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Abstract

Atypical head movement pattern characterization is a 

potentially important cue for identifying children with 

autism spectrum disorder. In this paper, we implemented a 

computational framework for extracting the temporal 

patterns of head movement and utilizing the imbalance of 

temporal pattern distribution between diagnostic 

categories (e.g., children with or without autism spectrum 

disorder) as potential diagnostic cues. The timeline 

analysis results show a large number of temporal patterns 

with significant imbalances between diagnostic categories. 

The temporal patterns show strong classification power on 

discriminative and predictive analysis metrics. The long 

time-span temporal patterns (e.g., patterns spanning 15-30 

sec.) exhibit stronger discriminative capabilities compared 

with the temporal patterns with relatively shorter time 

spans. Temporal patterns with high coverage ratios 

(existing in a large portion of the video durations) also 

show high discriminative capacity. 

1. Introduction 

      Clinicians and researchers studying children with 

autism spectrum disorder (ASD) have long noticed the 

atypical head postures and movement patterns of children 

with ASD [1-3]. Previous findings are based on manual 

analysis where diagnostic cues are elicited from the 

domain experts based on their in-field experience [4-11]. 

Many of the related studies [4-8] are based on interactions 

with the subjects (e.g., children with and without ASD) in 

an interactive environment and then manually coding the 

videos captured. The interpretation stages in such 

workflows are usually focused on a few specific gestures 

or motion features chosen by domain experts. The chosen 

gestures, features, and the experimental environments are 

diverse in these studies, thus it is difficult to combine the 

techniques employed. Furthermore, many promising 

results obtained through such manual processes [6-8] are 

difficult to scale up for larger studies [10, 11] due to the 

variation of the analytic devices, the experiment settings, 

and the interpretation procedures. The difficulty in 

integration and scaling up the studies necessitates the 

development of computational tools that assist the 

researchers at various stages of analyses and 

interpretations.  

      This paper reports a computational implementation of 

head movement tracking and analysis framework based on 

temporal pattern analysis and interpretation. Our proposed 

framework standardizes and integrates the head movement 

features reported in [1-11] while focuses on the temporal 

variation descriptors extracted from the dynamics of these 

head movement feature sequences. Fig.1 provides an 

illustration of the proposed system architecture. The 

approach consists of four steps. The first step extracts the 

head movement time series from the video. The second 

step performs temporal feature integration, which 

transforms the movement time series into token sequences 

for pattern analysis. The third step applies sequential 

pattern analysis tools to discover all frequent sequential 

patterns appearing in the head movement time series in 

each diagnostic category. The fourth step looks for 

sequential patterns with discriminative power among 

diagnostic categories. The patterns with high 

discriminative power are those that appear 

disproportionally in the two subject categories. By 

exploring a large number of discriminative sequential 

patterns, we are able to quantify their predictive 

connections to the diagnostic categories as potential cues 

for autism phenotypes identification, analysis, and 

interpretations.       

    The dataset, the participants, and the data collection 

protocol are covered in Sec. 2. Sec. 3 presents the feature 

extraction algorithms. Sec. 4 presents the temporal feature 

integration and organization steps. Sec. 5 covers the 

sequential pattern analysis and categorical timeline 

allocation algorithms. Sec. 6 presents the discriminative 

analysis metrics. Sec. 7 presents the analysis results and 

Sec. 8 provides a brief summary and discussions. 
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2. Data Collection Protocol 

      Participants were children of three groups. The first 

group is children with ASD. The second group is children 

without ASD. They were typically developing children 

with no reported family history of ASD or ASD diagnosis. 

The third group is children without ASD who have one or 

more siblings with an ASD diagnosis [12]. Participants are 

between 2.5 and 6.5 years old, where mean =  4.72 years, 

standard deviation = 1.14 years, and range = 4.25 years, 

with ASD (n = 21), without ASD (n=21), without ASD 

but sibling(s) has ASD (n=14). The ADS diagnosis or the 

absence of ASD was determined by a licensed 

psychologist based on DSM-IV-TR criteria [13] and the 

Autism Diagnostic Observation Schedule (ADOS) [14]. 

