regular intervals. These hard negatives

are sampled in a probabilistic manner into the target grid for

subsequent training iterations.

Figure 3. Network architecture of target trunk. For a K×K target

grid, this target network generates a target volume of shape K ×

K × 1024. The input target grid in this figure has K = 3.

3.4. Learning Feature Transformations

We use automated search techniques to discover com-

posite functions for element-wise transformation of the

learned feature embeddings to improve the retrieval perfor-

mance. The fully convolutional nature of our target network

allows us to extract features of a single image (227×227×3)

from the target trunk. Therefore, we can extract two feature

vectors for the same image, one coming from query trunk

and another from the target grid trunk. Now, rather than

just concatenating these different feature vectors of a single

image as in [24], we propose to learn a composite function

for element-wise transformation of the feature vectors and

use that as the combined feature representation of the image

to boost the retrieval performance. We also employ a simi-

lar approach to discover functions to be used as kernels for

SVM based FashionMNIST and MNIST classification.

Here, we explain our approach for automated discovery

of functions. As discussed, we built upon the existing rein-

forcement learning based search mechanisms [1, 14, 26].

As shown in Figure 4, the function is constructed by re-

peatedly composing the “core unit”. A core unit first se-

lects two operands (op1 and op2), then two unary functions

(u1 and u2) to apply on the operands and finally a binary

function b that combines the outputs of the two unary func-

tions. The resulting b(u1(op1), u2(op2)) then becomes an

operand that can be selected in the next group of predic-

tions. Every prediction is carried out by a softmax classifier

and then fed into the next time step as input.

Given the search space, the goal of the search algorithm

is to find effective choices for the unary and binary func-

tions. We use an RNN controller [26]. At each timestep, the

controller predicts a single component of the function. The

prediction is fed back to the controller in the next timestep,

and this process is repeated until every component of the

function is predicted. For the purpose our experiments, we

consider only two core units. Once a candidate function has

been generated by the search algorithm, it is

• used for element-wise transformation of the learned

feature embeddings in case of fashion retrieval. The

top-1 retrieval performance using the transformed fea-

ture embeddings is used as a reward signal to train the

RNN controller.

• used as a custom kernel to train an SVM for some task,

such as FashionMNIST/MNIST classification. After

training, the validation accuracy is recorded and used

as a reward signal to train the RNN controller. This

training pushes the controller to generate kernel func-

tions that have high validation accuracies.

The controller is trained via reinforcement learning us-

ing the policy gradient obtained via REINFORCE[19] al-

gorithm. The operands and functions accessible for learn-

ing the composite function for retrieval task (transformation

function) and SVM classification (custom kernel function)

are discussed in Section 6.2.1 and 6.2.2.

We also highlight the generic applicability of the method

to improve recall rate performance on Inshop Retrieval,

Consumer-to-Shop Retrieval [10] and CARS [7] benchmark

datasets using GSN and [24] approaches.

4. Dataset

We conduct fashion retrieval experiments on the

Consumer-to-Shop and Inshop retrieval datasets from the

DeepFashion benchmark [10]. Consumer-to-Shop re-

trieval contains 2, 39, 557 consumer/shop cloth images

across 33, 881 clothing items. The presence of large

amounts of occlusion, deformation, illumination variations

and blur in the images makes the problem particularly chal-

lenging. Inshop retrieval contains 52, 712 images across

7, 982 clothing items clicked within a curated shop envi-

ronment. The images are characterized by large variations

in pose and scale. To ensure consistency in comparison,

we follow the same train-val-test splits as used in previous

works for all our experiments.

To test the generalizability of our reinforcement learning

based strategy, we learn element-wise transformations over

the features obtained by [24] for Standard CARS dataset

[7] and show improved retrieval performance. We also show

the applicability of the proposed RL approach by learning

custom kernel functions for SVM based classification over

FashionMNIST and MNIST datasets and show improved

performance.

(a) Example Function Structure (b) Overview of Function Search

Figure 4. The left figure shows an example composite function structure. The function is composed of multiple repetitions of the “core

unit”, which consists of two inputs, two unary functions, and one binary function. Unary functions take in a single scalar input and return

a single scalar output. Binary functions take in two scalar inputs and return a single scalar output. The figure in right shows an overview of

the search mechanism.

