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Abstract

This paper analyzes a deep learning based classifica-

tion process for common East Asian dermatological con-

ditions. We have chosen ten common categories based on

prevalence. With more than 85% accuracy in our experi-

ments, we have tried to investigate why current models are

yet to reach accuracy benchmarks seen in object identifi-

cation tasks. Our current attempt sheds light on how deep

learning based dermoscopic identification and dataset cre-

ation could be improved.

1. Introduction

Dermatological care is an established need in today’s

health scenario. With timely intervention, many problems

can be resolved effectively. According to estimates by Na-

tional Institutes of Health (NIH) in the US, one out of five

US citizens are at a risk for developing a debilitating derma-

tological problem in their lifetimes [29]. If the skin anoma-

lies are detected and treated early, the survival rate is close

to 98%. Skin diseases such as contact dermatitis and ring-

worm, although not lethal, spread virulently [1, 5]. At a

time when increasing demand for dermatological expertise

is being observed, there is a constant under-supply in many

countries. The number of dermatologists in the US has

plateaued at about 3.6 doctors per 10,000 [12]. In Japan,

telemedicine is being actively advocated [11, 7, 14].

In the absence of specialists, subjects commonly seek

advice from general physicians. However, the diagnosis of

a general physician is concurrent with a dermatologist only

about 57% of the time, across the full spectrum of skin com-

plaints [17]. There exists a large scope of error which could

aggravate a subject’s health situation.

Computer vision has been successful in many domains

of health care. However, classical machine learning (ML)

has not been effective in addressing the accurate identifica-

tion of dermoscopic abnormalities. Rule based approaches

were tedious to make computer aided detection a possibility.

With the advent of deep learning, ML models are becoming

increasingly better at such applications [13, 31]. Esteva et

al. demonstrated dermatologist-level accuracy in detecting

Melanoma [9]. However, their model was limited to detect-

ing and grading only one type of condition. Similar studies

have been published by Shrivastava et al. for Psoriasis [25].

Towards detecting multiple diseases, Park et al. tried to in-

troduce crowd sourcing [20]. Currently, there is a scope to

develop & confidently deploy deep learning based identifi-

cation system for multiple disease categories, and reap its

benefits by mobile based computing [23]. Although there

have been some recent developments in classifying a spec-

trum of skin conditions, the results are quantitatively much

lower than those in object detection models [18, 19, 15, 4].

Even with most of these projects employing transfer learn-

ing, the detection accuracy remains far below object recog-

nition benchmarks. Hence, there is a scope to improve the

outcomes by understanding how convolutional neural net-

works (CNN) interpret skin images during a fine-grained

classification.

In this paper, we attempt to understand some factors for

errors encountered during classification of dermoscopic im-

ages. Utilizing gradients-based guided back-propagation

and class activation maps, we have tried to comprehend

the classification mechanism by CNNs. In the process, we

have developed an impression of why certain label pairs en-

counter higher miscategorizations. Our contribution to this

topic is as follows:

• We investigate any differences in outcomes owing to

different model sizes. Using existing state-of-the-art

training methodologies, we compare different archi-

tectures trained on our dataset in terms of accuracy.

• We attempt a visual explanation of the classification

errors in selected label pairs, by trying to identify the

features that CNNs attribute to the wrong class.

• We attempt to identify the few important guidelines for

better dataset creation from user submitted images.

The rest of this paper is organized as follows: We explain

the process of dataset creation briefly in Section 2. Model

learning with established state of the art training regimens



Label Images

Acne 972

Alopecia 682

Blister 691

Crust 640

Erythema 689

Leukoderma 665

P. Macula 717

Tumor 790

Ulcer 782

Wheal 636

Total 7264

Table 1: Distribution of number of images across the ten

most common skin complaints, matching observed out-

patient statistics.

is covered in Section 3. Investigation of the model perfor-

mance and case studies of irregular classification is covered

in Section 4. We discuss recommendations regarding im-

provement of the classifier pipeline in Section 5 prior to

concluding.

