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Abstract

This paper deals with the prediction of the memorability

of a given image. We start by proposing an algorithm that

reaches human-level performance on the LaMem dataset—

the only large scale benchmark for memorability prediction.

The suggested algorithm is based on three observations we

make regarding convolutional neural networks (CNNs) that

affect memorability prediction. Having reached human-

level performance we were humbled, and asked ourselves

whether indeed we have resolved memorability prediction—

and answered this question in the negative. We studied a

few factors and made some recommendations that should

be taken into account when designing the next benchmark.

1. Introduction

Our lives wouldn’t be the same if we were unable to store

visual memories. The vast majority of the population relies

heavily on visuals to identify people, places and objects.

Interestingly, despite different personal experiences, people

tend to remember and forget the same pictures [1, 12]. This

paper deals with the ability of algorithms to assess the mem-

orability of a given image. Good memorability prediction

could be useful for many applications, such as improving

education material, storing for us things we tend to forget,

producing unforgettable ads, or even presenting images in a

way that is easier to consume.

Image memorability is commonly measured as the prob-

ability that an observer will detect a repetition of a pho-

tograph a few minutes after exposition, when presented

amidst a stream of images [1, 12, 13, 14, 2, 8], as illustrated

in Figure 1. According to cognitive psychological studies,

this measurement determines which images left a trace in

our long-term memory [13, 3, 18, 23].

Several methods for memorability prediction have been

proposed over the years [13, 11, 20, 16]. A key observa-

tion is that both the type of scene and the type of objects in

the image are highly related to its memorability [12, 14, 8].

Based on this observation, Khosla et al. [14] collected a

large-scale dataset, called LaMem, and proposed MemNet

for memorability prediction.

In this paper we describe a system that achieves what

seem to be astonishing results—reaching the limit of human

performance on LaMem. Does this mean that image mem-

orability prediction is a solved problem? To answer this

question, we look deeper into the factors that impact hu-

man performance. We discuss some factors that have been

overlooked when building the existing datasets for image

memorability. Our observations may lead to further studies

not only in the design of meaningful datasets and effective

algorithms for memorability prediction, but also in finding

additional factors influencing memorability.

In the first part of the paper (Section 3), we propose a

framework, MemBoost, for predicting image memorabil-

ity, which achieves state-of-the-art results on all existing

datasets. This is done by delving into the relation between

networks for image classification and memorability predic-

tion. Our study gives rise to three main insights on which

we base the design of MemBoost: (i) As object classifica-

tion CNNs improve, so does memorability prediction. (ii)

Scene classification plays a bigger role in memorability pre-

diction than object classification. This resolves conflicting

opinions on the matter. (iii) It suffices to train a regression

layer on top of a CNN, which is designed and trained for

object & scene recognition, to achieve on par results with

those attained by re-training the entire CNN for memora-

bility prediction. This insight contradicts previous observa-

tions.

Since our prediction results are surprising, in the second

part of the paper (Section 4) we re-visit some aspects that

influence human performance in the memory game. Via

empirical analysis we show that changing some of the de-

sign decisions in the data collection could lead to data that

better represents human memorability. The main conclu-

sion from this study is that reaching human performance

on LaMem does not mean that memorability prediction has

been solved. We further provide guidelines for building fu-

ture datasets.

In summary, this paper makes three major contributions.

First, it presents insights that should be the basis for mem-
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Figure 1: Visual Memorability Game. Participants watch for repeats in a long stream of images.

orability prediction algorithms. A couple of these insights

have already been demonstrated for other tasks in computer

vision. Second, the paper suggests a new framework that

achieves state-of-the-art results, reaching the limit of hu-

man performance on LaMem. Third, we put in question

the portrayal of human memorability by the current datasets

and give some recommendations towards the creation of the

next large dataset.

2. Previous Work

We start by describing how the ground-truth data has

been collected. We then review image attributes that have

been studied with regard to memorability.

