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Abstract

Convolutional neural networks (CNNs) deliver excep-

tional results for computer vision, including medical image

analysis. With the growing number of available architec-

tures, picking one over another is far from obvious. Ex-

isting art suggests that, when performing transfer learn-

ing, the performance of CNN architectures on ImageNet

correlates strongly with their performance on target tasks.

We evaluate that claim for melanoma classification, over 9

CNNs architectures, in 5 sets of splits created on the ISIC

Challenge 2017 dataset, and 3 repeated measures, result-

ing in 135 models. The correlations we found were, to

begin with, much smaller than those reported by existing

art, and disappeared altogether when we considered only

the top-performing networks: uncontrolled nuisances (i.e.,

splits and randomness) overcome any of the analyzed fac-

tors. Whenever possible, the best approach for melanoma

classification is still to create ensembles of multiple mod-

els. We compared two choices for selecting which models to

ensemble: picking them at random (among a pool of high-

quality ones) vs. using the validation set to determine which

ones to pick first. For small ensembles, we found a slight

advantage on the second approach but found that random

choice was also competitive. Although our aim in this pa-

per was not to maximize performance, we easily reached

AUCs comparable to the first place on the ISIC Challenge

2017.

1. Introduction

Deep learning has achieved impressive results in skin le-

sion analysis, including lesion segmentation, lesion classi-

fication, and medical attribute detection. Since 2015, con-

volutional neural networks (CNNs) are the state of the art

for melanoma classification [29]. The standard procedure

for training melanoma classification models is to fine tune

an ImageNet pre-trained CNN for a melanoma dataset [24].

However, with the crescent number of CNN architectures,

choosing the one to employ is increasingly difficult for re-

searchers.

The ISIC Challenge [6,7,12], the largest skin lesion anal-

ysis competition, illustrates such increase in the number of

available CNN architectures. In the first two editions of the

Challenge, the most successful submissions featured mostly

ResNet and Inception architectures. In contrast, the most

recent, third edition (in 2018) showcased a much wider

range of architectures, including also Dual Path Networks,

Squeeze-and-Excitation Networks, PNASNet, among oth-

ers. (We discuss those architectures in Section 3).

Designing the right CNN architecture for skin lesion

analysis (or, in fact, for any image classification task) is far

from obvious. Since most tasks tend to reuse/adapt archi-

tectures created for ImageNet, the accuracy on that primary

task could hint at their accuracy on the target task. Indeed,

Kornblith et al. [18] evaluated 16 CNN architectures pri-

marily created for ImageNet, and transferred for 12 target

tasks, and found a strong correlation between primary and

target accuracies.

However, as we will see, their findings must be taken

with care when applied for skin lesion analysis. In this

work, we reproduce their findings for 9 network archi-

tectures over the ISIC Challenge 2017 classification task

(melanoma vs. all subtasks) — but find that the correla-

tions disappear when only the top-performing networks are

considered.

Creating ensembles of several models are an effective

way of both improving accuracies and stabilizing them [29].

The accuracy of machine learning models tends to fluctuate

widely due to uncontrolled nuisance factors, like the choice

of the training set, and even random conditions, like the

initialization of the networks. In this work, we will also



evaluate the performance of ensembles in contrast to single

models.

The main contributions of this work are:

• We evaluate the factors that affect the choice of a CNN

architecture for skin lesion analysis. We evaluate 13

factors over 9 architectures on 5 sets of splits created

on the ISIC 2017 classification Challenge dataset.

• We evaluate the performance of simple ensemble

schemes, contrasting them to single-model perfor-

mances.

All our source code is available on GitHub, to allow the

community to reproduce our results, from the training of the

networks, until the statistical analyses.

We divided this work as follows: In Section 2, we review

the state of the art of transfer learning in skin lesion classi-

fication, and discuss current approaches for choosing CNN

architectures. We detail the tools, methods, and CNN archi-

tectures used in the experiments in Section 3. We present

the results in Section 4, and our conclusions in Section 5.

