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1Centro de Informática (CIn), Universidade Federal de Pernambuco (UFPE), Brazil
2Center for Advanced Methods in Biological Image Analysis (CAMBIA)

California Institute of Technology, USA
1{pdmf, tir}@cin.ufpe.br, 2{fagp, cunha}@caltech.edu

Abstract

We present a new end-to-end network architecture for

facial expression recognition with an attention model. It

focuses attention in the human face and uses a Gaussian

space representation for expression recognition. We de-

vise this architecture based on two fundamental comple-

mentary components: (1) facial image correction and at-

tention and (2) facial expression representation and clas-

sification. The first component uses an encoder-decoder

style network and a convolutional feature extractor that are

pixel-wise multiplied to obtain a feature attention map. The

second component is responsible for obtaining an embed-

ded representation and classification of the facial expres-

sion. We propose a loss function that creates a Gaussian

structure on the representation space. To demonstrate the

proposed method, we create two larger and more compre-

hensive synthetic datasets using the traditional BU3DFE

and CK+ facial datasets. We compared results with the Pre-

ActResNet18 baseline. Our experiments on these datasets

have shown the superiority of our approach in recognizing

facial expressions.

1. Introduction

Human beings are able to express and recognize emo-

tions as a way to communicate an inner state. Facial ex-

pression is the main form to convey this information and its

understanding has transformed the treatment of emotions by

the scientific community. Traditionally, scientists assumed

that people have internal mechanisms comprising a small

set of emotional reactions (e.g. happiness, anger, sadness,

fear, disgust) that are measurable and objective. Under-

standing these mental states from facial and body cues is

a fundamental human trait, and such aptitude is vital in our

daily communications and social interactions. In fields such

as Human-Computer Interaction (HCI), Neuroscience, and

Computer Vision, scientists have conducted extensive re-

search to understand human emotions. Some of these stud-

Figure 1: Example of attention in an image. Facial ex-

pression is recognized on the front face which is separated

from the less prominent components of the image by our ap-

proach. The goal is to jointly train for attention and classifi-

cation where a probability map of the faces are created and

their expressions learned by a dual–branch network. By fo-

cusing attention on the face features, we try to eliminate the

detrimental influence possibly present on the other elements

in the image during the facial expression classification. In

this formulation, we explicitly target learning expressions

solely on learned faces and not on other irrelevant parts of

the image (background).

ies aspire to create computers that can understand and re-

spond to human emotions and to our general behavior, po-

tentially leading to seamless beneficial interactions between

humans and computers [29, 12]. Our work aims to con-

tribute to this effort, more specifically in the area of Facial

Expression Recognition, or FER for short.

Deep Convolutional Neural Networks (CNN) have re-

cently shown excellent performance in a wide variety of

image classification tasks [17, 32, 35, 34]. The careful

design of local to global feature learning with a convolu-

tion, pooling, and layered architecture produces a rich vi-

sual representation, making CNN a powerful tool for facial

expression recognition [18]. Research challenges such as

the Emotion Recognition in the Wild (EmotiW) series1 and

1 https://sites.google.com/view/emotiw2018



Kaggle’s Facial Expression Recognition Challenge2 sug-

gest the growing interest of the community in the use of

deep learning for the solution of this problem.

Recent developments for the facial expression recogni-

tion problem consider processing the entire image regard-

less of the face crop location within the image [42]. Such

developments bring in extraneous artifacts, including noise,

which might be harmful for classification as well as incur

in unnecessary additional computational cost. This is prob-

lematic as the minutiae that characterizes facial expressions

can be affected by elements such as hair, jewelry, and other

environmental objects not defining the actual face and as

part of the image background. Some methods use heuris-

tics to decrease the searching size of the facial regions to

avoid considering objects beyond the face itself. Such ap-

proaches contrast to our understanding of the human visual

perception, which quickly parses the field of view, discards

irrelevant information, and then focus the main processing

on a specific target region of interest – the so called visual

attention mechanism [14, 39]. Our approach tries to mimic

this behavior as it aims to suppress the contribution of sur-

rounding deterrent elements by segmenting the face in the

image and thus concentrating recognition solely on facial

regions. Figure 1 illustrates how the attention mechanism

works in a typical scene.

