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Abstract

Our work applies modern machine learning techniques

to melanoma diagnostics. First, we curated a new dataset

of 50 patient cases of cutaneous melanoma in whole slide

images (WSIs). We applied gold standard annotations for

three tissue types (tumour, epidermis, and dermis) which

are important for the prognostic measurements known as

Breslow thickness and Clark level. Then, we devised a

novel multi-stride fully convolutional network (FCN) ar-

chitecture that outperformed other networks trained and

tested using the same data and evaluated on standard met-

rics. Three pathologists measured the Breslow thickness

on the network’s output. Their responses were diagnosti-

cally equivalent to the ground truth measurements, show-

ing that it is possible to overcome the discriminative chal-

lenges of the skin and tumour anatomy for segmentation.

Though more work is required to improve the network’s per-

formance on dermis segmentation, we have shown it is pos-

sible to achieve a level of accuracy required to manually

perform the Breslow thickness measurement.

1. Introduction

Cutaneous melanoma (CM, melanoma) is an aggressive

form of skin cancer originating in melanocytes which are

the cells responsible for the pigmentation of skin, hair and

eyes. Melanoma develops as the result of DNA damage usu-

ally as a consequence of intense exposure to ultraviolet radi-

ation. When a melanocyte suffers sufficient genetic damage

it may begin to grow in an abnormal way and become a

melanocytic tumour [16]. In the earliest stage of develop-

ment the tumour will grow laterally along the outer epider-

mal layer of the skin. At this point the complete surgical

excision of the lesion is possible. However, if left undiag-

nosed the tumour may thicken and infiltrate deeper into the

skin. If the tumour growth invades lymphatic vessels, can-

cer cells may separate the matrix the primary tumour and

travel to regional lymph nodes as metastases in-transit. The

tumour may also invade blood vessels causing cancer cells

to be transported to distant locations resulting in metastatic

cancer [3].

In the United States melanoma is the second most com-

mon cancer in men aged 20-39 and the fifth most common

in men of any age. In women it is the third most common

cancer through ages 20-39 and the sixth most common in

women of all ages [4, 1]. In places such as New Zealand

and Australia, melanoma incidence is reaching epidemic

levels especially in young people [11]. Fortunately, if di-

agnosed early, the five year survival rate is as high as 98%.

If the tumour has spread to regional nodes, five year sur-

vival is reduced to 62% and then to only 18% in the case

of metastatic disease [4]. While melanoma represents 3%

of all skin cancers, it is responsible for 65% of skin cancer

deaths [27]. Clearly the importance of early detection and

accurate diagnosis cannot be overstated.

The gold standard for the diagnosis of melanoma re-

quires full-thickness excisional biopsy of suspected lesions

followed by the histopathologic analysis of hematoxylin

and eosin (H&E) stained tissue sections [12]. Historically,

and to this day this analysis is conducted under a light mi-

croscope for the vast majority of cases. However the recent

availability of slide scanning technology, which is able to

digitize prepared tissue specimens on glass slides into high

resolution files has brought the medical specialty of pathol-

ogy into the midst of a transition towards a digital work-

flow. As a consequence, this move to ’Digital Pathology‘

(DP) has also afforded the computational image analysis

community access to whole slide images (WSI) allowing

the application of modern image processing techniques to

the processing of such specimens [22]. This includes au-

tomated, computer-aided, and other diagnostic tools that

have the ability to augment current clinical workflows in

the hopes of improving patient care and outcomes.

A major component of the diagnostic process is a pattern

recognition task where the pathologist uses visual infor-
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mation combined with deep domain knowledge to identify

complex histologic and cytologic features. In the case of

cancer diagnosis, the variance in slide preparation, nuances

of anatomy relating to qualitative and quantitative criteria of

diagnosis, not to mention variability introduced by different

slide scanners and associated software processing creates

a feature space that is beyond the capacity of most hand-

crafted descriptors/extractors to account for. It has been

shown that deep learning techniques have the potential to

overcome such challenges, but in the case of melanoma di-

agnosis in WSIs which to our knowledge has not been ex-

plored, we will demonstrate that it is possible to accurately

predict segmentation masks for multiple tissue types whose

structures are vastly different in scale, and morphology with

dramatic variations even between tissues of the same type as

is the case in the pathology of the skin (see Figure 1).