2. Related Work

In this section, we briefly review the literature in trans-

fer learning, and model design, in the context of skin lesion

classification. We focus on convolutional neural networks,

which are the state of the art on the field [3]. For more

information, the reader may refer to recent works on deep

learning for skin lesion analysis [3, 9] and for medical im-

ages in general [20].

The enormous size of deep learning models contrasts

with the scarcity of training data for skin lesion analysis,

making transfer learning mandatory for that task [24, 29].

Indeed, transfer learning is a commonplace procedure for

most computer visions tasks. Compared with training from

scratch, knowledge transfer not only increases accuracies

but also decreases training times [13, 18].

Most CNN architectures were primarily created for Im-

ageNet [8] — a very large dataset, with 1.3 million im-

ages and 1000 categories. Due to ImageNet’s diversity,

those networks learn features that generalize well for other

tasks [17]. That fact was established by the seminal study

of Yosinski et al. [30], which quantified the large effect of

transfer learning on accuracies.

More recently, Kornblith et al. [18] confirmed those find-

ings with an even stronger result, which established a direct

correlation between accuracies on ImageNet, and on the tar-

get tasks. They evaluated 16 CNN architectures on 12 target

tasks and found strong correlations between Top-1 accura-

cies on ImageNet, and the accuracies on target tasks. The

evaluated architectures comprised 5 variations of Inception,

3 of ResNet, 3 of DenseNet, 3 of MobileNet, and 2 of NAS-

Net. The tasks comprised general-purpose computer vision

tasks (CIFAR, Caltech, SUN397, Pascal VOC), and more

specialized — but still aimed at natural photos — tasks

(Birdsnap, Food-101, Describable Textures, Oxford Flow-

ers, Oxford Pets, Stanford Cars). They found very strong

correlations for both fine-tuned (R = 0.96, ρ = 0.97, p-

value < 10
−8) and non-fine-tuned (R = 0.99, ρ = 0.99,

p-value < 10
−11) models. Curiously, the performance of

architectures without transfer (initialized at random) also

showed some correlation (R = 0.37, ρ = 0.48, p-value

= 0.03). That shows that the correlation is due not only to

the learned weights but also — although in a lesser degree

— to the architecture design.

None of the Kornblith et al.’s tasks are medical tasks.

Studies evaluating the importance of transfer learning for

medical applications are few, and for skin lesion analy-

sis even fewer. Menegola et al. [24] compared several

schemes for transfer learning on melanoma classification

and found that fine-tuning a network pre-trained on Im-

ageNet gives the better results when compared with us-

ing a network pre-trained on another medical task (diabetic

retinopathy). Performing a double transfer (ImageNet →

retinopathy → melanoma) did not improve the results, com-

pared with transferring from ImageNet alone. Using an ex-

haustive factorial design with 7 factors (network architec-

ture, training dataset, input resolution, training augmenta-

tion, training length, test augmentation, and transfer learn-

ing) over 5 test datasets, for a total of 1280 experiments,

Valle et al. [29] showed that the use of transfer learning

is, by far, the most critical factor. In a factorial Analy-

sis of Variance, it explains 14.7% of the absolute perfor-

mance variation and 62.8% of the relative variation (exclud-

ing residuals and the choice of test dataset), with high sig-

nificance (p-value < 0.001).

In any event, transfer learning and fine-tuning are heavily

used for skin lesion classification. All top-ranked submis-

sions for ISIC Challenges 2016 [31], 2017 [1,11,23,25] and

2018 [2,10,19,22,32] used CNNs pre-trained on ImageNet.

While there is a consensus on the use of transfer learn-

ing for skin lesion models, when choosing the architecture

no choice is universal. On the contrary, the classification

task of the ISIC Challenge shows a progressive diversifi-

cation of architectures. In 2017, the top four submissions

used two networks: ResNet [1, 11, 23, 25], and Inception-

v4 [25], while the latest challenge [6], in 2018, showcased

a wider range of choices among the top performers — not

only ResNets and Inceptions, but also DenseNet [2], Dual

Path Networks [4], InceptionResNet [28], PNASNet [21],

SENet [15], among others — usually in ensembles of mul-

tiple architectures [2, 10, 22, 25, 32].