Figure 5. Cosine similarity for two configurations of the target grid

with the query specified in Figure 2(a).

5. Qualitative Analysis

The convolution layers in the target trunk are designed

to ensure that each vector along the depth in the target vol-

ume focuses on a single image from the target grid. We

posit that this mapping of the target grid images and depth

vectors in the output volume is critical to the effectiveness

of our grid search loss. We validate the target trunk archi-

tecture empirically. For the query image and the target grid

in Figure 2, we permute the arrangement of images in the

grid and generate multiple configurations. Using our net-

work, we compute similarity map of the query image with

each of the target grid configuration. In Figure 5, we display

two sample permutations and the corresponding similarity

maps generated with the query image (in Figure 2a). The

consistency of values for grid images across different grid

locations highlights the sanity of our target trunk architec-

ture.

6. Experiments

Experiments were conducted on 4 NVIDIA GTX 1080Ti

GPU’s with 12 GB memory on a machine equipped with 64

GB CPU memory. Experiments were set up in tensorflow

1.10. Hyperparameters used: batch size = 8, iteration size =

8, learning rate = 0.0045, optimizer = SGD with momentum

(= 0.9), K = 3.

6.1. Fashion Retrieval

We conduct experiments on the Consumer-to-Shop and

Inshop retrieval datasets from the DeepFashion benchmark

[10]. Network architecture and search loss have been dis-

cussed in detail in Section 3. For our experiments, we set K

= 3. We use top-n retrieval to measure performance, such

that a successful retrieval is counted if at least one exact

fashion item has been found in the top n retrieved results.

Comparison against existing state-of-art methods is sum-

marized in Section 7.1. At inference time, we use input

image of resolution 227× 227× 3 and cosine similarity as

the distance metric.

6.2. Learning Feature Transformations

To validate the effectiveness of our proposed strategy to

learn functions, we conduct experiments on tasks of visual

retrieval (element-wise feature transformation) and classifi-

cation (custom kernel functions for SVM based classifica-

tion). We setup the technical background previously in Sec-

tion 3.4 . We describe the operands and functions accessi-

ble for learning the composite function for the retrieval and

SVM classification tasks in the following two sub-sections.

6.2.1 Retrieval

The operands, unary, and binary functions accessible to the

RNN controller are the following -

• Operands using the vectors from query trunk and target

trunk, x and y: x, y, x+ y

• Unary functions: x, −x, x2, |x|, x3,
√

(|x|), ex, sinx,

cosx, sinhx, coshx, tanhx,
√
x ,||x||1, ||x||2, erfx ,

tan−1 x, σ(x), max (x, 0), min (x, 0), loge (1 + ex)

• Binary functions: x1 + x2, x1 − x2, x1 · x2, x1 ∗ x2,

max(x1, x2), concat(x1, x2) , min(x1, x2), σ(x1) ∗
x2, x1

Dataset In-shop Cons-2-Shop

Config/Top-N @1 @5 @10 @20 @50 @1 @5 @10 @20 @50

GSN[Q] 0.846 0.917 0.935 0.951 0.966 0.19 0.28 0.33 0.40 0.49

GSN[T] 0.853 0.925 0.943 0.960 0.972 0.21 0.30 0.35 0.42 0.51

GSN[Q⊕ T] 0.861 0.937 0.952 0.968 0.980 0.23 0.33 0.38 0.45 0.55

GSN[RL] 0.870 0.946 0.959 0.975 0.986 0.25 0.35 0.41 0.47 0.57

Table 1. Ablation Study: top-n recall comparison of different embedding representations from the Grid Search Network.

We highlight the generic applicability of the method

to improve recall rate performance on Inshop Retrieval,

Consumer-to-Shop Retrieval [10] and CARS196 [7] bench-

mark datasets using GSN and [24] approaches.

To conduct experiments with [24], we directly sample

feature vectors from their open-source models 1 2 without

any additional training of their embedding network. Learn-

ing feature transformations using our RL strategy on these

representations leads to performance improvement as dis-

cussed in results.