Furthermore, in addition to the diagnosis there is also a

list of pertinent features for the prognostication and man-

agement of a given disease. In the case of melanoma,

the most important prognostic factor is the maximum tu-

mour thickness, sometimes referred to as the Breslow thick-

ness. According to the College of American Pathologists

melanoma reporting protocol, considered throughout North

America as the standard for reporting [10]. While we do not

know the segmentation accuracy required for such measure-

ments in prognosis, we will show that it is possible to pro-

duce segmentation masks that are qualitatively, of sufficient

accuracy to perform the Breslow thickness measurement.

2. Related Work

Much of the work in digital pathology involves the detec-

tion/segmentation of cellular structures such as nuclei, mi-

toses, individual cells and in our case epidermis/dermis lay-

ers of the skin. The motivation for identifying these struc-

tures relates to their role in various quantification methods

as part of the diagnosis or staging of disease. Fully Convo-

lutional Networks (FCNs) have excelled in such scenarios

performing feature detection for segmentation in medical

images [33, 24, 19]. Architectures such as UNet [33] and

FCN-16s [21] that use skip connections have improved the

quality of the output segmentations. Techniques such as us-

ing multiple scales [7, 18, 29] incorporate additional train-

ing information. While other approaches such as decon-

volutional networks [26, 6] improve segmentation results

by learning the deconvolutional step used to recover pixel

resolution information lost during convolution and pooling

stages. Our approach incorporates deconvolution at multi-

ple levels of granularity to produce the final segmentation

mask. This results in improved segmentation at course and

fine structures while retaining the efficiency of the FCN net-

work by Long et al.

There has been limited application of these techniques to

melanoma in whole slide images, though in the case of epi-

dermis segmentation there has been some work done using

non-convolutional methods. Xua et al. [31] perform epi-

dermis segmentation using a thresholding, and k-means ap-

proach. The authors extracted features from epidermis and

dermis tiles to classify melanocytic tumours using an SVM

model. Kłeczek et al. [14] developed a shape-based tech-

nique to segment epidermis. They improved the base seg-

mentation by analyzing the H&E stain concentrations on

the slides. They report mean sensitivity at 87%, specificity

at 95%, and precision at 57% on their test dataset for epi-

dermis tissue. We show that using a convolutional network

can provide accurate epidermis segmentation masks.

3. Dataset

We have assembled a dataset that includes 50 whole

slide images (WSIs) containing H&E stained, full-thickness

excisional biopsies from 49 individuals. Source images

were scanned at 40× objective magnification using Ape-

rio ScanScope slide scanners from nine different medical

institutions. Annotations are provided at the equivalent res-

olution to the 40× magnification source images.

The unlabelled source images for the dataset were ob-

tained from the The Cancer Genome Atlas (TCGA). The

images were selected from the over one thousand cutaneous

melanoma slides from the human skin cutaneous melanoma

(HSCM) TCGA sub-project. Due to the wide variation in

slide quality available from the HSCM project we selected

a smaller set of 150 candidate slides that were evaluated

for inclusion in our dataset based on the exclusion of mate-

rial with frozen section artifact (the dataset does not include

any tissues from frozen sections), and exclusion of slides

with extensive tissue folding or other artifacts that made the

histology uninterpretable. From these 150 candidates, 50

WSIs were included in the final dataset based on the slide

containing each of the target tissue types. The dataset was

limited to 50 WSIs due to the time and effort required from

an expert for the annotation step.

The overall dataset is divided into training, validation,

and test sets at a ratio of 70:15:15 percent respectively. This

results in 36 WSIs for training, and 7 WSIs each for val-

idation and testing. The data set was stratified by patient

across each dataset. Due to the data size and gigapixel

resolution of the WSIs, each slide is tiled to create im-

age patches at 512× 512 pixel resolution to facilitate GPU

processing. Patches are non-overlapping palette-based png

files. Each patch required post-processing to ensure the five

colour palette indices were in the same order. Patches that

did not contain tissue matter were discarded from the train-

ing set. In Table 1 we provide basic image and patch statis-

tics for the test set.



Figure 1: A selection of patches to illustrate the variation between structures and staining for each tissue type in our data set.

Table 1: Image details for our WSI test cases.