The University’s Internal Review Board approved 

recruitment procedures and experiment protocols.  

       Children were asked to watch six short videos on a 

computer monitor, while a camera positioned on top of the 

monitor recorded their face and upper body at 29.971 

frame/s. The responses from these six videos form six 

video data blocks for each child. 

3. Head Movement Feature Extraction and Modeling 

      Our implementation utilizes an automatic and 

person-independent face tracking system [15,16]. This 

face tracking system provides the rotation angle 

displacement of the head position at each video frame. The 

rotation angles include pitch (head nods), yaw (head 

turns), and roll (lateral head inclination). Our 

implementation also provides alternative head position 

representations including the quaternions and the 

directional cosines. The quaternion-based head movement 

representation is calculated from the rotation angles as in 
[17]. The head movement representation based on 

quaternions form a four-dimensional vector space 

�� � � �� � � �� � �� �� � , where � is the index of the 

video frame, and �� �� ���and � denote the four quaternion 
elements. These three movement representations are 

equivalent and can be transformed to each other as in 

[17-19]. We also calculate the first and the second 

temporal derivatives of head movement time series in each 

direction. 

     The velocity vector � � � �� � ��� � ��� �  is 

calculated from the derivatives of the quaternion �: 

                           

�� �

�� �

�� �

�

�
� ��� �� ���

�
����              (1) 

where � denotes matrix multiplication. � is the inverse of 

�. The scalar velocity is: 
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�

�
� � �

�

�
� � �

�

�
�           (2) 

The accelerations are calculated as: 

                         �� � �
�� ��� ��� ���

��
                     (3) 

The scalar acceleration is: 

                     �� � � �
�

�
� � �

�

�
� � �

�

�
�          (4) 

       The kinematic head movement feature sequences are 

transformed to the dynamic muscle actuation feature 

sequences depicting neck muscle activities using a 

head-neck simulation model [20-22]. This model provides 

a non-linear mapping relationship between the movement 

feature sequences and the corresponding muscle activation 

 
 

Fig. 1. System Architectural Overview. The head movement features are extracted from the videos using a head movement tracking software. Temporal 
feature integration and sequential pattern analysis algorithms extract the frequently recurring sequential patterns from the head movement feature 
sequences. Then the sequential patterns are mapped to the head movement feature sequences and grouped according to their subject categories.  
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signal. The muscle activation signal is then mapped to the 

muscle force using the Ornstein-Uhlenbeck process 

following [23]. This model assumes that the result of 

muscle activation is damped in time when mapped to the 

rotation angle kinematics. In other words, the velocity or 

the derivatives of rotation angles tends to return to zero 
unless there exist continuous muscle activations to sustain 

such movements. The parameters of the discretized motion 

model are fitted to the dataset using the autocorrelation 

method as described in [23,24]. This head-neck simulation 

model yields three head-neck muscle activation feature 

sequences corresponding to the three directions of rotation 

angles. 

4. Temporal Feature Integration  

    Temporal feature integration provides additional feature 

descriptors that summarize the temporal variation patterns 

in the head movement feature sequences. In our analysis 

framework, temporal feature integration is performed both 

in the time domain and in the frequency domain. 

4.1. Time Domain Integration  

    The temporal feature integration algorithm divides the 

time series data into short segments for extracting 

temporal integration descriptors. For each video data 

block, we choose the first 1200 data points (40 seconds in 

video duration). The length of the time segments for 

feature extraction is configured to four different lengths 
corresponding to a hierarchical time scale arrangement. 

The local analysis scale of the highest time resolution 

preserves the full resolution of the head movement feature 

sequences. The length of the time step is the video frames 

duration (0.033 sec.). The segment lengths of the other 

two local analysis scales divide the complete time series at 

each block to 50 segments and 20 segments. The global 

analysis scale divides the complete video duration into 

five equal-length segments.  

      For each segment of a time series, we calculate the 

mean value and the variance of the data points within this 

segment. Several temporal summarization parameters for 
longer time durations are calculated from the segment 

means and variances, which is defined as the followings: 

• Average value of segment means 

               �� �
�

�
� �

�

���                                 (5) 

where �  is the number of short segments. � �  is the 

mean value of the data points in segment �. 