2. Dataset Preparation

For compiling a custom dermoscopic dataset of the East

Asian skin type, we performed a systematic collection of

images from volunteers. All the images were mostly bigger

than 200 × 200 pixels and in JPEG format. Additionally,

we sourced specimen images from medical centers. After

anonymizing, these images were labeled by registered clin-

ical practitioners. Images containing any identifying feature

such as birthmark, tattoo, hospital-tags or indicative marks

were excluded. With the advice of consultant physicians

regarding prevalence, we filtered our choice to ten com-

mon dermoscopic labels. These are: (i) Acne, (ii) Alope-

cia, (iii) Blister, (iv) Crust, (v) Erythema, (vi) Leukoderma,

(vii) Pigmented Maculae, (viii) Pustule, (ix) Wheal and

(x) Ulcer. A total of 7264 images across the labels were

chosen, and split randomly in the ratio of 5:1 for training

and validation set. Table 1 offers further information on the

quantitative distribution of these labels.

3. Model Learning

Before attempting to understand lacunae in the classifi-

cation pipeline, our first step was to build a high-accuracy

classifier with state of the art techniques. Our design was

based on the PyTorch 1.0 framework, running on a single

NVIDIA GPU (Tesla V100 16GB HBM2). We performed

transfer learning with ResNet-34, ResNet-50, ResNet-101

and ResNet-152 pretrained on the ImageNet [22]. The batch

size was set at 64 and binary cross entropy with logistic loss

function was used.

Prior to model learning, we normalized the data with

the recommended mean (0.485, 0.456, 0.406) and standard

deviation (0.229, 0.224, 0.225). We performed dynamic

in-memory augmentation by cropping, horizontal & verti-

cal flips and zooming by appropriate transformations in the

data loader. To get the best fit, we focused on optimiz-

ing the training process by tuning the learning rate α. In

conventional methods, learning rate (LR) is chosen by user

experience and allowed to decay monotonically during the

training phase. However, we foresaw two problems: (1) A

smaller than optimal learning rate could lead to stagnation

of gradients early and (2) loss function could get stuck at

a local minima midway. We addressed these problems by

finding an optimal rate based on our data as well as using a

mechanism of cosine rate annealing during training.

We implemented the LR range test based on Smith

[26, 19], which used several mini-batches with increasing

learning rates. The rate of change of loss was observed un-

til it dropped dramatically and reach a point of inflexion.

The learning rate α was chosen in the neighborhood of the

optimal value for best performance. Figure 1 and 2 illustrate

the LR range test performed on ResNet-152.

Following the determination of an optimal LR, we tried

to train our network in two steps using stochastic gradient

descent with restarts (SGD-R) [16]. In the first step, we

froze the final layers of the chosen network architecture and

pre-computed activations from our dataset prior to learning.

This process can be perceived as a model conditioning step

to fine tune the most active layer of the CNN. Using SGD-

R, we performed cosine rate annealing for every epoch of

training. The learning rate was reduced from our optimal

value αopt to near-zero, to again restart with αopt. This

modulation is governed by Equation 1,

νt =
1

2

(

1 + νcos

(

tπ

T

))

+ ǫ, (1)

where ν is the initial learning rate, t is the iteration over the

epoch, T is the total number of iterations to cover a epoch,

and ǫ is floating point error term. Up to 10 epochs were run

using this method, until the validation accuracy stabilized.

A schematic of this modulation is illustrated by Figure 3 for

the model trained on ResNet-152.

In the second step, the models were unfrozen and the

training was allowed to modify the whole network. Prior to

commencing this step, we assigned different learning rates

for different parts of the network. The initial one-third of the

network, which captured rudimentary features from input

images, was assigned a very low learning rate (0.01αopt).

The final one-third, which observed a lot of volatility dur-

ing training, was assigned the usual rate, αopt . The mid-

section was assigned an intermediate value (0.1αopt). We

also introduced cycle length multiplication of SGD-R, by a
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Figure 1: Learning rate α is systematically increased

over several mini-batches and the losses determined.

Concurrently, we also compute the rate of change of

losses.
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Figure 2: Plot of rate of change of losses. The optimal

learning rate is chosen in the neighborhood of the point

of inflexion, beyond which losses start increasing again.
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Figure 3: The architecture with all units frozen except

the final layer, is trained with a variable learning rate.

The rate decays following a cosine cycle until the end of

the epoch, to again restart in the next one.
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Figure 4: Rate annealing extends to cover progressively

more number of epochs by cycle length multiplication

(factor of 2).

factor of two, also proposed in [16]. A schematic showing

this modified learning rate schedule covering successively

larger number of epochs, is given in Figure 4.