The memory game. Image memorability is commonly

measured using a memory-game approach, which was orig-

inally proposed by Isola et al. [13]. Briefly, the participants

view a sequence of images, each of which is displayed for a

predefined period of time, with some gap in between image

presentations, as illustrated in Figure 1. The task of the par-

ticipants is to press a button whenever they see an identical

repeat of an image at any time in the sequence [3, 18]. The

participants receive feedback (correct or incorrect) when-

ever they press a key.

Unbeknown to the participants, the sequence of images

is composed of targets and fillers, both are randomly sam-

pled from the dataset. The role of the fillers is two-fold.

First, they provide spacing between the first and the second

repetition of a target. Second, responses on repeated fillers

constitute a vigilance task that allowed us to continuously

check that the participants are attentive to the task [11, 12].

Each target is repeated exactly once and each filler is pre-

sented at most once (vigilance-task fillers are sequenced to

repeat exactly once).

The memorability score assigned to each target image

is the percentage of correct detections by the participants.

Throughout this paper, we refer to the memorability scores

collected through the memory game as ground truth. It is

believed that by randomizing the sequence each participant

sees, the measurements depend only on factors that are in-

trinsic to the image, independent of extrinsic variables, such

as display order, time delay, and local visual context.

Observations. Since our study deals with the relation be-

tween scenes, objects, and memorability, we next provide a

brief review of previous observations regarding which im-

age attributes affect (or do not affect) image memorability.

1. Object category and scene category attributes [12, 13, 8,

11, 16, 15, 4]. A bunch of studies on this topic concluded

that some object categories, such as people, vehicles, and

animals, and some scene categories, such as indoor scenes,

are more memorable than others.

2. Semantic attributes. Scene semantics go beyond just con-

tent and scene category [12, 13, 11]. Features such as spatial

layout or actions are highly correlated with memorability

and are an efficient way of characterizing memorability.

3. Saliency. While Khosla et al. [15] and Celikkale et

al. [5] show a reasonable correlation between memorability

and attention, Mancas et al. [20] show almost no correlation

between the two. Furthermore, Khosla et al. [14] found a

reasonable correlation between fixation duration to memo-

rability. When considering object memorability, rather than

image memorability, Dubey et al. [8] found high correlation

with the number of unique fixation points within the object.

4. Object statistics [12, 13, 11]. The number of objects and

the object area have low correlation with memorability and

are ineffective at predicting memorability.

5. Aesthetics, interestingness, emotion and popularity. Both

image aesthetics and interestingness show no correlation to

memorability [12, 14], while they are correlated with each

other. Popularity is correlated to memorability only for the

most memorable images, but not for others [14]. Negative

emotions, such as anger and fear, tend to be more memo-

rable than those portraying positive ones [14].

6. Colors [12, 13, 11, 17, 9]. Colors have only weak corre-

lation with memorability.

7. What people think is memorable [12]. Asking people

to guess which images are the most memorable in a col-

lection reveals low correlation to the actually memorable

ones. Participants have wrong intuition, erroneously as-



Setup Memorability Prediction Classification

Vary Network LaMem SUN-Mem Figrim SUN Places

ResNet152-ImageNet+XGBoost 0.64 0.64 0.56 - 54.74

VGG16-ImageNet+XGBoost 0.64 0.65 0.56 48.29 55.24

GoogLeNet-ImageNet+XGBoost 0.62 0.63 0.55 43.88 53.63

AlexNet-ImageNet+XGBoost 0.61 0.6 0.51 42.61 53.17

Table 1: Memorability prediction improves with classification. The table shows results of two tasks: image memorability

prediction and image classification. For classification, we show results on two datasets: SUN [25] and Places [27]. The

accuracy is computed for four architectures, all trained on ImageNet. Consistently, as classification accuracy improves, so

does memorability prediction. We adopt the following naming and color-code convention for the setups: Network-Training

dataset+Regression type.

suming that beautiful and interesting images will produce

a lasting memory.