6.2.2 Classification

The operands, unary functions and binary functions that are

accessible to the RNN controller in case of SVM kernel dis-

covery are the following:

• Operands using the two vectors x and y: |x− y|, (x+
y), (x− y)2, ||x− y||1, ||x− y||2, x · y, x ∗ y, γ3

• Unary functions: x, −x, x2, |x|, x3,
√

(|x|), ex,

sinx, cosx, sinhx, coshx, tanhx, ||x||1, ||x||2, σ(x),
max (x, 0), min (x, 0,) loge (1 + ex)

• Binary functions: x1 + x2, x1 − x2, x1 · x2, x1 ∗ x2,

max(x1, x2), min(x1, x2), e
−|x1−x2|, x1

The operands have been chosen in a way so as to keep

the discovered kernel function symmetric. We conduct ex-

periments over FashionMNIST and MNIST datasets.

7. Results

7.1. Fashion Retrieval

For exhaustive analysis, we experiment with multiple

configurations of embeddings from GSN. An ablation study

is presented in Table 1. GSN[Q] uses query trunk vector,

GSN[T] uses target trunk vector, GSN[Q ⊕ T] concate-

nates query and target vectors and GSN[RL] applies trans-

formation functions learned using RL based search strat-

egy. We discuss the specific functions learned for each of

the datasets in Section 7.2.1 . To generate the target trunk

1Shared here: https://github.com/PkuRainBow/
2Shared model does not match numbers mentioned in paper but can

still be used as baseline to validate our experiment
3
γ is a constant, that is equal to the number of features in the data

volume, at inference time, the query image is propagated

through the fully convolutional target trunk network (Fig-

ure 3). A 3 × 3 × 1024 dim feature volume is generated

and the column vectors are averaged to obtain the 1024-dim

feature vector.

As discussed in Table 1, GSN[T] outperforms GSN[Q]

which suggests the additional viability of our target grid as

an augmentation procedure. This observation is corrobo-

rated through experiments discussed in a recent work [18].

Concatenating query and target vector representations fur-

ther improves performance. Sample qualitative results are

shown in Figure 6 which typify the ability of GSN frame-

work to generate embeddings robust to large variations in

pose, illumination, blur, and occlusion.

In the following subsections, comparisons are reported

against WTBI [5], DARN [6], FashionNet [10], HDC [24],

VAM [22] and HTL [25].

Recall top-1 top-5 top-10 top-20 top-50

WTBI 0.03 0.04 0.05 0.06 0.08

DARN 0.03 0.06 0.08 0.11 0.15

FashionNet 0.08 0.12 0.15 0.19 0.23

VAM 0.13 0.27 0.34 0.42 0.54

GSN 0.25 0.35 0.41 0.47 0.57

Table 2. Recall rates comparison on Consumer-to-Shop retrieval

dataset.

7.1.1 Consumer-to-Shop

Table 2 contains top-n recall rate comparison on Consumer-

to-Shop (C2S) retrieval dataset. GSN outperforms existing

state-of-the-art methods on recall performance. GSN out-

performs [22] by 12% and [10] by 14% on top-1.

7.1.2 Inshop Retrieval

Table 3 contains top-n recall rate comparison on the Inshop

retrieval benchmark. GSN outperforms all existing state-

of-the-art methods, outperforming [25] by 6.7% and [24]

by 24.5%. The flexibility of the GSN architecture enables

integration of the adversarial hard negative mining strategy

introduced in [25]. This is likely to result in further im-

Figure 6. Sample retrieval results on Consumer-to-Shop (left) and Inshop retrieval (right) datasets. Query images are highlighted with

red borders, followed by the top-5 retrieved results. Visual embeddings generated by GSN are robust to large variations in illumination,

occlusion, pose, and deformation.

Figure 7. Recall rates for different methods under comparison on

Consumer-to-shop retrieval dataset.

Recall top-1 top-5 top-10 top-20 top-50

WTBI 0.35 0.42 0.46 0.506 0.54

DARN 0.38 0.52 0.62 0.675 0.71

FashionNet 0.53 0.68 0.73 0.764 0.8

HDC 0.62 0.85 0.87 0.89 0.93

VAM 0.67 0.84 0.89 0.92 0.94

HTL 0.803 - 0.939 0.958 -

GSN 0.870 0.946 0.959 0.975 0.986

Table 3. Recall rate comparison on Inshop retrieval dataset.

provement in performance against what is obtained with the

current offline hard-negative sampling strategy.