We can conceptualize the aforementioned step as fol-

lows: The bulk of model learning was done via SGD-R.

With the model converging towards an optimum fit, distur-

bances were reduced by extending the LR cycle to cover

several epochs [16]. This helped improving the quality of fit

over closely similar labels. The periodic jumps minimized

the scope of getting stuck at any local minima. Having dif-

ferential learning rates reduced the chances for model to

lose important pre-trained features. The results of training

different ResNet architectures are shown in Table 2. A con-

fusion matrix of the classification performance of ResNet-

152 is illustrated in Figure 5.

Model Peak Top-1 accuracy

ResNet-34 88.9%

ResNet-50 89.7%

ResNet-101 88.2%

ResNet-152 89.8%

Table 2: Results of optimal training of different architec-

tures towards their best model fit. Different number of

epochs & LR were employed to obtain a near consistent

model accuracy in all the architectures.
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0 0 2 4 2 2 6 173 11 0

1 0 0 5 5 0 1 18 170 0

0 0 0 0 7 0 0 0 0 143

Confusion matrix

Figure 5: Confusion matrix of the classification in vali-

dation set, derived from the best performing architecture

(ResNet-152).

4. Classification Case Studies

In Section 3, we trained several ResNet models to their

best fits, to determine if there were any significant dif-

ferences due to the architecture size. Using SGD-R &

LR range test done over variable number of epochs, we

found the validation accuracy to be converging to similar

scores. Further proof of learning stability was seen in the

loss curves (training and validation phases), which indi-

cated limited possibility of further model fit. A plot repre-

sentative of the ResNet-152 learning is shown in Figure 6.

After pushing the model learning to their best fits, we could

safely attribute the errors to the nature of images and incor-

rect annotations, if any.

To better understand the same, we focused on case stud-

ies for selected label pairs which tended to exhibit high mis-

categorizations in our experiments. Table 3 indicates promi-

nent miscategorizatons derived from ResNet-152 model

for example. We investigated these label pairs by using

gradient-based class activation maps (Grad-CAM) [24] and

guided backpropagation (GBP) [28]. In Figures 7-12 in the

following sub-sections, the order of the images (L-R) are:

sample, model prediction and true class label.

4.1. Ulcer & Tumor

Ulcer and Tumor have a high degree of prediction errors

owing to similar planar attributes in their manifestation. In

Case 1 (Figure 7), a sample of Tumor is presented which

has been erroneously classified as Ulcer. There is a high
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Figure 6: Both training and validation curves stabilize to-

wards the end of the training. The flattened graphs indicate

very less room for further drop in errors in the latter part of

training.

Label 1 Label 2 Total

Ulcer Tumor 29

P. Macula Erythema 25

Blister Erythema 17

Erythema Wheal 15

Crust Ulcer 14

Blister Crust 14

P. Macula Tumor 13

P. Macula Leukoderma 10

Blister Ulcer 07

Tumor Erythema 07

Crust Tumor 05

Table 3: The Total indicates the total number of incorrect

predictions i.e., Label 1 predicted as 2, and vice-versa. The

model is based on ResNet-152. Although different architec-

tures and learning instances present different statistics, the

trends exhibit a pattern in respect to the confused labels.

degree of geometrical similarity between an average case of

ulcer and this particular sample. The GBP plot delineates

the circular lesion as an Ulcer. Our consultant physicians

have had second thoughts by these predictions. It has been

noted that the sample has a high degree of similarity with

Crust, Ulcer and Melanoma. The spotting, although not

detected in the class activation map, is similar to evolving

secondary tumors seen in Kaposi Sarcoma. This is an ex-

ample where the model could be highlighting the presence

of labeling error or presence of a novel class.

A sample of benign Ulcer is presented in Case 2 (Fig-

ure 8) which has been misidentified as Tumor. It is in-

teresting to note that the CNN identifies the inflammation

around of lesion, to classify it as a Tumor. The region of



Figure 7: GradCAM (top) and GBP (bottom) plots of Tumor

sample miscategorized as Ulcer.

Figure 8: GradCAM (top) and GBP (bottom) plots of Ulcer

sample miscategorized as Tumor.

interest (ROI) for ulcer is located with a certainty of 0.212.