3. MemBoost: A System for Predicting Image

Memorability

Motivated by the strong evidence for the correlation be-

tween scenes, objects and image memorability, we explored

the utility of this correlation for training CNNs. We start our

study with short descriptions of three insights we make on

memorability prediction with CNNs. Then, we propose the

MemBoost algorithm, which is based on these insights, and

provides state-of-the-art results.

Our experimental setup follows that of [14] for a variety

of datasets and for a variety of networks. Briefly, we ran-

domly split the images in each memorability dataset into a

train set and a test set. We performed experiments on three

datasets: LaMem [14], SUN-Mem [13], and Figrim [4]. We

note that LaMem is a relatively large dataset, consisting of

58, 741 images, whereas the other datasets consist of only

2, 222 and 1, 754 images, respectively; see the appendix for

details on these dataset (Table 5). For SUN-Mem and Fi-

grim, splitting was repeated for 25 times, while for LaMem,

we used 5 splits due to its size.

In order to measure the prediction performance, we fol-

low the common practice in the evaluation of memorability

prediction. That is to say, rather than comparing memora-

bility scores directly, we compare ranks as follows. The

images in the test set are ranked both according to their

ground-truth memorability scores and according to the al-

gorithm predictions. The Spearman’s rank correlation (ρ) is

computed between the two rankings.

3.1. Insights

In this section we suggest three insights and explore their

validity, one by one, via thorough experiments.

1. Use a strong base CNN. It has recently become com-

mon knowledge that the stronger your backbone CNN is,

the better results you’d get, even if the base CNN was not

trained for your specific task. In accordance with this, we

compare in Table 1 four architectures: ResNet152 [10],

VGG16 [22], GoogLeNet [24] and AlexNet [19]. All of

them were trained on ImageNet [7] and XGBoost was used

for the regression layer. The table shows that indeed, as

classification networks improve, so do the corresponding

memorability prediction networks. These results are con-

sistent across all three datasets. This implies that it might

be unnecessary to develop special architectures for memo-

rability prediction. Instead, it suffices to update the relevant

layers of the best-performing classification network.

2. Training on scene classification is more important

than training on object classification. Our second in-

sight regards the essence of memorability: What makes an

image memorable, the objects in it or the scene it describes?

Answering this question is not only interesting theoretically,

but it also has very practical implications, since it will en-

able a better selection of the training dataset for memorabil-

ity prediction.

Previous works have found that scene category and ob-

ject presence are, together, highly correlated with the mem-

orability of an image (Spearman rank correlation ρ =

0.43) [13, 11, 15]. In [12] it is claimed that this correlation

is mostly due to the scene category itself, which appears

to summarize much of what makes an image memorable.

However, this observation has not been used for memora-

bility prediction.

We empirically verify this claim and show, in Ta-

ble 2, that CNNs that are trained on datasets of scenes

(Places205 [27]) outperform CNNs that are trained on

datasets of objects (ImageNet [7]). However, the accuracy

is not as good as that obtained when training on both objects

and scenes (Hybrid1205 [27] or Hybrid1365 [26]). This be-

havior is persistent across datasets and networks (results are

shown for both AlexNet and ResNet152).

We note that these datasets do not provide statistics re-

garding the balance between scenes and objects. Section 4



Setup Memorability Prediction

Vary training data LaMem SUN-Mem Figrim

AlexNet-ImageNet+XGBoost 0.61 0.6 0.51

AlexNet-Places205+XGBoost 0.61 0.64 0.55

AlexNet-Hybrid1205+XGBoost 0.64 0.65 0.57

ResNet152-ImageNet+XGBoost 0.64 0.64 0.56

ResNet152-Places365+XGBoost 0.65 0.66 0.56

ResNet152-Hybrid1365+XGBoost 0.67 0.66 0.57

Table 2: Scenes are more important than objects. Mem-

orability was predicted using AlexNet and ResNet152,

trained on objects (ImageNet), on scenes (Places205 &

Places365), or on their combination (Hybrid1205 & Hy-

brid1365). While scenes are more important than objects,

their combination slightly improves the prediction. (The

training datasets’ details are given in the appendix).

discusses the validity of the training datasets. One such

consideration is already clear—the right balance between

objects and scenes should be sought after.