The best architectures for skin lesion classification re-

main, thus, an open issue. The Challenge results do not

allow analyzing a single factor from a multitude of choices

among participants. The study of Valle et al. [29], although



exhaustive for 9 factors, evaluates only two levels for each

factor, picking ResNet-101 and Inception-v4 for architec-

tures. No other study, as far as we know, attempts to answer

the question systematically.

In this work, we focus on that issue, by applying the

design of Kornblith et al. [18] to the task of melanoma

classification. We evaluate the performance of 9 networks

(listed in Table 1) pre-trained on ImageNet, and fine-tuned

for melanoma classification, on the dataset of the ISIC 2017

challenge.

In comparison to Kornblith et al.’s, our study reduces the

scope of the tasks and enlarges the scope of the correlations

attempted. On the one hand, while they evaluate 12 gen-

eral and specialized natural-photo tasks, we focus only on

melanoma classification. On the other hand, while they cor-

relate only the Top-1 ImageNet accuracy to the target accu-

racy, we correlate several network attributes and source and

target metrics. We aim to obtain hints on how to select the

best architectures for melanoma classification.

Since ensembles of models have special importance in

the literature of melanoma classification, we also evaluate

how simple ensembles of the evaluated models perform in

comparison to the models alone.

3. Methodology

3.1. Data

All data comes from the ISIC Challenge 2017 dataset [7].

We do not employ the original training (2000 images), val-

idation (150) and test (600) splits. Instead, we combined

all 2750 images and produced five random combinations

of train (1750), validation (500), and test (500) splits —

aiming at an approximate 60–20–20% partition. We chose

those proportions because the original validation set was too

small to allow making decisions on the deep learning hyper-

parameters with confidence, and we made five completely

random combinations to allow estimating the variability due

to the choice of the splits. The exact images used in our

splits are available in our code repository (see next section).

Although the ISIC Challenge 2017 provided annota-

tions for three classes (nevus, seborrheic keratosis, and

melanoma), and had three subtasks, we focus only on the

subtask of melanoma vs. all.

3.2. Tools

We evaluated 9 different architectures (Table 1), whose

PyTorch implementations and pre-trained ImageNet snap-

shots we obtained from other authors. The choice of pub-

licly available snapshots reflects current practice, since re-

training the architectures from scratch on ImageNet is very

time-consuming. Kornblith et al. report major performance

increases for architectures carefully trained from scratch on

ImageNet, for transfer learning without fine-tuning. For

transfer with fine-tuning (which we evaluate in this paper),

they found little difference between public snapshots and

models trained from scratch.

Table 1 shows the architectures we chose. Except for

MobileNetV2, we chose the architectures for their perfor-

mance on both ImageNet and the ISIC Challenge. We kept

MobileNetV2, present in the original study by Kornblith et

al., since we found interesting to include an architecture

aimed at embedded and mobile hardware.

The only modification on the architectures was changing

the last layer from the 1000 ImageNet classes to a binary

classification layer.

We fine-tuned each network with stochastic gradient de-

scent (SGD) with a starting learning rate of 1e−3 and mo-

mentum factor of 0.9. All layers were left free to evolve.

Whenever the validation loss failed to improve for 8 con-

secutive epochs, we divided the learning rate by 10. We

stopped the tuning if the validation AUC (area under the

ROC curve) failed to improve for 16 epochs. To avoid ac-

commodation on the training data order, we shuffled them

before each epoch.