Attention mechanisms have recently been explored in a

wide variety of contexts [38, 15], often providing new capa-

bilities for known neural networks models [7, 8, 4]. While

they improve efficiency [26] and performance on state-of-

the-art machine learning benchmarks [38], their computa-

tional architecture is much simpler than those comprising

the mechanisms in the human visual cortex [2]. Attention

has also been long studied by neuroscientists [36], who be-

lieve it is crucial for visual perception and cognition [1] as

it is inherently tied to the architecture of the visual cortex

and can affect its information.

Our contributions are summarized as follows: (1) We

propose a CNN-based method using attention to jointly

solve for representation and classification in FER problems;

(2) We introduce a new dual-branch network to extract an

attention map which in turn improves the learning of ker-

nels specific to facial expression; (3) A new loss function

is formulated for obtaining a facial manifold represented as

a Gaussian Mixture Model; and (4) We offer a new syn-

thetic generator to render face expressions which signifi-

cantly augments training data and consequently improves

the overall classification.

2. Related Works

Liu et al. [22] introduced a facial expression recognition

framework using 3DCNN together with deformable action

2https://www.kaggle.com/c/challenges-in-representation-learning-

facial-expression-recognition-challenge

parts constraints to jointly localize facial action parts and

learn part-based representations for expression recognition.

Liu et al. [21] followed by including the pre-trained Caffe

CNN models to extract image-level features.

In 2015, Yu and Zhang [43] achieved state-of-the-art re-

sults in the EmotiW challenge using CNNs. They used an

ensemble of CNNs each with five convolutional layers and

showed that randomly perturbing the input images yielded a

2-3% boost in accuracy. Specifically, they applied transfor-

mations to the input images at training time. At testing time,

their model generated predictions for multiple perturbations

of each test example and voted on the class label to produce

a final answer. They used stochastic pooling [6] rather than

max pooling due to its good performance on limited train-

ing data. Mollahosseini et al. [27] have also obtained state

of the art results with a network consisting of two convo-

lutional layers, max-pooling, and four inception layers, the

latter introduced by GoogLeNet.

Another recent method the De-expression Residue

Learning (DeRL) [40], trains a generative model to cre-

ate a corresponding neutral face image for any input face.

Then, another model is trained to learn the deposition (or

residue) that remains in the intermediate layers of the gen-

erative model for the classification of facial expression.

Zhang et al. [46] proposed an end-to-end learning model

based on Generative Adversarial Network (GAN). The ar-

chitecture incorporates a generator, two discriminators, and

a classifier. The GAN is used for generating multiples vari-

ation of one image, which is used to train a convolutional

neural network.

3. Methodology

In this section, we describe our contributions in design-

ing a new network architecture, in the formulation of the

loss function used for training, and in the method to gener-

ate synthetic data.

3.1. Network architecture

Given a facial expression image I , our objective is to

obtain a good representation and classification of I . The

proposed model, Facial Expression Recognition with Atten-

tion Net (FERAtt), is based on the dual-branch architecture

[9, 19, 28, 48] and consists of four major modules: (i) an

attention module Gatt to extract the attention feature map,

(ii) a feature extraction module Gft to obtain essential fea-

tures from the input image I , (iii) a reconstruction module

Grec to estimate a proper attention image Iatt, and (iv) a

representation module Grep that is responsible for the rep-

resentation and classification of the facial expression image.

An illustration of the proposed model is shown in Figure 2.

Attention module. We use an encoder-decoder style

network, which has been shown to produce good results for

many generative [33, 48] and segmentation tasks [31]. In
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Figure 2: Architecture of FERAtt. Our model consists of four major modules: attention module Gatt, feature extraction

module Gft, reconstruction module Grec, and classification and representation module Grep. The features extracted by Gatt,

Gft and Grec are used to create the attention map Iatt which in turn is fed into Grep to create a representation of the image.