3. Re-training may be unnecessary. This insight re-

gards the training of classification networks with memora-

bility data. Is it really necessary to fine-tune the entire net-

work or is it sufficient to train just the last regression layer?

Answering this question in the affirmative means that we

can achieve good results even when we have neither a lot

of memorability data nor much computational resources for

training. This is important since such data is not widely

available and is difficult to collect, whereas classification

data is more widespread.

Khosla et al. [14] compare two approaches for re-

training a CNN for memorability prediction. The first ap-

proach re-trains only the last regression layer using Support

Vector Regression (SVR). In the second approach, called

MemNet, the entire network is fine-tuned with memorabil-

ity data. They achieve better results with MemNet and con-

clude that fine-tuning the entire CNN is essential.

We reach the opposite conclusion. We show that mod-

ifying only the regression layer can provide comparable

memorability prediction to re-training the entire network.

In particular, we took the same network setup as [14], using

AlexNet trained on Hybrid1205. We eliminated the classifi-

cation layer (top softmax layer) and considered the previous

layer as features. We then replaced the classification layer

by training a regressor model, which is based on boosted

trees (using XGBoost library [6]) and maps the features to

memorability scores.

As can be seen in Table 3, fine-tuning only the regression

layer with XGBoost is a good idea. In particular, on the

large-scale LaMem, training just the regression layer yields

the same accuracy as MemNet (0.64 in both cases). On the

Training approach LaMem SUN Figrim

Human consistency 0.68 0.75 0.74

[14] AlexNet-Hybrid1205+SVR 0.61 0.63 -

[MemNet] AlexNet-Hybrid1205+Tune 0.64 0.53 -

Ours AlexNet-Hybrid1205+XGBoost 0.64 0.65 0.57

Table 3: Fine-tuning may be unnecessary. Modifying

only the regression layer provides comparable memorabil-

ity prediction to re-training the entire network. The setup

used by [14] is utilized.

smaller dataset SUN-Mem, training just the regression layer

even gives better results than re-training the entire network

(0.65 in comparison to 0.53).

3.2. The MemBoost algorithm

Our next step is to utilize the observations from Sec-

tion 3.1 to design a novel algorithm, called MemBoost.

As suggested by insight (1), we select ResNet152 as our

base network. We follow insight (2) and use a version

named ResNet152-Hybrid1365 that was trained both on

an object dataset (ImageNet [21]) and on a scene dataset

(Places365 [26]). Last, in sync with insight (3), we mod-

ify only the regression layer, using XGBoost [6], to map

deep features to memorability scores. Figure 2 illustrates

the pipeline of our approach for acquiring state-of-the-art

memorability prediction.

Figure 2: The MemBoost pipeline. Deep features are

extracted from pool5 layer of ResNet152, trained on Hy-

brid1365 dataset. A boosted-trees regression model is

trained using these features to predict image memorability.

Table 4 summarizes our results. The top row of the ta-

ble presents the memorability consistency across different

groups of human observers. This serves as an upper bound.

The next two rows show the previous best results, obtained

by the two approaches of Khosla et al. [14]. The bottom-

most row of the table shows the results of our MemBoost,

which closes the gap with human prediction results on the

LaMem dataset. MemBoost provides a significant improve-

ment over MemNet on both LaMem and SUN-Mem ([14]



Approach LaMem SUN-Mem Figrim

Human consistency 0.68 0.75 0.74

[14]
AlexNet-Hybrid1205+SVR 0.61 0.63 -

[MemNet] AlexNet-Hybrid1205+Fine-tune 0.64 0.53 -

Our [MemBoost] ResNet152-Hybrid1365+XGBoost 0.67 0.66 0.57

Table 4: Memorability prediction results. The table compares our MemBoost algorithm results with those of [14]. It shows

that our insights lead to state-of-the-art memorability prediction on all three datasets.