We followed the best data augmentation settings pro-

posed in [26]: random horizontal/vertical flips; random

cropping; rotation up to 90°; shear up to 20°; area scal-

ing from 0.8 to 1.2; and color (saturation, contrast, bright-

ness, and hue) jittering. We also used augmentation on test

with 64 copies, and on validation with 16 copies (average-

pooling the probability vectors of the copies as the final

result). We resized each image according to the input

expected by each architecture (224 × 224 for DenseNet,

ResNet, DualPathNet, SENet, and MobileNetV2; 299×299

for Inception-v4, InceptionResNet-v2, and Xception; and

331× 331 for PNASNet). The inputs were also normalized

per-channel using the z-score computed with the training

dataset statistics.

We used an NVIDIA Tesla P100 with 12 GiB to fine-

tune all models. We considered the memory GPU as a con-

straint to our experiments, and we picked, for each method

the largest batch size (in multiples of 8) that the model could

fit (Table 1). Although in a theoretical setting we could

have compared all models with the same batch size, we

considered our criterion more useful for practical purposes,

since occupying the GPU memory as much as possible is

the usual procedure. Considering that practical setting, our

criterion is “fair” in the sense that it allows considering a

compromise between larger models vs. larger batches.

All the source code used in this paper, from model tuning

until statistical analyses, is available in our public reposi-

tory1. Our code is easily adaptable to allow new architec-

tures.

1https://github.com/learningtitans/

cvpr-skin-solo-ensemble



Architecture Acc@1 Acc@5 Params

(M)

Batch

Size

Summary

DenseNet [16] A 77.6 93.8 28.7 40 Composed of dense blocks, which concatenate the

output feature map of each layer to all subsequent

layers.

Dual Path Nets [4] B 79.8 94.7 79.3 24 Combines ResNet’s residual paths for feature re-

usage and DenseNet’s dense connections for new

features exploration.

Inception-v4 [28] B 80.2 95.2 55.8 64 Composed of Inception modules, which have par-

allel convolutional layers that learn different cross-

channel and spatial correlations.

Inception-ResNet-v2 [28] B 80.1 94.9 42.7 32 Similar to Inception-v4, but with residual connec-

tions.

MobileNetV2 [27] C 71.8 91.0 3.5 128 Uses depth-wise separable convolutions to produce

an efficient network, suitable for mobile devices.

PNASNet [21] B 82.7 96.0 86.1 8 Designed with modules discovered through Neural

Architecture Search (NAS) (current best accuracy

on ImageNet).

ResNet [14] A 78.4 94.1 60.2 56 Uses residual connections to improve information

flow, allowing networks with more than 100 layers.

SENet [15] B 81.3 95.5 115.1 24 Composed of Squeeze-and-Excitation (SE) blocks,

which capture channel-wise dependencies for con-

volutional features maps.

Xception [5] B 78.9 94.3 22.9 40 Extrapolates Inception modules to depth-wise sep-

arable convolutions, resulting in more efficient pa-

rameter use.

Table 1: CNN architectures used in the experiment. Acc@1 and Acc@5: performances on ImageNet. Params:

number of trainable parameters (in millions). Models and checkpoints sources (superscripts on model names): A)

github.com/pytorch/vision; B) github.com/Cadene/pretrained-models.pytorch; C) github.com/tonylins/pytorch-mobilenet-v2.

3.3. Experimental Design

For the main experiment, evaluating the effects on the

choice of the architecture, we make 3 repeated experiments

(tuning and measurements) for each of the 9 architectures,

on each of the 5 sets of splits. The 3 repeated experiments

allow evaluating the effect of random choices: initialization

of the last layer, dropouts, data augmentation, shuffling of

data on epochs, etc. The main experiment, thus, comprises

3 × 9 × 5 = 135 measurements of several metrics: AUC,

accuracy, sensitivity, and specificity for both the validation

set (at the epoch chosen by the early stopping procedure)

and the test set. We also measure the loss at the validation

at the epoch chosen.