• Average value of segment variances 
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�
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���                                (6) 

where � �  is the variance of the data points in segment �. 

• Standard deviation of segment means     

         �� � ��� � � �� �� �                      (7) 

where ���  calculates the standard deviation of the 

following variables. 

• Standard deviation of segment variances 

           �� � ��� � � �� �� �                      (8) 

• Accumulative difference of segment means 
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where �  denotes absoulte value. 

• Accumulative difference of segment variances 
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���               (10) 

4.2. Frequency Domain Integration  

    For each short segment, we calculate the spectral 

centroid and span as the descriptors for the time-frequency 

energy distributions. Suppose that the discrete Fourier 

transform magnitude of the signal in short segment � is 

�� � , where �  is the frequency index, the spectral 
centroid of this time segment is calculated as the weight 

center of the spectral magnitude of the constituent 

frequency components: 

                                � � �
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                           (11) 

where �  is the total number of frequency bins. The 

spectral span � �  is calculated as the frequency point 

where the gross signal magnitude from the lower 

frequencies than this frequency point exceeds 70% of the 

gross signal magnitude in all frequencies. The temporal 

integration parameters is calculated as: 

• Average value of the spectral centroids  

              �� �
�

�
� �

�

���                                (12) 

where �  indices the short segments, and �  is the total 
number of short segments. 

• Average value of the spectral spans  

               �� �
�

�
� �

�

���                            (13) 

• Standard deviation of the spectral centroids 

           �� � ��� � � �� �� �                     (14) 

where ��� denotes the standard deviation of the following 

variables. 

• Standard deviation of the spectral spans 

           �� � ��� � � �� �� �                 (15) 

• Accumulative differences of the spectral 

centroids 

          �� �
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���           (16) 

where �  denotes absolute value. 

• Accumulative differences of the spectral spans  

        �� �
�

���
� � � � �� �

���

���         (17) 

4.3. Organization of Feature Dimensions 

Each feature dimension is a combination of the movement 

directions and the temporal integration options in Fig. 2. 

This combination results in 702 feature dimensions 

organized into four time resolution parts. Part 1 includes 

all global time scale feature dimensions that use five 

segments to depict the temporal variation of the full signal 

duration. For each movement direction, the temporal 
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integration options include the mean within segments of 

the five equal partitioned segments of the time series, the 

same segment means for the first derivative of the time 

series, the same segment means for the second derivative 

of the time series, the spectral centroid for the five 

segments, and the spectral width for the five segments. 

This adds up to 18 movement directions � 5 temporal 

integration options = 90 feature dimensions. The series 

numbers of the feature dimensions are arranged as the first 

5 feature dimensions correspond to movement direction 1, 

and then dimensions 6 to 10 correspond to the movement 

direction 2, etc.  

      Part 2 includes all local time scale feature dimensions 

with 20 temporal integration segments. For each 

movement direction, the temporal integration option first 

includes the mean within segments, the standard deviation 

within segments, the differences between successive 
segment means, the difference between successive 

segment standard deviations. Then these temporal 

integration options repeat for the first and the second 

derivatives of the time series. Finally the temporal 

integration options include the spectral centroid and the 

spectral width of the segments.  

    Part 3 includes all local time scale feature dimensions 

with 50 temporal integration segments. The feature 

dimension arrangement is identical to Part 2. 

     Part 4 includes the local time scale feature dimensions 

with the full time resolution (the original time series).  
 

5. Sequential Pattern Analysis and Categorical Allocation 

5.1. Feature Sequence Tokenization  

   The feature quantization step adapts the continuous 

feature values to discrete tokens for the subsequent 

sequential pattern analysis algorithm. Because the means 

and the variances of the feature values are already 

included as the temporal integration descriptors (as in Sec. 