(a) (b)

Figure 3: MemBoost vs. MemNet. (a) Each point repre-

sents an image. The Y-axis shows memorability scores and

the X-axis shows the difference in prediction error between

MemBoost and MemNet. MemBoost is better when this

difference is positive (right of the red line that represents

equal-error). The distribution is not symmetric and shows

that in the [0.6,0.8] range, i.e., when the images are not

highly memorable or highly forgettable, MemBoost is more

accurate. (b) Histograms of the number of images where

MemBoost is more accurate vs. the number of images

where MemNet is more accurate, as a function of the mem-

orability score. It is evident that MemBoost is preferable

in the mid-memorability range, while MemNet is more ac-

curate for highly memorable images. Overall, MemBoost’s

results outperform those of MemNet.

did not test on Figrim and we failed to reproduce their train-

ing).

Result analysis. Figure 3 sheds light on where our predic-

tions are more accurate than those of MemNet. Every point

in the graph in Figure 3(a) corresponds to an image. The Y-

axis shows the memorability score of the image. The X-axis

shows the difference between MemBoost prediction error

and MemNet’s. When MemBoost outperforms MemNet,

this difference is positive and vice versa. A symmetric dis-

tribution of points around the equal-error line (X=0) would

mean both methods have similar distributions of errors. As

can be seen, on LaMem the distribution looks more like a

Pac-Man, with its mouth at medium memorability scores

(0.6-0.8). In Figure 3(b) a different view of the same be-

havior is given. This stands to show that when the images

GT: (0.63;1583) (0.70;3150) (0.79;5871)

MemNet: (0.84;7623) (0.86;8587) (0.65;1393)

MemBoost: (0.72;2967) (0.75;4295) (0.78;5899)

GT: (0.65;2082) (0.80;6139) (0.74;4332)

MemNet: (0.88;9068) (0.63;947) (0.89;9330)

MemBoost: (0.75;4515) (0.77;5195) (0.77;5174)

Figure 4: Qualitative results of images with medium

memorability scores. The memorability scores of these

images are probably due to memorable objects and forget-

table scenes (skiers, cats, baby, chain) or forgettable objects

and memorable scenes (window, elephant, bathroom). Our

algorithm, which combines objects and scenes, manages to

do better than its competitors. For each image we present

two values: its memorability score and its rank within the

10,000 images of Test 1 set of LaMem.

are not highly memorable or highly forgettable, our algo-

rithm wins. We believe that this is so since such images

are more challenging as the scenes/objects are less recog-

nizable. A more powerful prediction algorithm is hence es-

sential in these cases.

To complement our argument, we present in Fig-

ures 4 & 5 several example images and their corresponding

scores. Figure 4 shows images that have medium memora-

bility scores, where MemBoost outperforms MemNet. The

common content of these images is having either memo-

rable objects within forgettable scenes or forgettable objects

within memorable scenes.



GT: (0.93;9511) (0.93;9547) (0.90;8884) (0.93;9405)

MemNet: (0.65;1357) (0.72;2979) (0.68;1862) (0.74;3689)

MemBoost: (0.83;8118) (0.86;9070) (0.82;7648) (0.86;9105)

GT: (0.89;8753) (0.92;9302) (0.84;7397) (0.85;7607)

MemNet: (0.73;3174) (0.76;4110) (0.63;948) (0.64;1196)

MemBoost: (0.84;8469) (0.87;9229) (0.79;6065) (0.79;6305)

Figure 5: Qualitative results of images for which MemBoost outperforms MemNet by the largest margin. These images

contain common objects in distinct scenes, for which MemNet failed to predict memorability accurately.

This observation is reinforced in Figure 5, which shows

the images for which we got the largest gap in prediction

accuracy between MemBoost and MemNet. Interestingly,

these images are all highly memorable, as evident from their

memorability scores. They all show common objects, but

in unique scenes—text on a cake, hands coming out of a

window, extreme repetition of objects, etc. Our algorithm,

which combines scenes and objects, manages to predict that

these are unique combinations, and hence memorable.