For the analysis of the main experiment, we employ a

correlogram (Figure 1) of the metrics above, adding 7 at-

tributes of the architectures: Top-1 accuracy on ImageNet,

time of publication, number of parameters, and number of

the epoch picked by the early stopping. In order to make

the correlations comparable across the 5 sets of splits, we

perform an adjustment similar to the one used in a repeated

measures/within subjects Analysis of Variance: we subtract

from each metric on a given experiment its average across

all experiments in the same set of splits, and add back its av-

erage across all experiments. We consider the correlations

significant when their confidence intervals do not contain

zero. For the confidence level, we employ a Bonferroni-

adjusted α = 0.05/78, where 78 is the number of pairs of

variables in our correlogram.

For the ensembling experiments, we employ the base

models above. For each of the 5 sets of splits, there are 27

single models. We create the ensembles by ordering those

27 models, choosing a number n between 1 and 27, and

combining the first nth base models into an ensemble. To

simplify the evaluation, we use a very simple, but effec-

tive [29] strategy of average-pooling the output prediction

probabilities for the ensemble.

We contrast two strategies: ordering the base models by

their AUC on the validation set and ordering them at ran-

dom. We replicate the latter 10 times, to evaluate the vari-

ability. In all cases, the measurement performed is the AUC

on the test set. The experiment aims to determine if the



AUC on the validation set is useful to choose the models

for the ensemble.

In order to evaluate the results, we employ two plots: in

one we contrast the ensembles ordered by the validation set

vs. the ensembles ordered at random separately for each of

the five sets of splits. In the other, we gather all five splits in

a single series for each type of ensemble (validation vs. ran-

dom) using a repeated measures/within subjects procedure

like the one explained above.

4. Results

The correlation analyses are in Figure 1, the results on

the topmost correlogram appear to partially confirm the re-

sults of Kornblith et al. Indeed, the first column show pos-

itive significant Spearman’s correlations (ρ) between the

Top-1 ImageNet accuracy with almost all the target measure

metrics: accuracy, AUC, sensitivity, and specificity. How-

ever, a more careful inspection of the data — on the scatter

plots of the first line — raises questions about that conclu-

sion. The positive correlations seem to be due to a single

group of samples having detached from the rest of the data.

In addition, while Kornblith et al. observed very high corre-

lations (ρ > 0.95), the ones we found, although significant,

are modest, to say the least (0.33 < ρ < 0.50). The number

of parameters in the network also show significant modest

correlations with most metrics (0.30 < ρ < 0.44).

The correlogram on the bottom of Figure 1 further con-

tradicts the findings of Kornblith et al. By removing Mo-

bileNetV2 from the analysis, all significant correlations

between ImageNet accuracy and target metrics disappear.

Not even a general tendency appears: half the remaining

(non-significant) correlations are positive, and the other half

negative. The correlations with the number of parameters

also become non-significant, although a general tendency

still remains: the non-significant correlations remain mostly

positive.

On both correlograms, we observe a general positive cor-

relation between the metrics, clearer on the top correlogram

(with MobileNetV2). The exception is specificity, which

not only shows the expected anti-correlation with sensitiv-

ity, but also tends to correlate negatively with most other

metrics. Those tendencies had been already observed by

Valle et al. [29] on the evaluation of two architectures.

The most useful significant result in both correlograms

is the positive correlation between the metrics on the vali-

dation set and on the test set — especially when contrasted

with the non-significant or much smaller correlations be-

tween the validation loss and the metrics. That suggests

that the validation loss might be a poor proxy for any of the

metrics, and that using the actual metric to make decisions

(e.g., on early stopping) might be a better plan.

Two results on the correlograms reinforce the importance

of ensembles for skin lesion classification: first, the impos-

sibility of establishing any definitive criterion to select an

architecture as a definitive choice. Second, the large amount

of variability due to uncontrollable sources (i.e. choice of

the folds and random nuisances).

The results of the experiments on ensembles are on Fig-

ure 2. In the topmost plot, the results are separated for each

set of splits (each represented by a different color) — the

most influential factor in determining the results. For each

set, however, we can see how choosing models ordered by

the validation split tends to produce better ensembles.

The bottom plot marginalizes over the splits for both

types of ensembles, and shows how the ensembles sorted

by validation have a slightly better mean (thick lines) and

smaller variability (shaded area). It is remarkable, however,

how even ensembles of enough models chosen at random

have surprisingly good performance.