Input images I have 128×128 pixels and are reduced to 32×32 by an Averaging Pooling layer on the reconstruction module.

Classification is thus done on these smaller but richer representations of the original image.

particular, we choose a variation of the fully convolutional

model proposed in [31] for semantic segmentation. Also,

we applied four layers in the coder with skip connections

and dilation of 2x. The decoder layer is initialized with pre-

trained ResNet34 [10] layers. This significantly accelerates

the convergence. The output features of the decoder are

denoted by Gatt, which is used to determine the attention

feature map. This is a probability map that is not the same

as a simple segmentation procedure.

Feature extraction module. Four ResBlocks [20] were

used to extract high-dimensional features for image atten-

tion and to maintain spatial information; no pooling or

strided convolutional layers were used. We denote the ex-

tracted features as Gft – see Figure 3b.

Reconstruction module. The reconstruction layer ad-

justs the attention map to create an enhanced input to the

representation module. This module has two convolutional

layers, a Relu layer, and an Average Pooling layer which,

by design choice, resizes the input image of 128 × 128 to

32 × 32. This reduced size was chosen for the input of

the representation and classification module (PreActivation-

ResNet [11]), the image size number we borrowed from the

literature to facilitate comparisons. We plan to experiment

with other sizes in the future. We denote the feature atten-

tion map as Iatt – see Figure 3d.

Representation and classification module. For the rep-

resentation and classification of facial expressions, we have

chosen a Fully Convolutional Network (FCN) of PreActi-

vateResNet [11]. This architecture has shown excellent re-

sults when applied on classification tasks. The output of the

FCN, vector z, is evaluated in a linear layer to obtain a vec-

tor ẑ ∈ ❘d with the desired dimensions. fΘ : ❘D → ❘
d,

the network function, builds a representation for a sample

(a) Input image I (b) Gft

(c) Gatt (d) Iatt

Figure 3: Generation of attention map Iatt. A 128 × 128
noisy input image (a) is processed by the feature extraction

Gft and attention Gatt modules whose results, shown, re-

spectively, in panels (b) and (c), are combined and then fed

into the reconstruction module Grec. This in turn produces

a clean and focused attention map Iatt, shown on panel (d),

that is classified by the last module Grep of FERAtt. The

Iatt image shown here is before reduction to 32× 32 size.

image x ∈ ❘D, (e.g. D = 128 × 128 pixels) in an em-

bedded space of reduced dimension ❘d (we use d = 64 in

our experiments). Vector ẑ is then evaluated in a regres-

sion layer to estimate the probability p(w|ẑ) for each class

wj , w = [w1, w2, . . . , wc].



3.2. Loss functions

The FERAtt network generates three outputs: a feature

attention map Îatt, a representation vector ẑ, and a classifi-

cation vector ŵ. In our training data, each image I has an

associated binary ground truth mask Imask corresponding

to a face in the image and its expression class vector w. We

train the network by jointly optimizing the sum of attention,

representation, and classification losses:

min
Θ

{Latt(Iatt, I ⊗ Imask) + Lrep(ẑ, w) + Lcls(ŵ, w)}

(1)

where Θ represents the collective parameters that need be

optimized. We use the pixel-wise MSE (Mean Square Er-

ror) loss function for Latt, and for Lcls we use the BCE

(Binary Cross Entropy) loss function. We propose a new

loss function Lrep for the representation, defined below.

3.3. Structured Gaussian Manifold Loss

Let S = {xi|xi ∈ ❘D} be a collection of i.i.d. sam-

ples xi we want to classify into c classes, and let wj rep-

resent the j–th class, for j = 1, . . . , c. The class function

l(x) = argmax p(w|fΘ(x)) returns the class wj of sam-

ple x – maximum a posteriori probability estimate – for

the neural net function fΘ : ❘D → ❘
d drawn indepen-

dently according to probability p(x|wj) for input x. Sup-

pose we separate S in an embedded space such that each set

Cj = {x|x ∈ S, l(x) = wj} contains the samples belong-

ing to class wj . Our goal is to find a Gaussian representation

for each Cj which would allow a clear separation of S in a

reduced space, d ≪ D.