4. On the Validity of Current Memorability

Scores

Recall that the upper bound on LaMem is the mean rank

correlation between the memorability scores corresponding

to different groups of people. As our solution reached this

upper bound, we ask ourselves whether the memorability

scores, obtained through the Memory Game described in

Section 2, form a sufficient representation. We explore three

key questions and answer them via experiments:

1. Does the number of observers per image suffice as a

representative sample?

2. How consistent are the scores across observers?

Should the mean score be utilized by itself, or should

the variance be considered as well?

3. Should the order in which the images are displayed be

taken into account?

1. What is a sufficient sample set size? Recall that the

memory game takes as scores the mean memorability over

multiple participants. A key question then is ‘how many

participants should attend the game for the mean scores to

be meaningful?’

Isole et al. [13] show that as the number of participants

increases, the mean scores become more stable. To prove

stability they show that averaging memorability scores over

groups of 40 participants yields Spearman rank correlation

of ρ = 0.75 between different groups (on the SUN Memo-

rability dataset). Similarly, Khosla et al. [14] measure rank

correlation of ρ = 0.68 on the Lamem dataset, and Bylin-

skii et al. [4] measure rank correlation of ρ = 0.74 on the

Figrim dataset.

One problem with these results is that they ignore the

standard deviation of the correlation when computed over

different splits into groups. That is, how stable are the

rank correlations between groups? As it turns out, [4] re-

port quite a large variability across splits, i.e., σ = 0.2 on

Figrim [4]. This raises questions regarding the use of mem-

orability scores for prediction, since falling within the vari-

ance should be considered as success.

We therefore aim at studying the best group size needed

for consistent image memorability scores. To do it, we re-

peated the Memory Game, as described in Section 2, us-

ing target and filler images randomly selected from Figrim.

We evaluate human consistency across different group sizes

as follows. We measured memorability for 45 target im-



ages, each scored by 275 participants on average. The

participants were split into two equal-size groups and the

mean score per image was computed for each group. We

then computed the Spearmans rank correlation between the

scores of the two groups. This was done for 100 random

splits into groups. We then computed both the mean and

the variance of the correlation scores over all splits.

Figure 6 shows our results. For groups of 40 partici-

pants, the consistency is ρ = 0.74 with standard deviation

of σ = 0.12 (compared to 0.74, 0.2 respectively, reported

in [4]). For groups of 100 participants, the consistency sig-

nificantly increases to 0.86 (σ = 0.07), while for groups

of 135 participants, it only slightly increases further to 0.88

(σ = 0.05).

Figure 6: Memorability consistency across groups of

participans. Using groups of 100 participants is a good

compromise between the accuracy of human consistency

and the complexity of collecting the data.

We conclude that assigning memorability scores should

be performed by averaging over groups bigger than 40 par-

ticipants. Since collecting memorability measurements for

large numbers of participants requires a great deal of work,

we recommend using 100 observers, which seems like a

good compromise between the consistency and the com-

plexity of collecting the data.

2. How consistent are the scores? Should the variance

be considered? Having noted that the scores consistency

varies, we further ask ourselves whether the mean scores,

which are used by the existing datasets, have the same

meaning for all images. That is, we question whether rep-

resenting an image by its mean memorability score suffices,

as maybe the variance per image should also be considered.

To answer this, we measured the variance of the memo-

rability scores given by different groups of people, per im-

age. This was done for 45 images and for group sizes be-

tween 40 and 130. Figure 7 shows our results. Every point

in the graph represents a different image. The main conclu-

sion from this graph is that the variance is not fixed. Some

images are highly memorable by most people, while others

are memorable by some and not so much by others. This

suggests that one may want to represent image memorabil-

ity using two numbers, the mean memorability score and

the variance of the scores.

However, a second conclusion from Figure 7, is that the

larger the number of participants, the smaller the variance

across groups. Therefore, if the number of observers is suf-

ficiently large, it may suffice to maintain a single number—

the memorability score—which is the common practice.

This supports our previous claim that a larger number of

observers per image could lead to more stable scores, with

higher consistency.

Figure 7: Memorability variance varies across images.