4), the feature quantization step in our implementation 

emphasizes the dynamic patterns (i.e., the change of 

feature values between successive time series steps) of the 
feature sequences instead of its static values. The feature 

quantization step calculates the differences of the feature 

values in successive time steps and quantizes the 

difference values into “shape” variables of “0” (decrease), 

“1” (hold), or “2” (increase). The difference values smaller 

than 10% of the standard deviation of all difference values 

of its corresponding feature dimension are quantized as 

token “1” (hold). A difference value is quantized as token 

“0” (decrease) or “2” (increase) if its absolute value 

exceeds 10% of the standard deviation of all difference 

values of its corresponding feature dimension and the 

variation is towards the decrease or increase direction 
respectively. 

   The template sampling algorithm chops the token 

sequences into shorter fragments. The template sampling 

process in our implementation employs successive 

templates of length �����  and the adjacent templates 

overlap ����� � �  steps. This is to keep the temporal 

context of �����  steps for any token location without 

missing gaps between templates. This template sampling 

process chops a quantized feature sequence of length � 

into � � ����� � � source sequences. The term “source 

sequence” is defined as a sequence fragment obtained 

from the template sampling process. At the global time 

scale level, the source sequences model the dynamics of 

the complete feature sequence. At the local time scale 

levels, source sequences model the local time dynamics 

within a short time duration centered at different time 

locations of the feature sequences. 
 

 
(a) 

 

 
(b) 

Fig. 2. Illustration of the temporal integration options and head 
movement feature directions for organizing the feature dimensions. The 
feature dimension index number can be looked up from the index number 
ranges in (a). The features are organized at four levels of temporal 
resolutions. Each resolution level includes temporal features and spectral 
features. All temporal features were analyzed with respect to derivative 
options D1, D2, and D3. Then both temporal and spectral features were 
applied to 18 movement feature directions (M1 - 18). (b) Illustrates the 
tokens of the movement feature directions and the derivative sequences. 
The feature indices in (b) provide the complete indices for “Part 1” 
features in (a) as an illustrative example. 

5.2. Sequential Pattern Discovery 

    Sequential patterns are frequently recurring 

sub-sequences embedded in the source sequences [25]. In 
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our implementation, the sequential pattern discovery 

algorithm [26,27] is employed. This algorithm allows the 

user to specify several constrains that control the time 

distribution of gaps in the discovered sequential patterns 

and thus provides additional flexibility compared to 

conventional sequence analysis tools [25]. The algorithm 
admits a sub-sequence as a sequential pattern if all the 

itemsets in the non-gap locations in the sequential pattern 

occur in a subset of the source sequences (termed 

supporting source sequences) and the number of the 

supporting source sequences is larger than a preset 

threshold. The non-gap itemsets in a supporting source 

sequence must include the sequential pattern but the gap 

locations can contain any token. Admitting gaps relaxes 

the admission criterion of sequential patterns, allowing 

more long-length sequential patterns to be observed. 

Otherwise the long patterns with gaps will be split into 

shorter sequential patterns at the gap points. This 
procedure especially beneficial our implementation 

because it allows us to admit and evaluate longer 

sub-sequences as sequential patterns, which usually have 

higher contextual significance. 

5.3. Categorical Sequence Grouping  

     The source sequences are partitioned into categorical 

groups according to their diagnostic categories 

corresponding to the feature sequences that they are 

extracted from. The categorical sequence grouping process 

identifies to occurrence number of each sequential pattern 

at each diagnostic categories.  An illustrative example is 

presented in Fig. 3. Each row of the pattern alignment 
matrix [28] corresponds to a sequential pattern and each 

column corresponds to a source sequence. The alignment 

between a sequential pattern and source sequence is 

indicated by “1”. The source sequences are divided into 

three groups of ASD (“a”), without ASD (“n”), and 

sibling(s) has ASD (“s”). The total occurrence number of a 

sequential pattern in a diagnostic category is calculated as 

the total number of alignment in the corresponding source 

sequence group. For example, Patter 1 occurs 4 times in 

group “a”, 2 times in group “n”, and 4 times in goup “s”. 

The combined diagnostic categories explored in this paper 

include “a+s” and “n+s”. The occurrence number of a 
sequential pattern in the combined diagnostic categories is 

calculated as the sum of the occurrence number in the 

constituent diagnostic categories. 