Case ID Size (MB) Pixel Size # of Patches

A5EO 536.5 15438× 11582 660

A3Z4 1146.1 23086× 16546 1440

A3XE 1098.1 21420× 17087 1353

A2GO 1407.4 24751× 18952 1776

A182 1761.8 27845× 21088 2214

A19H 2276.1 30463× 24903 2832

A8K4 1937.4 29381× 21978 2394

3.1. Annotations

Colour mask, gold standard annotations were applied

over the source images. The annotations were manually

defined using three colors in the RGB colour space repre-

senting three tissue classes. Red (#FF0000) denoting tu-

mour regions, yellow (#FFFF00) denoting the dermis layer,

and green (#00FF00) denoting the epidermis. The overall

annotation also includes two additional colours to indicate

a background class and a “not diagnostically important”

(NDI) class. These are denoted by white (#FFFFFF) and

black (#000000) respectively. The NDI regions include all

tissue areas (including artifacts on the slide e.g. pen mark-

ings) not marked by the pathologist (note that the stratum

corneum is considered NDI). The background class repre-

sents only regions without tissue present.

As most of the selected WSIs contained tumours that

were mass forming, the external edge of the tumour was

outlined. Large areas which were composed of inflam-

matory cells were not marked as tumour; however, if

melanoma cells resided within the inflammatory popula-

tion and could be positively identified, these individual cells

were marked. The fine blood vessels and stroma of the tu-

mour were also included with the tumour, as were tumour

infiltrating lymphocytes within the borders of the tumour.

Necrotic areas, apoptotic cells, and any areas of cystic de-

generation were also marked as tumour. At ulcer sites, only

tumour cells were marked, and areas of fibrinopurulent ex-

udate were not marked as tumour. Where they could be

positively distinguished from mimickers, melanoma cells

within the epidermis (in-situ melanoma) were also marked

but were not actively sought out.

The epidermis was labeled from the basement membrane

to the top of the granular layer (the outer edge of the epi-

dermis). Markedly reactive epidermis and tangentially sec-

tioned epidermis was included. The stratum corneum (the

outermost layer of the skin) was not labelled. As the in-

fundibular portion of the hair follicle derives from the epi-

dermis, this was included in the epidermis labels. In spite

of its morphologic similarity to the epidermis, the remain-

der of the hair follicle was included within the dermis layer

as it represents a dermal structure. This decision requires

further analysis to determine the impact on the prediction

of the included tissue types.

While the dermis was normal in many cases, in others,

scar or alteration by tumour was found. All of these were

eventually included in the definition of the dermal layer.

The lower boundary of the dermal layer was also difficult to

define, as it undulates and merges imperceptibly with the fi-

brous septae of the underlying subcutaneous adipose tissue

and an arbitrary cutoff had to occasionally be employed.

3.2. Data Augmentation

The thirty six patient cases included in the training set

translates to over 62,000 image patches or approximately

16.3 billion total pixels. Based on other similar works using

semantic segmentation [13, 8, 17, 23], this represents a suf-

ficiently large collection of data for experimentation. How-

ever, as is the case with many medical imaging datasets, due

to the natural distribution of the tissue types in our dataset,

there exists a class imbalance between tissue types. Our

initial dataset suffered from two imbalance problems. First,

since WSIs consist of a tissue specimen placed in the cen-



ter of the slide, and due to the background being visible

through the tissue specimen, background pixels are the most

common by far. Background pixels outnumber the second

most common class (tumour) 4:1. Most of these pixels are

in patches that only contain background pixels. Secondly

tumour labelled pixels outnumber epidermis labelled pixels

28:1 (see Figure 2). Initial experiments with the unmodi-

fied data showed a test network would converge with high

accuracy by predicting the tumour class for all tissue types

(severe overfitting). Furthermore, early experiments also

showed there were insufficient pixels labelled in the epi-

dermis class to train the network to recognize such regions

accurately in the face of such a large imbalance.

To address these problems we used a class balancing so-

lution to effectively undersample and oversample the prob-

lematic classes as required:

We undersample by removing patches where back-

ground pixels are most common and make up more than

98% of the target patch. This percentage retains patches

that might contain locally important features. We also re-

move patches where background pixels are most common

and the NDI class is the only other class present.

For the epidermis class, which is the minority class, we

oversample using basic data augmentation transformations

to increase the number of epidermis containing patches with

respect to patches of other classes. We parse the pixels of

each patch containing the annotations and store the list of

patches that meet the following criteria:

• All pixels are epidermis

• Most pixels are background, second most pixels are

epidermis

• Most pixels are background, second most pixels are

NDI, third most pixels are epidermis

• Most pixels are NDI, second most pixels are epidermis

• Most pixels are NDI, second most pixels are NDI, third

most pixels are epidermis

These annotation patches and the corresponding feature

patches are then augmented with the following transforma-

tions: Flip left to right, flip top to bottom, rotate 90◦, rotate

270◦.