We assume that p(fΘ(x)|wj) has a known parametric

form, and it is therefore determined uniquely by the value

of a parameter vector θj . For example, we might have

p(fΘ(x)|wj) ∼ N(µj ,Σj), where θj = (µj ,Σj), for

N(., .) the normal distribution with mean µj and variance

Σj . To show the dependence of p(fΘ(x)|wj) on θj explic-

itly, we write p(fΘ(x)|wj) as p(fΘ(x)|wj , θj). Our prob-

lem is to use the information provided by the training sam-

ples to obtain a good transformation function fΘ(xj) that

generates embedded spaces with a known distribution asso-

ciated with each category. Then the a posteriori probability

P (wj |fΘ(x)) can be computed from p(fΘ(x)|wj) by the

Bayes’ formula:

P (wj |fΘ(x)) =
p(wj)p(fΘ(x)|wj , θi)

∑c
i p(wi)p(fΘ(x)|wi, θi)

(2)

In this work, we are using the normal density function

for p(x|wj , θj). The objective is to generate embedded sub-

spaces with a defined structure. We use Gaussian structures:

p(fΘ(x)|wj , µj ,Σj) =
1

(2π)n/2|Σj |1/2
exp(−

1

2
XTΣ−1

j X)

(3)

where X = (fΘ(x)− µj). For the case Σj = σ2I , where I

is the identity matrix:

p(x|wj , µj , σj) =
1

√

(2π)nσj

exp(−
||fΘ(x)− µj ||

2

2σ2
j

)

(4)

In a supervised problem, we know the a posteriori prob-

ability P (wj |x) for the input set. From this, we can define

our structured loss function as the mean square error be-

tween the a posteriori probability of the input set and the a

posteriori probability estimated for the embedded space:

Lrep = E
{

||P (wj |fΘ(xi))− P (wj |xi)||
2

2

}

(5)

3.4. Synthetic image generator

A limiting problem of currently available face expres-

sion datasets for supervised learning is the reduced num-

ber of correctly labeled data. We propose a data augmen-

tation strategy to mitigate this problem in the lines of what

has been introduced in [5]. Our image renderer R creates

a synthetic larger dataset using real face datasets by mak-

ing background changes and geometric transformations of

face images. The example in Figure 4 shows a synthetic

image generated pipeline by combining an example face of

the CK+ dataset and a background image.

The generator method is limited to make low-level fea-

tures that represent small variations in the facial expression

space for the classification module. However, it allows cre-

ating a good number of examples to train our end-to-end

system, having a larger contribution to the attention com-

ponent. In the future we plan to include high-level features

using GAN from the generated masks [13].

The renderer R adjusts the illumination of the face im-

age so that it is inserted in the scene more realistically. An

alpha matte step is applied in the construction of the final

composite image of face and background. The luminance

channel of the image face model Iface is adjusted by mul-

tiplying it by the factor Ir
Iface

where Ir is the luminance of

the region that contains the face in the original image.

4. Experiments

We describe here the creation of the dataset used for

training our network and its implementation details. We

discuss two groups of experimental results: (1) Expres-

sion recognition result, to measure the performance of the

method regarding the relevance of the attention module and

the proposed loss function, and (2) Correction result, to an-

alyze the robustness to noise.



(a) (b) (c) (d) (e) (f)

Figure 4: The pipeline of the synthetic image generation. The horizontal alignment of the image (b) is based on the inner

points of the eyes (red points in (a)). The face is obtained as the convex hull of the landmarks set (c) and a random transform

matrix is generated (d). The face image is projected on the background image (e). A face image and a general cropped

background image are combined to generate a composite image (f). By using distinct background images for every face

image, we are able to generate a much larger training data set. We create a large quantity of synthetic new images for every

face of a database: approximately 9,231 synthetic images are generated for each face in the CK+ database, and 5,000 for the

BU-3DFE database. This covers a great variety of possible tones and different backgrounds.