Lack of image centering, compounded by illumination ar-

tifact and presence of inflammation ranks the Tumor label

much higher.

4.2. Pigmented Macula & Erythema

Pigmented Macula and Erythema have some of the high-

est rates of confusion, across our learned models. To ana-

lyze classification performance, we exhibit Cases 3 & 4,

where the first one has true label of P. Macula and the sec-

ond belongs to Erythema. In Case 3 (Figure 9), although the

P. Macula has been detected with a probability of 41%, the

larger pigmentation patch neighboring the spot leads to the

model predicting the sample as Erythema. The GradCAM

and GBP plots highlight the region of brown hypopigmen-

tation coherently. In Case 4 (Figure 10), although there are

no other visual features except the Erythemic pigmentation,

Figure 9: GradCAM (top) and GBP (bottom) plots of

P. Macula sample miscategorized as Erythema.

Figure 10: GradCAM (top) and GBP (bottom) plots of Ery-

thema sample miscategorized as P. Macula.

the shape of the lesion exerts a strong bias on miscatego-

rization as P. Macula. We hypothesize that presence of pig-

mentation in the field of view (FOV) is a strong factor in

miscategorization of these labels.

4.3. Ulcer & Crust

The labels of Ulcer and Crust present an interesting chal-

lenge in classification. These labels are visually close. Of-

ten Crust appears during the healing process of Ulcers.

Hence there is a strong visual correlation between the two.

In the absence of chronological history of diagnosis, it is

possible even for human interpreters to fail in categorizing

these cases accurately. Case 5 (Figure 11) shows such an

example. In the absence of treatment information, it may

not be straightforward to ascertain whether the lesion is a

Ulcer in recessing phase, or a existing Crust. Case 6 (Fig-

ure 12) from a lesion such as Vesicle or Bulla, has been



Figure 11: GradCAM (top) and GBP (bottom) plots of Ul-

cer sample miscategorized as Crust.

Figure 12: GradCAM (top) and GBP (bottom) plots of

Crust sample miscategorized as Ulcer.

miscategorized as an Ulcer. The image in question is quite

close to the Ulcer label visually; The GradCAM plots rec-

ognize the crater of the Crust as a identifying factor towards

the wrong label. The predictions could have improved if the

lesion was centered in the field of view.

5. Discussion

In Section 3, we empirically showed most available

ResNet architectures can be trained to perform robustly by

tuning hyperparameter settings. In Section 4, we showed

cases of irregularities due to the nature of fine-grained dif-

ferences in the data. These may not be easily remediated

in the near future. ML models are not robust to accurately

identify multiple lesions in a wide field of view. They can

perform poorly in the presence of image blur, low light and

noise. This is important from the end user standpoint where

captured images could be very different to those taken in

standardized experimental conditions.

There are some caveats to our experimental design as

well. We have focused primarily on East Asian race. The

model learning may not suitably generalize to other racial

types. We designed our classifier on the ten most prevalent

dermoscopic labels. Our model is not reliable towards other

disease categories. Even if we managed to train on all avail-

able dermoscopic labels, the only tell-tale indicators to the

presence of a novel category could be a higher discrepancy

in prediction than usual, in which case a specialist opinion

cannot be excluded (sic. Figure 7). We propose a few es-

sential steps towards curating a dermoscopic dataset. From

our experience, they have proved valuable to making mod-

els more resilient to misdiagnosis.

5.1. Balanced Training Set

The most significant contributor to model performance,

and consequently any automation thereafter, is the nature of

sample distribution in the training set. A balanced train-

ing set exhibits a true macro-average. This factor gains

prominence in dataset creation from user submitted images.

Even if classes are created with proportional uniformity, the

database needs to be periodically checked for inter-class

balance and duplicate information. To illustrate our point,

consider Table 4. These statistics are generated by training

models on an unbalanced distribution of voluntary submis-

sions, closely mimicking recent out-patient statistic. The

high values of accuracy across all the architectures still con-

vey a false notion, since the metric is strongly dependent on

the dominant class, i.e. Erythema. A confusion matrix in

Figure 13, illustrates this point more clearly.