The result of the proposed balancing scheme is a gen-

erally balanced dataset with a modest but tractable imbal-

ance remaining between the tumour and epidermis classes.

This imbalance was reduced from 28:1 to 7.75:1 (see Fig-

ure 2). It might seem to make sense to undersample the

tumour class to further reduce the imbalance, though after

experimentation we found that the epidermis was receiv-

ing accurate segmentations compared to pre-balancing tests.

Furthermore the anatomical variance of tumour cells and

regions across patients and even individual slides is signifi-

cantly greater than that of the epidermal cells (see Figure 1

for an illustration of in-class variation). Therefore it was ad-

vantageous to retain as many tumour examples as possible.
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Figure 2: Class distribution by the number of pixels per class fol-

lowing the described data augmentation strategy.

4. Network
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Figure 3: A graphical overview of multiple deconvolutional blocks

linked together. Scores from each deconvolution are combined

using element-wise summation. This configuration represents that

used to train our model. Skip connections shown originate at the

third and fourth pooling layers (left to right) in the standard FCN

network from Long et al. [21].

To perform the segmentation we used a modified version

of the fully convolutional network design by Long et al.

[21]. Using the FCN style network of Long et al., three lev-

els of output granularity can be obtained based on three ar-



chitectural variants in three discrete networks. These three

network configurations range from a single stream with a

32 pixel stride (FCN-32s) to three streams fused into an 8

pixel stride (FCN-8s). In FCN-16s, scores from each stream

are fused in a step-wise fashion so that intermediate scores

from stream 1 and stream 2 are combined and upsampled

using deconvolution, then that result is fused before being

upsampled with a stride of 16 resulting in the final output

score. While Long et al.’s FCN-16s includes information

from multiple streams the final output granularity is fixed.

To incorporate information at multiple levels of prediction

granularity we compute three levels using transposed con-

volution (also known as deconvolution) at three indepen-

dent pixels strides (32, 16, 8). The result is segmentation

information for features of various scales, that in our test-

ing reduces errors compared to using a single level of gran-

ularity to capture features at all scales. For example, us-

ing FCN-8s (most granular) alone results in noisy output

for large contiguous regions of a single class, and FCN-32s

(most coarse) can’t capture fine details in our dataset. To

make use of this information we combine these results us-

ing a weighted, element-wise summation that combines the

output maps. The contribution of each granularity is con-

trolled via per-stride weights as hyper-parameters for our

model (see Figure 3). This approach out-performs the stan-

dard FCN-16s design on this task.

4.1. Transfer learning

We use the PascalVOC segmentation dataset [9] to pre-

train our network. Notwithstanding the significant differ-

ence in domain specific features between the PascalVOC

dataset and our medical images, transfer learning was essen-

tial to improving our training times and results. We made

extensive use of transfer learning to reduce training time and

improve results. We initialized weights for learnable layers

using publicly available models (FCN-32s, FCN-16s, FCN-

8s) and fine-tuned from there. For our multi-stride networks

we initialized weights using multiple pre-trained networks

trained at each requisite stride for the given branch of our

network. Non-matching weights were learned from random

initializations.

4.2. Evaluation Metrics

In order to evaluate the performance of our proposed ar-

chitecture on our curated dataset we have selected a set of

commonly used metrics [30], designed to measure the per-

formance of semantic segmentation inference results. We

compute: Pixel accuracy, Mean Pixel Accuracy (mPA) as:

1

ncl

∑
i nii

ti

Mean Intersection Over Union (mIoU) as:

1

ncl

∑

i

nii

(ti +
∑

j nji − nii)

and Frequency Weighted Intersection Over Union (fwIoU)

as:
1∑
k tk

∑
i tinii

(ti +
∑

j nji − nii)

where ncl represents he number of classes, ti; the total num-

ber of pixels in class i, and nij ; the number of pixels of class

i predicted to belong to class j. So for class i and j: let nii

represent the number of correctly classified pixels (TP) pre-

cision, nij ; the number of pixels wrongly classified (FP),

and nji : The number of pixels wrongly not classified (FN).

Finally, inspired by Zhou et al. [34], we also compute a

‘Final Score’ as the definitive metric for our evaluation as:
mPA+mIoU

2
.

In addition to these metrics we also compute the area

under the receiver operator curve (AUC) [5] for each class,

and we show the confusion matrix for the test set.