4.1. Datasets

We employ two public facial expression datasets, namely

Extended Cohn-Kanade (CK+) [24] and BU-3DFE [41] to

evaluate our method. we apply in all experiments person-

independent FER scenarios [45]. Subjects in the training

set are completely different from the subjects in the test set,

i.e., the subjects used for training are not used for testing.

The CK+ dataset includes 593 image sequences from 123

subjects. We selected 325 sequences of 118 subjects from

this set, which meet the criteria for one of the seven emo-

tions [24]. The selected 325 sequences consist of 45 Angry,

18 Contempt, 58 Disgust, 25 Fear, 69 Happy, 28 Sadness

and 82 Surprise [24] facial expressions. In the neutral face

expression case, we selected the first frame of the sequence

of 33 random selected subjects. The BU-3DFE dataset is

known to be challenging mainly due to a variety of eth-

nic/racial ancestries and expression intensity [41]. A total

of 600 expressive face images (1 intensity x 6 expressions x

100 subjects) and 100 neutral face expression images, one

for each subject, were used [41].

We employed our renderer R to augment training data

for the neural network. R uses a facial expression dataset

(we use BU-3DFE and CK+, which were segmented to ob-

tain face masks) and a dataset of background images chosen

from the COCO dataset. Figure 5 shows some examples of

images generated by the renderer on the BU-3DFE dataset.

4.2. Implementation and training details

In all experiments, we considered the neural network ar-

chitecture PreActResNet18 for the classification and rep-

resentation processes. We adopted two approaches: (1) a

model with attention and classification, FERAtt+Cls, and

(2) a model with attention, classification, and representa-

tion, FERAtt+Rep+Cls. These models were compared with

the classification results. For representation, the last convo-

lutional layer of PreActResNet is evaluated by a linear layer

Figure 5: Examples from the synthetic BU-3DFE dataset.

Different faces are transformed and combined with ran-

domly selected background images from the COCO dataset.

We then augment images after transformation by chang-

ing brightness and contrast and applying Gaussian blur and

noise.

to generate a vector of selected size. We have opted for 64

dimensions for the representation vector ẑ.

All models were trained on Nvidia GPUs (P100, K80,

Titan XP) using PyTorch3 for 60 epochs for the training set

with 200 examples per mini batch and employing Adam op-

timizer. Face images were rescaled to 32×32 pixels. The

code for the FERAtt is available in a public repository4.

3http://pytorch.org/
4https://github.com/pedrodiamel/ferattention



Synthetic Real

Database Method Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

BU-3DFE

Baseline 69.37 71.48 69.56 70.50 75.22 77.58 75.49 76.52

±2.84 ±1.46 ±2.76 ±2.05 ±4.60 ±3.72 ±4.68 ±4.19

FERAtt+Cls 75.15 77.34 75.45 76.38 80.41 82.30 80.79 81.54

±3.13 ±1.40 ±2.57 ±1.98 ±4.33 ±2.99 ±3.75 ±3.38

FERAtt+Rep+Cls 77.90 79.58 78.05 78.81 82.11 83.72 82.42 83.06

±2.59 ±1.77 ±2.34 ±2.01 ±4.39 ±3.09 ±4.08 ±3.59

CK+

Baseline 77.63 68.42 68.56 68.49 86.67 81.62 80.15 80.87

±2.11 ±2.97 ±1.91 ±2.43 ±3.15 ±7.76 ±9.50 ±8.63

FERAtt+Cls 84.60 74.94 76.30 75.61 85.42 75.65 78.79 77.18

±0.93 ±0.38 ±1.19 ±0.76 ±2.89 ±2.77 ±2.30 ±2.55

FERAtt+Rep+Cls 85.15 74.68 77.45 76.04 90.30 83.64 84.90 84.25

±1.07 ±1.37 ±0.55 ±0.97 ±1.36 ±5.28 ±8.52 ±6.85

Table 1: Classification results for the Synthetic/Real BU-3DFE database (6 expression + neutral) and CK+ database (7

expression classes + neutral). Baseline: PreActResNet18[11], Acc.: Accuracy, Prec.: Precision, Rec.: Recall, F1: F1

measurement. Leave-10-subjects-out cross-validation is used for all experiments.