6. Quantifying Discriminative Analysis Performances 

6.1. Pattern Distributional Imbalance Metrics 

    The distributional imbalance of a sequential pattern 

across two categories is the main metric for its diagnostic 

power, which is quantified as the distributional contrast 

ratio (DCR) for each sequential pattern: 

 

 
 

Fig. 3. Illustration of the pattern alignment matrix and the categorical 
sequence grouping process. The entries in the alignment matrix is “1” 
when the sequential pattern (indices of the rows) is included in the source 
sequence (indices of the columns), and “0” otherwise. The occurrence 
number of a sequential pattern in a diagnostic category is calculated as 
the sum of entries within the group of columns of this category.  
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                     (18) 

where �� is the number of appearances of this sequential 

pattern in the source contour sequences from the Category 

1. �� is the same number from the Category 2. �� is the 

number of source sequences in Category 1, and �� is the 

number in Category 2. The higher ����value indicates a 

higher extent of imbalance in the appearance numbers of 

the discriminative sequential patterns between categories 1 

and 2. By including �� and ��, this DCR definition also 

normalizes the effect of imbalanced source sequence 

numbers in different categories. The same sequential 

pattern tends to appear more in the category with more 

source sequences. So we use the coverage, instead of the 
appearance number, for calculating the DCR and related 

predictive analysis metrics. Therefore, all metrics reported 

to follow should be interpreted as the class-balanced case 

(each diagnostic category with the same number of source 

sequences). 

    The coverage of a sequential pattern within the source 

sequences of its category is calculated as:  

                                      ���� �
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     A higher coverage value means the corresponding 

sequential pattern can perform diagnostic classification for 
more source sequences, thus more effective if the 

predictive measures are identical.  

6.2. Predictive Analysis Metrics  

    Several predictive analysis parameters can be calculated 

from the DCR values by treating each sequential pattern as 

a classifier. For example, if a sequential pattern has large 

DCR value at the “a�n” direction, the appearance of this 

sequential pattern in a new (unseen) feature sequence is a 

strong evident that it comes from the “a” category. 

Suppose a sequential pattern appears ��� times in the 
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source sequences in category 1 and �� times in category 2. 

Then we split the features (existence of the sequential 

pattern) and labels (diagnostic category) into two parts as 

non-overlapping training set and test set. The probalility 

that there are more category 1 source sequence than 
category 2 source sequence in the training set (this 

sequential pattern indicating that the source sequences 

containing it is category 1) is: 
 

                                    ��� �
��

�����

                                 (21) 

      The estimated mean value of category 1 source 

sequence in the independent test set is: 

                                  ��� �
��

�����

� ���                         (22) 

where ��� is the number of source sequences in the test 

set.  

      Taking Category 1 as positive category, the true 

positive (TP) number is calculated as: 
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      The true negative ��  number is  
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      The false positive ��  and false negative ��  

number are:  
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     The accuracy value is  
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�    (26) 

     The precision value is: 

                         ��� �
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�����
�
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�����

�
�����

�
            (27) 

     The recall value is: 

                         ��� �
��

�����
�

��

�����

�
�����

�
            (28) 

     The �� score is:    

                         �� �
���������

�������
�

��

�����

�
�����

�
�          (29) 

     The Cohen’s Kappa is: 

                          � � � � ��� � � � ���
�                    (30) 

6.3. Discriminative Sequence Ranking and Selection  

    A subset of the sequential patterns are selected as the 

discriminative sequence and then utilized for calculating 

the discriminative and predictive metrics. Our 

implementation provides three options for selecting the 

discriminative sequence with the emphasis on DCR, 

coverage, and their combination. 

     The first pattern selection option sort the patterns 

according to their DCR values in descending order for 

each feature dimension and contrast pair. Then the first or 

the last ten patterns are selected as the discriminative 

patterns. The pattern selection process is illustrated in Fig. 