7.2. Learning Feature Transformations

7.2.1 Retrieval

For our GSN architecture, the transformation function

learned over the Consumer-to-Shop (Cons-2-Shop) retrieval

dataset is:

maximum(erf(f1), sqrt(f1 + f2)) (5)

and over the Inshop retrieval dataset is:

log(1 + exp(f1 + f2)) (6)

Here f1 and f2 refer to the feature vectors of the query

and target grid trunks respectively. erf and sqrt refer to the

error function and square root function respectively.

Table 4 shows the results of the retrieval performance be-

fore and after the learned transformation has been applied.

Note that without the learned transformation the combined

representation is concatenation(f1, f2) as in [24].

Figure 8 qualitatively validates the impact of the learned

feature transformations on retrieval performance. These ob-

servations are further supported through corresponding in-

crease in mean average precision (mAP) @0.1 from 75.2%

to 76.4% on applying learned transformations to GSN em-

beddings for inshop dataset. mAP, as a performance metric,

is better able to elucidate this impact than top-n recall as it

captures the number of positives in the retrieved set.

To test the generalizability of our approach, we also

tested it over the features obtained by [24] for the CARS

[7] dataset. The learned transformation function over this

dataset is:

tan−1(concat(f1, 2 ∗ f2, 3 ∗ f3)) (7)

Here f1, f2 and f3 are the three output feature vectors gen-

erated in the original architecture as discussed in [24].

7.2.2 Classification

We conduct our searches over FashionMNIST and MNIST

classification dataset. An RNN controller emits a kernel

Figure 8. Results showing qualitative impact of learned transformations on retrieval performance for Inshop dataset. The top and bottom

rows show retrieved results for GSN embeddings before and after applying learned transformations. The effectiveness of the proposed

transformation strategy can be seen by the fine-grained improvement in the quality of retrieved images.

Recall top-1 top-2 top-4

Dataset w/o w/ w/o w/ w/o w/

CARS 0.715 0.720 0.816 0.818 0.892 0.893

Inshop 0.861 0.870 0.905 0.913 0.924 0.931

C2S 0.234 0.247 0.283 0.292 0.328 0.337

Table 4. Comparison of top-n retrieval performance without (w/o)

and with (w/) learned transformation functions.

Figure 9. Recall rates for different methods under comparison on

Inshop retrieval dataset.

function for SVM. The SVM with the emitted kernel func-

tion is trained over 1000 FashionMNIST/MNIST training

samples and the accuracy over a separate 500 validation

samples is used as a reward signal for the RNN controller.

The final discovered kernel function for FashionMNIST is:

φFashionMNIST (x, y) = ||x ∗ y||1 +max(x ∗ y, 0) (8)

The results in Table 5 show the accuracy over 10000

FashionMNIST test samples when the SVM is trained with

different kernel functions (classic kernels and discovered

kernel function) over 1000 training samples.

The final discovered kernel function for MNIST is:

φMNIST (x, y) = ||min(sin(x ∗ y), sin(x · y/γ))|| (9)

Even though the RNN controller has been trained to

learn a kernel function that best fits the 1000 training sam-

ples, the discovered kernel function works better than the

Kernel Val Test

#samples 500 1000

Sigmoid 10.0 10.1

RBF 86.4 82.76

Learned Kernel 89.0 87.96

Table 5. Classification Accuracy comparison on Fashion-MNIST

dataset.

Kernel Val Test

#samples 500 1000 2000

Sigmoid 81.0 74.42 84.94

RBF 86.4 87.76 87.85

Learned Kernel 90.2 91.01 93.12

Table 6. Classification Accuracy comparison on MNIST dataset.

classic kernel functions even when it is used to fit 2000

training samples. Table 6 shows the test accuracy results

when the different kernel functions are used to train SVM

over 2000 samples.

8. Conclusion

We introduce a Grid Search Network (GSN) for genera-

tion of visual embeddings and highlight its effectiveness on

the fashion retrieval task by achieving state-of-the-art per-

formance on benchmark datasets. To further improve this

performance, we use a reinforcement learning based strat-

egy that learns a composite transformation function that is

applied over the GSN embeddings. We emperically show

that such a transformation results in boosting the retrieval

performance. We reinforce claims regarding its applica-

bility by improving performance of existing state-of-the-art

methods without any additional training of the embedding

network. Additionally, we extend the RL strategy to learn

custom kernel functions for SVM based classification.