To balance our dataset, we collated user-submitted im-

ages with clinical samples and performed simple data aug-

mentation (ref. Sec. 2), until our image classes were com-

parable to each other in size and diversity. If new pieces

of user-submitted data are added exclusively to training set,

periodic reshuffling is recommended. Image augmentation

can be built into the ML model as on-the-fly transformations

instead of maintaining a separate set of images. Although

skin lesions can be modelled to look very realistic [2, 3, 21],

we avoided using them since expert opinion is still divided

on their use in real world applications [10].

5.2. Optimizing Field of View

The field of view can affect the quality of detection sig-

nificantly. Although, it is not unusual for dermoscopic im-

ages to present more than one lesion in the ROI, reducing

the FOV and object distance can allow us to identity the

lesion of interest and get better predictions. According to

Sprawls [27], FOV reduction can even counteract some of

the effects of blur and noise in medical images for machine

learning.

In Figure 14, we illustrate the effect of FOV reduction



Model Peak Top-1 accuracy

ResNet-34 83.40%

ResNet-50 83.26%

ResNet-101 83.19%

ResNet-152 84.90%

Table 4: Macro-average performance of different model ar-

chitectures from user submitted images only described in

Sec. 5.1. The high overall accuracy overshadows any poor

class prediction, by a significant biasing.
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Figure 13: Confusion matrix of the multi-class classifica-

tion, derived from an unbalanced dataset of user submitted

images only described in Sec. 5.1. ResNet-152 architecture

was utilized.

in capturing the same lesion from two different object dis-

tances. The model prediction is unambiguous when the le-

sion is centered and at a shorter distance, with all other en-

vironment factors remaining the same. Since most of the

user submitted images are captured via camera phone, ap-

plication developers can be encouraged to add features to

help users capture an optimal FOV. Image datasets require

more intensive efforts by cropping the main ROI by trained

clinicians. Crowd-sourcing can also be an effective means

to be able to locate the correct regions, as shown for medical

images in [6].

5.3. Illumination & Gamma Correction

Illumination artifacts are present in images which have

not been captured under uniform lighting. These are com-

Figure 14: Large (top) and small (bottom) FOV of a Blister

sample can have a significant difference in the quality of

prediction (Ref. Sec. 5.2). The Blister was unambiguously

predicted when the object distance was reduced.

mon in user submitted images as bright regions in the im-

age space or a high reflectance patch. The sources for such

errors can be attributed insufficient lighting, presence of

shadow regions or a camera flash. Because they are present

in many labels, they can be sources of spurious prediction.

Our proposal to alleviate specular reflection is to capture

two set of images: one in ambient conditions and the other

in presence of camera flash. The two images can be pro-

cessed jointly as proposed in DiCarlo et al. [8], to produce

a surface reflectance map. This meta-information can alle-

viate some instances of the artifacts. If several images in a

database are known to have been captured in the same envi-

ronment, lighting-independent models of illumination can

be reconstructed by Bi-directional reflectance distribution

function (BRDF) as proposed by Yu et al. [30]. Discus-

sions about this scheme is beyond the scope of our current

paper. Since CNNs capture geometrical features during the

model fit, gamma adjustment (γ = 1.2−1.5) has been seen

to create better instances of predictions. Figure 15 shows

an example of tumor sample where prediction was signifi-

cantly improved by gamma balancing. Shapes and contour

detection is a factor towards better model performance, as

seen in Section 4.

6. Conclusion

This paper elucidates that several common skin prob-

lems can be successfully detected with deep learning tech-

niques. We have shown that performance can be made

model agnostic by adopting efficient hyperparameter set-

tings. We have attempted to explain the nature of dis-

crepancies in many label pairs and ways to alleviate them

in user submitted images. We have commented on sev-

eral best practices from our experience handling diagnos-



Figure 15: Original (top) and gamma corrected (bottom)

images of a tumor, as described in Sec. 5.3. The sample

prediction was corrected after gamma balancing.

tic automation. We hope that these prove useful as guide-

lines when creating new dermoscopic datasets in future.

Our repository of user submitted images is available at

https://github.com/souravmishra/ISIC-CVPRW19.

The model learning on dermatological images is only

skin deep, if not complemented by information on patient

history and other existing symptoms. Several factors are

considered when a specialist makes a diagnosis. Confidence

on ML-based diagnostics is precluded until more holistic

information about the subject is available to analyze. Al-

though not meant to replace a specialist, ML-based meth-

ods can prove to be effective diagnostic aids in screening

patients.
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