4. Each rectangular box represents a sequential pattern. 
The DCR value is plotted inside the box and the index 

number of the pattern is plotted below the box. This 

example is based on an “a/n” contrast pair and all DCR 

values are calculated in the “a�n” direction. The mean 

value of the DCR values is calculated as the sum of the 

absolute values from the top 10 patterns. When selecting 

the patterns for the “n/a” contrast pair, the ten patterns in 

the negative end of the sorting chain are selected. The 
mean value of the absolute values of the DCR values then 

just flips the negative sign to positive for the mean DCR 

values for this example. We note that the mean DCR 

values are calculated as the mean of the absolute values 

because the positive/negative sign of a DCR value only 

indicate the pattern distribution imbalance direction, while 

the absolute value indicting the discriminative power. 

Because DCR values in both the two opposite directions 

(e.g., “a�n” and “n�a”) show the same values for 

discriminating the contrasting diagnostic categories (e.g., 

“a” and “s”), in our implementation, we also provide a 

combined bi-directional “a�n” direction, as the combined 

“a�n” and “n�a” directions, by collecting the top patterns 

with the highest absolute DCR values from both ends of 

the DCR sequence. 
 

 
 

Fig. 4. The first pattern selection option for calculating the average DCR 
value for a pair of diagnostic categories. The DCR values in this example 
is calculated as the a�n contrast and sorted in descending order. The top 
ten patterns selected for the a/n contrast will be different from the top ten 
patterns selected for the n�a contrast when there are more than ten 
patterns in the sorted sequence. The n�a contrast direction will also flip 
the negative/positive values when calculating the statistics. The 
combined a�n direction takes DCR values of the highest absolute values 
from both end of the sorted DCR sequence. 
 

    The second pattern selection option selects ten 
sequential patterns with top coverage values in the first 

diagnostic category of the contrast pair and then calculates 

the same metrics. This pattern selection option put more 

emphasis on the pattern coverage over the diagnostic 

discriminative capacity.   

     The third pattern selection option seeks a balance point 

between the DCR values and the coverage when selecting 

sequential patterns. Within each feature dimension and 

contrast pair, this option first selects 40 sequential patterns 

with the highest coverage, then from these 40 patterns 

selects ten sequential patterns with the highest DCR 

values.   

7. Results and Discussion  

     Figures 5 through 11 present the summary graphs of 

categorical timeline allocation results across all feature 

dimensions and all contrast pairs. The organization of the 

feature dimensions is presented in Sec. 4.3. These figures 

present the distributional patterns of the average DRC 

values and the average coverage values of the sequential 

DCR
Pattern
Index

...  ...

Top patterns selected for the contrast; mean(abs(DCR) = 0.21,a/n std(abs(DCR)) = 0.15

Top patterns selected for the contrast; mean(abs(DCR) = 0.74, std(abs(DCR)) = 0.13n/a

10                94                16                 3                17                19                26                11                70                13

69               105                 4                73                                                       72                58                66                79

99                75                34                57                12                18                36                76                35                51

0.44         0.44         0.38         0.25         0.14         0.10         0.10         0.10         0.10         0.08

0.08         0.05         0.04         0.01                                        -0.47        -0.50        -0.50

-0.50        -0.64        -0.67        -0.71        -0.75      -0.75        -0.78        -0.79        -0.80        -1.00

-0.50

48



 

231 

patterns in each categorical contrast pairs and/or feature 

dimensions. A higher average DRC value indicates that 

the sequential patterns in the corresponding feature 

dimension and contrast pair have higher discriminative 

power. A higher average coverage value means that the 

corresponding sequential patterns can discriminate more 
subjects and is thus more useful. The contrast pairs include 

the diagnostic categories among “a”- children with ASD, 

“n”- children without ASD, “s”- siblings with ASD, and 

two combined groups of “a+s” and “n+s”. The category 

“s” means that the features are extracted from children 

who do not have ASD but their sibling(s) have ASD. For 

each contrast pair, the subjects on the left of the “�” sign 

are termed Category 1 and the subjects on the right are 

termed Category 2. The double side arrow “�” indicating 

combined contrast directions. 
     Fig. 5 present the average DCR values for the ten 