References

[1] I. Bello, B. Zoph, V. Vasudevan, and Q. V. Le. Neural op-

timizer search with reinforcement learning. arXiv preprint

arXiv:1709.07417, 2017.

[2] D. Ciregan, U. Meier, and J. Schmidhuber. Multi-column

deep neural networks for image classification. In Computer

vision and pattern recognition (CVPR), 2012 IEEE confer-

ence on, pages 3642–3649. IEEE, 2012.

[3] R. Collobert and J. Weston. A unified architecture for natural

language processing: Deep neural networks with multitask

learning. In Proceedings of the 25th international conference

on Machine learning, pages 160–167. ACM, 2008.

[4] L. Deng. The mnist database of handwritten digit images for

machine learning research [best of the web]. IEEE Signal

Processing Magazine, 29(6):141–142, 2012.

[5] M. Hadi Kiapour, X. Han, S. Lazebnik, A. C. Berg, and T. L.

Berg. Where to buy it: Matching street clothing photos in

online shops. In Proceedings of the IEEE international con-

ference on computer vision, pages 3343–3351, 2015.

[6] J. Huang, R. S. Feris, Q. Chen, and S. Yan. Cross-domain

image retrieval with a dual attribute-aware ranking network.

In Proceedings of the IEEE international conference on com-

puter vision, pages 1062–1070, 2015.

[7] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object rep-

resentations for fine-grained categorization. In 4th Interna-

tional IEEE Workshop on 3D Representation and Recogni-

tion (3dRR-13), Sydney, Australia, 2013.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[9] J. Lin, O. Morère, V. Chandrasekhar, A. Veillard, and

H. Goh. Deephash: Getting regularization, depth and fine-

tuning right. CoRR, abs/1501.04711, 2015.

[10] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang. Deepfash-

ion: Powering robust clothes recognition and retrieval with

rich annotations. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1096–1104,

2016.

[11] McKenzie, 2018.

[12] A.-r. Mohamed, G. E. Dahl, and G. Hinton. Acoustic model-

ing using deep belief networks. IEEE Transactions on Audio,

Speech, and Language Processing, 20(1):14–22, 2012.

[13] PwC, 2018.

[14] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for ac-

tivation functions. 2018.

[15] F. Sadeghi, C. L. Zitnick, and A. Farhadi. Visalogy: An-

swering visual analogy questions. In Proceedings of the 28th

International Conference on Neural Information Processing

Systems - Volume 2, NIPS’15, pages 1882–1890, Cambridge,

MA, USA, 2015. MIT Press.

[16] Shopify, 2018.

[17] R. Socher, J. Bauer, C. D. Manning, et al. Parsing with

compositional vector grammars. In Proceedings of the 51st

Annual Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers), volume 1, pages 455–465,

2013.

[18] C. Summers and M. J. Dinneen. Improved mixed-example

data augmentation, 2018.

[19] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Man-

sour. Policy gradient methods for reinforcement learning

with function approximation. In Advances in neural infor-

mation processing systems, pages 1057–1063, 2000.

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 1–9, 2015.

[21] F. United, 2018.

[22] Z. Wang, Y. Gu, Y. Zhang, J. Zhou, and X. Gu. Clothing

retrieval with visual attention model, 2017.

[23] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a

novel image dataset for benchmarking machine learning al-

gorithms. arXiv preprint arXiv:1708.07747, 2017.

[24] Y. Yuan, K. Yang, and C. Zhang. Hard-aware deeply cas-

caded embedding. In 2017 IEEE International Conference

on Computer Vision (ICCV), pages 814–823. IEEE, 2017.

[25] Y. Zhao, Z. Jin, G.-j. Qi, H. Lu, and X.-s. Hua. An adver-

sarial approach to hard triplet generation. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 501–517, 2018.

[26] B. Zoph and Q. V. Le. Neural architecture search with rein-

forcement learning. arXiv preprint arXiv:1611.01578, 2016.