5. Results and Discussion

5.1. Model Accuracy

Using the described pipeline we processed each WSI

from our test set. We assembled the inference results into

a whole slide prediction mask and computed metrics to as-

sess the accuracy and the quality of the model. The test

set was selected randomly and represents WSIs from multi-

ple different slide scanners, and associated slide preparation

processes.

Considering the results in Table 2, and Figure 5 we ob-

serve that the model is consistently able to provide a high

quality for the whole slide. The variation in performance

across slides could be explained by the large variability in

the processes that produced the training images obtained

from the TCGA. This could be viewed as a closer repre-

sentation of what one might expect in a real-world envi-

ronment. As such, using the TCGA data could be consid-

ered a strength of this approach, compared to the practice

of preparing a dataset in-house using consistent hardware

and associated physical processes. Increasing the size of

the overall dataset could assist to improve the model in this

regard.

5.2. Tissue Accuracy

Based on per-tissue results summarized in Figure 4 and

Table 3 the model is able to differentiate between tissue

types. There is a strong correspondence between the gold

standard, and the model’s predictions.

In the case of tumour regions the model is able to lo-

calize each structure and find accurate slide level bound-

aries. However, areas around patch boundary regions are



prone to error though this does not affect practical accuracy

for our task, but can lead to error accumulation. Tumour

masses are accurately detected with most false positive re-

gions consisting of small clusters that could be removed in

a post processing step.

The model performs very well on epidermis segmenta-

tion. The model is able to find the contours of rete ridges

of the epidermis (finger-like structures of the epidermis),

and avoid the stratum corneum layer which was not anno-

tated as epidermis Figure 7. The method could function as a

standalone approach for epidermis segmentation as shown

in the work of Xu and Mandal [32] and Kłeczek et al. [14].

For comparison our model has a sensitivity of 90%, speci-

ficity of 98%, and precision of 64% on the task of epidermis

segmentation alone.

In the case of dermis tissue, the model is able to clearly

define the superficial boundary, but the deep boundary is

poorly differentiated. It should be noted that while the epi-

dermis serves as the superficial boundary of the dermis, the

lower (deep) boundary of the dermis is traditionally the adi-

pose tissue. This is challenging to annotate, as the dermal

collagen merges with the fibrous septae of the subcutaneous

adipose tissue resulting in an arbitrary distinction as to the

deep boundary of the dermis. More work is needed to de-

vise a strategy for the annotation of this area in the future

(see Figure 6 for a visualization of where the errors appear

in the dermis).
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Figure 4: The confusion matrix based on the predictive perfor-

mance on the testset. The matrix shows a strong corelation be-

tween the gold standard annotations and the model’s predictions.

The NDI class is omitted from the matrix.

Case ID PA mPA mIoU fwIoU Score Time (s)

BF-A5EO 0.9640 0.6887 0.6454 0.9479 0.6670 48.4411

D9-A3Z4 0.9119 0.5976 0.5516 0.8635 0.5746 105.7572

EB-A3XE 0.9221 0.6165 0.5715 0.8810 0.5940 100.3250

EE-A2GO 0.9148 0.6176 0.5749 0.8844 0.5963 131.6688

EE-A182 0.8724 0.6180 0.5563 0.8598 0.5872 164.6194

ER-A19H 0.8775 0.7056 0.6496 0.8435 0.6776 210.1503

WE-A8K4 0.7742 0.5243 0.4975 0.7638 0.5109 177.4948

Mean: 0.8910 0.6240 0.5781 0.8634 0.6011 134.0652

Table 2: Calculation of our selected standard metrics for inference

results. The results were obtained from the test set consisting of

seven whole slide images of various sizes and class composition.

See subsection 4.2 for a description of the metrics. Time is mea-

sured from the point each patch enters the network until the output

is calculated. The final time is the sum of this measure for all

patches of a given WSI from the test set.

Case ID Epidermis Dermis Tumour Background

BF-A5EO 0.9022 0.7811 0.9698 0.9890

D9-A3Z4 0.9407 0.9188 0.9724 0.9357

EB-A3XE 0.9562 0.9164 0.9798 0.9328

EE-A2GO 0.9702 0.8611 0.9826 0.9599

EE-A182 0.9230 0.7058 0.9138 0.9849

ER-A19H 0.9811 0.8191 0.9639 0.9601

WE-A8K4 0.9234 0.6490 0.7435 0.9838

Table 3: AUC values for each WSI in the testset.