In both plots, we can see how variability decreases as

the ensembles incorporate more models. Those estimations,

however, must be interpreted carefully: the variability de-

creases because there is a limited number of available base

models, and thus the ensembles necessarily become more

alike as their number of base models increase — at 27 base

models, all ensembles become the same, and any variability

disappears.

5. Discussion

We were disappointed our results failed to confirm those

found by Kornblith et al. — had we found the same results

as them, we could employ the accuracy on ImageNet as a

safe proxy to choose architectures for skin lesion analysis.

In our results, however, not only no network characteristic

(e.g., number of parameters) correlates well with the target

metrics, but also most networks appear impossible to distin-

guish from one another in an statistical test. Uncontrollable

factors such as the choice of splits on the dataset, and even

random nuisances appear more influential than the choice

of architectures. That analysis however, is only true for a

selection of very high-performance architectures. When we

add a shallower, less complex architecture (MobileNetV2)

to the lot, it appears different than all others — to the point

that just by creating a set of very different measurements, it

can make several of the correlations significant. Our results

certainly do not imply that one can select an architecture

from 2013, and expect 2019-level performances.

It is not obvious why the findings of Kornblith et al. do

not reappear in our study. On one hand, our study has an

important limitation: the size of the dataset. All datasets

employed by them were larger than ours (although one of

them had a training set even smaller than ours). In a follow-

up study, we would like to do our correlations over sev-

eral datasets, including the full ISIC Archive. On the other

hand, their study has also an important limitation: they did

not evaluate several sets of splits for each dataset, neither
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Figure 1: Correlograms of the network attributes and outcome variables. Top correlogram: with MobileNetV2; bottom

correlogram: without it. Acc@1: Top-1 accuracy on ImageNet. On each correlogram, the upper matrix has the scatter

plots and the lower matrix has the Spearman’s ρ correlations (positive in black, negative in red). The area of the circles

also indicates the magnitude of the correlations, the dashed circles indicating the confidence interval for α = 0.05/78 (78 =

Bonferroni correction). For intervals containing zero, we omitted the circles, indicating non-significant correlations.
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Figure 2: Experiments with ensembles of models. Solid lines: models with best validation AUC chosen first. Dashed lines:

models chosen at random (Section 3.3). Thick lines: averages, Shadows: standard deviations, Thin lines: individual runs.

Top: Experiments separated per split (colors). Bottom: Split differences marginalized, and experiments grouped by type of

ensemble. There is a slight advantage in using the validation set to choose the models, but choosing at random also provides

good results.



multiple trainings for each network. We found those uncon-

trolled factors to be the main sources of variability, largely

reducing the correlations. Finally, an important distinction

between both studies, is that they perform extensive tun-

ing of the training hyper-parameters of their models, while

we adopt a standard approach considered “best practice” for

most models. We think those choices do not necessarily re-

flect a limitation of either study, but different aims. Instead

of extensive tuning to a particular skin lesion dataset, we opt

for several attempts, to reflect the variability expected on

real-world scenarios. They, however, are evaluating “clas-

sical” computer vision tasks, where those extensive tunings

are expected to reflect models present in existing literature.

Those results reinforce the importance of ensembles of

diverse architecture as the preferred mechanism to obtain

good models for skin lesion analysis. Our results show that

for small ensembles it is very useful to employ the valida-

tion set to select the best base models, but that for large

ensembles one can possibly get away simply choosing the

models at random.

Although the aim of this paper was not to maximize any

of the measured metrics, the plots on both Figures 1 and 2

help as sanity checks, to verify that our models’ perfor-

mances are not unrealistically low compared to existing art.

The melanoma vs. all AUCs of the single models evalu-

ated was between 84 and 91% (86 and 91% without Mo-

bileNetV2). The first place on the ISIC 2017 Challenge was

87.4% — almost exactly the average value we found for our

ensembles.
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