sequential patterns with the highest DCR values for each 

feature dimension and each contrast pair for the first 

pattern selection option. The color of each entry 

corresponds to the values as shown in the colorbar on the 

right. The color towards deep blue is mapped to the low 

values, while dark red as high values. We also provided 

grayscale and other color mapping versions as electronic 

companion material for this paper. Using grayscale 

mapping, the dark color indicates low value and the light 

color indicates high value. The series number of feature 

dimensions can be looked up in Fig. 2. Each entry 
(“pixel”) in Fig. 5 corresponds to the DCR values of a 

feature dimension and a contrast pair. For example, the 

top-leftmost entry is from feature dimension 1 (pitch 

displacement, means within segments) and contrast pair 

ASD/non-ASD. The four areas marked under the figure 

correspond to the four temporal integration parts of feature 

dimensions as illustrated in Sec. 3 and Fig. 2. Area 1 

(global time analysis scale) has significantly higher DCR 

values compared to the other three areas (local time 

analysis scale). Among Areas 2, 3 and 4, Area 2 (local 

time analysis scale with 20 segments) has slightly higher 

DCR values in most parts compared to Area 3 (local time 
analysis scale with 50 segments). Area 3’s DCR values are 

larger than the DCR values in Area 4 (local time analysis 

scale with full time resolution). Among the contrast pairs, 

“a�s”, “n�s”, “a�s”, and “n�s” have the largest DCR 

values.  

     For the predictive analysis metrics, Fig. 6 presents the 

corresponding F1 scores. The F1 scores are a linear 

mapping from the DCR values with different dynamic 

ranges (more details on the predictive analysis metrics in 

Sec. 6.2). For each single DCR values, the dynamic range 
of [0, 1] in DCR is linearly mapped to [0.5, 1] in the F1 

scores. The precision and the recall metrics are identical 

with the F1 score. Fig. 7 presents the average Kappa 

values. The DCR/Kappa transformation is nonlinear but 

monolithic. The accuracy metric follows a similar trend as 

the Kappa distribution. 

 
Fig. 5. Average DCR values for the ten sequential patters with the 
highest DCR values for each feature dimension and each contrast pair. 

The colors in the grid indicate the average DCR value as shown in the 

color bar. High DCR values indicate higher discriminative power. The 
four areas correspond to the time analysis scales as illustrated in the text. 

 
Fig. 6. Average F1 scores for the ten sequential patters with the highest 

F1 scores for each feature dimension and each contrast pair. The 

distribution of F1 scores are more towards “1”. 

 
Fig. 7. Average Kappa values for the ten sequential patters with the 

highest F1 scores for each feature dimension and each contrast pair. The 
distribution of F1 scores are more towards “1”. 
 

 
Fig. 8. Area summary of the DCR distribution pattern. For each contrast 
pair, we calculate the mean (lengths of the bars) and the standard 
deviation (twice the lengths of the errorbars) within the four areas in Fig. 
5 (marked as “1”, “2”, “3”, and “4”) and all areas (marked as “5”). 
 

 
Fig. 9. Area summary of the F1 score distribution pattern. The 
distribution of F1 scores are more towards “1”. 

a n n a a n a s s a a s s n n s s n a+s n n a+s a+s n a n+s n+s a a n+s

contrast index

0

0.2

0.4

0.6

0.8

1

A
v
g

. 
D

C
R

Avg. DCR Distribution

1

2
3

4

5

1

2

3

4

5

1

2

3

4

5

23
4

5
1

2

3

4

5

23
4

5

1

2

3

4

5

2
3

4

5 2
3

4

5

1

2

3

4

5

1

23
4

5

1

2

3
4

5
1

234
5

1

2

3

4

5

1

2

3
4

5

1
1 1 1

a n n a a n a s s a a s s n n s s n a+s n n a+s a+s n a n+s n+s a a n+s

contrast index

0

0.2

0.4

0.6

0.8

1

A
v
g

. 
K

a
p

p
a

Avg. F1 Score Distribution

1

2
3

4

5

1

2
3

4

5 2
3

4

5

23
4

5 1

2
3

4

5

23
4

5

1

2
3

4

5

23
4

5 23
4

5
1

2
3

4

5

1

2345

1

2
34

5 1

234
5

2
3

4

5 2
34

5

1

1 1 1 1

1 1

49



 

232 

 
Fig. 10. Area summary of the average coverage distributions. A higher 
coverage value means that the corresponding pattern can discriminate 
more subjects and thus more useful. 
 