4.3. Expression recognition results

This set of experiments makes comparisons between a

baseline architecture and the different variants of the pro-

posed architecture. The objective is to evaluate the rele-

vance of the attention module and the proposed loss func-

tion.

Protocol. We used different metrics to evaluate the pro-

posed methods. Accuracy is calculated as the average num-

ber of successes divided by the total number of observations

(in this case each face is considered an observation). Pre-

cision, recall, F1 score, and confusion matrix are also used

in the analysis of the effectiveness of the system. Dems̆ar

[3] recommends the Friedman test followed by the pairwise

Nemenyi test to compare multiple data. The Friedman test

is a nonparametric alternative of the analysis of variance

(ANOVA) test. The null hypothesis of the test H0 stipu-

lates that models are equivalent. Similar to the methods in

[30], Leave-10-subject-out (L-10-SO) cross-validation was

adopted in the evaluation.

Results. Tables 1 shows the mean and standard deviation

for the results obtained on the real and synthetic datasets.

For the BU-3DFE database the Friedman nonparametric

ANOVA test reveals significant differences (p = 0.0498)

between the methods. The Nemenyi post-hoc test was ap-

plied to determine which method present significant differ-

ences. The result for the Nemenyi post-hoc test (two-tailed

test) shows that there are significant differences between the

FERAtt+Cls+Rep and all the others, for a significance level

at α < 0.05.

In the CK+ database case, the Friedman test found sig-

nificant differences between the methods with a level of sig-

nificance of p = 0.0388 for the Synthetic CK+ dataset and

p = 0.0381 for Real CK+ dataset. In this case, we ap-

Methods Accuracy NE

Lopes[23] 72.89 7†
Jampour[16] 78.64 7†
Zhang[47] 80.10 7†
Zhang[46] 80.95 7†
Our 82.11 7†

Table 2: Comparison of the average recognition accu-

racy with state-of-the-art FER methods for the BU-3DFE

database. NE: number of expressions, †: six basic ex-

pressions + neutral class. Leave-10-subjects-out cross-

validation is used for all methods.

plied the Bonferroni-Dunn post-hoc test (one-tailed test) to

strengthen the power of the hypotheses test. For a signifi-

cance level of 0.05, the Bonferroni-Dunn post-hoc test did

not show significant differences between the FERAtt+Cls

and the Baseline for Synthetic CK+ with p = 0.0216.

When considering FERAtt+Rep+Cls and Baseline meth-

ods, it shows significant differences for the Real CK+

dataset with p = 0.0133.

Table 2 and 3 show the comparisons results between

the different FER methods for the BU-3DFE database

[40, 23, 16, 47, 46] and for the CK+ database [25, 44, 40].

Although some results cannot be directly compared due to

different experimental setups, different expression classes

and different preprocessing methods (e.g. face alignment),

it is demonstrated that the proposed method can yield a fea-

sible and promising recognition rate (around 82.11 percent

for the BU-3DFE database and 90.30 for the CK+ database)

with static facial images under person-independent recogni-

tion scenario.

The results shown in Figure 6 present the 64-dimensional



Methods Accuracy∗ NE

IACNN[25] 95.37 7‡

DSAE[44] 95.79 (93.78) 7‡

DeRL[40] 97.30 (96.57) 7‡

Our 97.50 7‡

DSAE[44] 89.84 (86.82) 8†

Our 90.30 8†

Table 3: Comparison of the average recognition accuracy

with state-of-the-art FER methods for the CK+ database.

NE: number of expressions, †: six basic expressions + neu-

tral class and contempt class, ‡: six basic expressions + con-

tempt class (neutral is excluded). ∗: the value in parenthe-

ses is the mean accuracy, which is calculated with the con-

fusion matrix given by the authors. Leave-10-subjects-out

cross-validation is used for all methods.

Figure 6: Barnes-Hut t-SNE visualization [37] of the Gaus-

sian Structured loss for the Real CK+ database. Each color

represents one of the eight emotions including neutral. Ob-

serve the clear separation of classes with a really small

amount of misclassified neutral images. The distance be-

tween classes presented in the figure shows the expected.