5.3. Breslow Measurement

The primary goal of this work was to provide segmenta-

tions for prognostic tissue structures. To assess the accuracy

of the model’s predictions for this task we a assembled a

panel of four pathologists to measure the Breslow thickness

on the output and the results were diagnostically equiva-

lent. When removing cases where measurements were not

appropriate, inter-rater agreement was 87.5% with a fixed

marginal kappa [28] of 0.5. Following the assessment a

consensus-based assessment resulted in 100.0% agreement

between pathologists that the true breslow thickness for

each slide could be measured using the model’s predictions

when the measurement is performed correctly. This result

supports the claim that the tumour and epidermis segmen-

tation masks are sufficiently accurate to manually measure

the Breslow thickness and thus it would be possible to use

our approach as the basis for machine-based measurement

of the Breslow thickness as part of an automated diagnostic

workflow.

5.4. Network Comparison

To evaluate our network design we compared the re-

sults against the baseline FCN-16, and an FCN conversion

of AlexNet [15]. While these networks no longer repre-

sent the state-of-the-art, they are commonly used in medi-

cal imaging due to their relatively low computation require-

ments and ease of configuration [20, 25]. All networks were



Figure 5: Demonstration of the multi-stride network using four whole slide images from the testset.

Figure 6: Visualization of segmentation errors by pixel. White represents true positive, teal represents false positive and red represents

false negative by respective tissue type. The figure highlights the model’s difficulty finding the boundary between the dermis and deeper

tissues within the skin.

trained and tested using the same datasets, and were ini-

tialized with their respective publicly available pre-trained

weights based on PascalVOC.

Our network showed superior performance to the com-

parators, based on our selected standard metrics (see Ta-

ble 4). The performance improvement derives from the

multi-strided upsampling information that is better able to

capture a mix of both coarse and fine details, even difficult

contextual situations (see Figure 8).

6. Conclusions and Future Work

We have demonstrated a method capable of detecting and

localizing melanoma tumours and epidermis structures im-

portant for the Breslow thickness prognostic measurement

using a custom convolutional neural network on a dataset

that we have curated.

Given the qualitative and quantitative results, we show

that it is possible to overcome the discriminative challenges

of the skin and tumour anatomy for segmentation. Further



Figure 7: Examlple of the model’s segmentation performance

(right) on epidermis tissue. The black spot is an artefact present

on the slide.

Network PA mPA mIoU fwIoU Score Time (s)

AlexNet 0.8904 0.5300 0.4913 0.8495 0.5106 51.3423

FCN-16s 0.8775 0.5513 0.5068 0.8433 0.5291 139.5002

Our Multi-Stride 0.8910 0.6240 0.5781 0.8634 0.6011 134.0652

Table 4: A summary of the network inference results showing the

mean values computed across each of the test slides for each re-

spective network. Bold text represents the best result for each met-

ric. The final time is the sum of this measure for patches from a

given WSI in the test set, and only includes the time to run the for-

ward pass through the network at inference (i.e. not file IO). We

note the inference time is slightly faster for our model. This sug-

gests that our multi-stride fusion network was able to learn a less

complex function (filter) mapping than the FCN-16s network.

Figure 8: Example of segmentation differences from a randomly

selected patch. Note that our network is able to identify the small

dermis (yellow) regions embedded in the epidermis, while the

other networks were unable to correctly segment these areas.

we have shown it is possible to approach a level of accu-

racy required to allow manual measurement of the Bres-

low thickness as a precursor to automation. More work is

required to improve the network’s performance on dermis

segmentation.

6.1. Future work

While we look forward to a direct augmentation of the

human diagnostic process using works similar to that pre-

sented herein, the application to quality assurance and con-

trol (QA/QC) within a pathology laboratory represents a

great opportunity. While the details of QA/QC processes

vary widely between institutions, most quality assurance

schemes utilize either prospective or retrospective review of

past cases for diagnostic discrepancies. This requires both

recognition and investment of medical personnel from med-

ical laboratories to provide the resources required for such

a program.

We foresee a role for this work and those of its kind to act

in a pre-screening or post-screening capacity, potentially to

flag or screen cases for problematic aspects and prioritize or

facilitate for human review. Working with patient cases in a

QA/QC context is a logical application area since there is no

direct connection to diagnosis and treatment, and therefore

no direct impact on patient safety in the case of a failure.

While this work is not sufficiently developed to automate

such aspects of QA/QC we feel this is a likely direction for

this work as a precursor to inclusion in a clinical diagnostic

workflow.
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