     Fig. 8 presents the area summary of the DCR 

distribution pattern in Fig. 5. For each contrast pair, we 

calculate the mean (lengths of bars) and the standard 

deviation (twice the lengths of the errorbars) within each 

area (marked as “1”, “2”, “3”, “4” and “5” near the 

errorbars; “5” as all areas). For all contrast pairs, the 

average DCR values are highest in Area 1, then gradually 

decrease from Areas 2, 3, and 4. We can also observe that 

the contrast pairs with the highest DCR values are “a�s” 

and “n�s”. Contrast pairs “a+s�n” and “n+s�a” have 

high DCR values in the rest part of the categorical pairs. 

The corresponding bi-directional combined pairs “a�s”, 

“n�s”, “a+s�n”, and “n+s�a” also shows high DCR 

values, as higher DCR values for either direction (e.g., 

“a�s” and/or “s�a”  ) lead to the high DCR values in the 

combined direction (“a�s”). Fig. 9 presents the area 

summary of the F1 score distribution pattern, which shows 

the identical patterns as in Fig. 8. 

     Fig. 10 presents the average coverage values for the ten 

sequential patterns with top DCR values for each feature 

dimension and each contrast pair. Area 1 (global time 

scale) has the lowest coverage value in most feature 

dimensions. The contrast pairs of “a � n”, “n � a”, 

“a+s�n”, “n+s�a”, “a�n”, “a+s�n”, and “n+s�a” have 
higher average coverage values in all areas compared to 

the rest contrast pairs. 

      The results from the second pattern selection option 

(more details in Sec. 6.3) are presented in Fig. 11 and 12. 

This option results in lower DCR values compared to the 

previous setting of selecting ten patterns with the highest 

DCR values. Still Area 1 has the highest DCR values and 

the categorical pairs of “a�s”, “n�s”, “a+s�n”, “n+s�a”, 

“a�s”, “n�s”, “a+s�n”, and “n+s�a” have higher 

DCR values. The average coverage values are much 
higher because only top ten patterns with the highest 

coverage values in each feature dimension and each 

contrast pair are considered. 

     The results from the third pattern selection option are 

presented in Figures 13 and 14. This option yields 

moderate DCR and coverage values. The DCR part (Fig. 

13) shows similar pattern as in the previous two options. 

The coverage (Fig. 14) show high coverage values for the 

contrast pairs of “a�n”, “n�a”, “a�s”, “n�s”, “a+s�n”, 

and “n+s�a”, as well as the corresponding combined pairs 

of  “a�n”, “a�s”, “n�s”, “a+s�n”, and “n+s�a”. 

 
Fig. 11. Area summary of the DCR distribution pattern for the second 
pattern selection option, which selects ten sequential patterns with top 
coverage values. 

 
Fig. 12. Area summary of the average coverage distribution for the 
second pattern selection option. 

 
Fig. 13. Area summary of the DCR distribution pattern for the third 
pattern selection option, which selects ten sequential patterns with top 
DCR values within 40 sequential patterns of higher coverage. 
 

 
Fig. 14. Area summary of the average coverage distribution for the third 
pattern selection option. 

8. Summary and Conclusion 

     We implemented a computational framework for 

extracting the head movement feature sequences from 
multiple motion directions, performing temporal pattern 

analysis from these feature sequences, and analyzing 

dominant temporal patterns from different diagnostic 

categories. The proposed framework is applied on a video 

dataset of head movement in response of watching various 

video stimuli for autism spectrum disorder (ASD) 

research. The categorical pattern allocation process have 

identified the temporal pattern with significant imbalanced 

distributions among diagnostic categories including 

children with ASD, children without ASD, and children 

without ASD but their sibling(s) have ASD. A large 
number of temporal patterns show significantly 

imbalanced distributions from different diagnostic 

categories at most feature dimensions and temporal 

resolution levels. 
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