For example, happiness and anger are far apart while neu-

tral appears approximately halfway between them.

embedded space using the Barnes-Hut t-SNE visualization

scheme [37] of the Gaussian Structured loss for the Real

CK+ dataset. Errors committed by the network are mostly

due to the neutral class which is intrinsically similar to the

other expressions we analyzed. Surprisingly, we observed

intraclass separations into additional features, such as race,

that were not taken into account when modeling or train-

Query Results

Figure 7: Top-5 images retrieved using FERAtt+Rep+Cls

for the Real CK+ database embedded vectors.

ing the network. Figure 7 shows the top-5 retrieved images

for random actor of the queries on Real CK+ database. We

can see, that some actors are repeated in each query (not

all actors have all expressions image on the database). This

shows that the global features of the face are present in the

obtained representation. It is also observed that these actors

do not always appear in the same positions, which shows

that there are lower level features that determine the simi-

larity degree.

4.4. Robustness to noise

The objective of this set of experiments is to demon-

strate the robustness of our method to the presence of image

noise when compared to the baseline architecture PreAc-

tResNet18.

Protocol. To carry out this experiment, the Base-

line, FERAtt+Class, and FERAtt+Rep+Class models were

trained on the Synthetic CK+ dataset. Each of these mod-

els was readjusted with increasing noise in the training set

(σ ∈ [0.05, 0.30]). We maintained the parameters in the

training for fine-tuning and used the real database CK+, so

that 2000 images were generated for the synthetic dataset

for test.

Results. One of the advantages of the proposed approach

is that we can evaluate the robustness of the method under

different noise levels by visually assessing the changes in

the attention map Iatt. Figure 8 shows the attention maps



(a) σ = 0.10 (b) σ = 0.20 (c) σ = 0.30

Figure 8: Attention maps Iatt under increasing noise levels.

We progressively added higher levels (increasing variance

σ) of zero mean white Gaussian noise to the same image and

tested them using our model. The classification numbers

above show the robustness of the proposed approach under

different noise levels, σ = 0.10, 0.20, 0.30, where the Sur-

prise and all other scores are mostly maintained throughout

all levels, with only a minor change of the Surprise score,

from 0.280 to 0.279, occurring for the highest noise con-

tamination of σ = 0.30.

for an image for white zero mean Gaussian noise levels

σ = [0.01, 0.05, 0.07, 0.09, 0.1, 0.2, 0.3]. We observe that

our network is quite robust to noise for the range of 0.01

to 0.1 and maintains a distribution of homogeneous inten-

sity values. This aspect is beneficial to the subsequent per-

formance of the classification module. Figures 9 and 10

present classification accuracy results of the evaluated mod-

els in the Real CK+ dataset and for 2000 synthetic images.

The proposed method FERAtt+CLs+Rep provides the best

classification in both cases.

5. Conclusions

In this work, we present a new end-to-end neural net-

work architecture with an attention model for facial expres-

sion recognition. We create a generator of synthetic images

which is used for training our models. The results show

that, for these experimental conditions, the attention mod-

ule improves the system classification performance in com-

parison to other methods from the state-of-the-art. The loss

function presented works as a regularization method on the

Figure 9: Classification accuracy after adding incremental

noise on the Real CK+ dataset. Our approach results in

higher accuracy when compared to the baseline, specially

for stronger noise levels. Our representation model clearly

leverages results showing its importance for classification.

Plotted values are the average results for all 325 images in

the database.

Figure 10: Average classification accuracy after adding in-

cremental noise on the Synthetic CK+ dataset. The behavior

of our method in the synthetic data replicates what we have

found for the original Real CK+ database, i.e., our method

is superior to the baseline for all levels of noise. Plotted

average values are for 2,000 synthetic images.

embedded space. For future work, we plan to incorporate

a transformer component in the architecture for automatic

alignment of the face. We want to train the network for ex-

treme condition such as dark light and occlusion.
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