Some images are highly memorable by all, while for other

images there is high variance. The variance decreases when

computing scores over larger participant group size.

3. Should the order in which the images are displayed be

taken into account? In real life, images are always dis-

played in some context; for example, when looking at the

newspaper or walking in a museum, the images intention-

ally appear in a certain order. In the street, the order of im-

ages is not intentional, but it definitely influences the scenes

and objects we will remember or forget. Image memora-

bility, however, is commonly measured across random se-

quences of images in order to isolate extrinsic effects such

as the order of viewing. Is that the right practice? Should

an image be assigned a single memorability score?

To assess the effect of image order on memorability, we

designed a new version of the “Memory Game”, in which

the only difference from the original memory game is that

rather than randomly creating image sequences, we used

fixed sets of sequences. For a fixed set of target and filler

images (120 altogether, randomly chosen from Figrim), we

created 5 orders.



Figure 8: Display order affects image memorability. This figure shows the target images from two different orders of

the same set of images (target and fillers), along with their memorability scores (Mem) and the standard deviation (SD).

Depending on the context, the memorability score can dramatically change, e.g., the kitchen. Conversely, the lighthouse,

which is unique in both sequences, gets the same memorability score.

We measured the correlation between different groups of

observers. When shown sets of different order, the correla-

tion was low ρ = 0.4, σ = 0.2, while when shown sets

of the the same order, the correlation was high ρ = 0.7,

σ = 0.1. An example of why this happens is displayed in

Figure 8. Take for instance, the kitchen scene. When pre-

sented after different scenes (top), its memorability score

is 0.66, however, when presented after a sequence of bed-

rooms (bottom), its memorability score jumped to 0.98.

This suggests that the order of images in the sequence

should not be overlooked. The current practice of taking

random orders and averaging might alleviates the influence

of this extrinsic effect, but it does not consider it fully. In

fact, it averages sequences where the image is memorable

with sequences where it is not, making the mean scores an

inaccurate representation. We conclude that a single score

per image is not a sufficient representation.

5. Conclusion

This paper has studied the relation between convolu-

tional neural networks for image classification and memo-

rability prediction. It introduced MemBoost, a network that

reaches the limit of human performance on the largest ex-

isting dataset for image memorability, LaMem.

MemBoost is based on three key observations: (i) As

object classification CNNs improve, so does image mem-

orability prediction. (ii) Scene classification plays a bigger

role in memorability prediction than object classification,

but their combination is preferable. (iii) It suffices to train a

regression layer on top of a CNN for object & scene recog-

nition to achieve on par results with those attained by re-

training the entire CNN. These observations were examined

one-by-one via extensive experiments and were thoroughly

analyzed.

Since our network already achieves human performance

on LaMem, the next stage in memorability prediction is to

produce a larger, more challenging dataset. When doing so,

various factors should be re-considered. We provide some

guidelines for designing the next-generation memorability

dataset. These guidelines regard the number of observers,

the validity of maintaining one score per image, and the

need to re-think the order of images. In the future, more

factors may be studied.
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A. Dataset details

Tables 5-6 provide the details on the datasets used

throughout the paper.

Memorability Datasets

Properties LaMem [14] SUN-Mem [13] Figrim [4]

Data type Objects & scenes 397 Scenes 21 scenes

# Images 58,741 2,222 1,754

Mean memorability 75.6±12.4 67.5±13.6 66±13.9

Human consistency 0.68 0.75 0.74

Table 5: Memorability datasets. The memorability scores

are the mean and standard deviation over the entire dataset.

The consistency values are the average of the Spearman

Rank Correlation between different groups of observers.

Training Datasets Data type

ImageNet [7] 1000 objects

Places205 [27] 205 scenes

Places365 [26] 365 scenes

Hybrid1205 [27] 1000 objects + 205 scenes

Hybrid1365 [26] 1000 objects + 365 scenes

Table 6: Training datasets of images of objects, of scenes

and of both. We note that Hybrid1205(365) contains Ima-

geNet and Places205(365).
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