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1. Introduction

Semantic segmentation of images [11, 3] and sound

source separation in audio [8, 4, 1] are two important and

popular tasks in the computer vision and computational au-

dition communities. Traditional approaches have relied on

large, labeled datasets, but recent work has leveraged the

natural correspondence between vision and sound to apply

supervised learning without explicit labels. In this paper, we

develop a neural network model for visual object segmen-

tation and sound source separation that learns from natural

videos through self-supervision. The model is an extension

of recently proposed work that maps image pixels to sounds

[9]. This paper is a workshop edit of Rouditchenko et al.

2019 [5].

In the Mix-and-Separate framework proposed in [9],

neural networks are trained on videos through self-

supervision to perform image segmentation and sound

source separation. However, following training, the model

could only be applied to videos with synchronized audio,

limiting their use in real applications where synchronized

data are not available. Here we seek to enable a system that

can perform segmentation and separation tasks using test

input containing only video frames or sound mixtures. We

introduce a learning approach that disentangles concepts

learned by neural networks, enabling independent inference

of images and audio mixtures without needing to combine

visual and auditory features.

We evaluate performance on image-only and audio-only

tasks, which was not possible using the previous model.

Furthermore, we substantially extend the scale of previous

work [9] by training on a video dataset of naturally occur-

ring audio-visual events with 28 event categories and over

4000 videos [6]. The results show that we can achieve

promising semantic segmentation and source source sepa-

ration performance.

2. Self-Supervised Cross-Modal Training

Our approach adopts the Mix-and-Separate framework

used in [9], which first generates a synthetic sound separa-

tion training set by mixing the audio signals from two differ-
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Figure 1. Joint audio-visual training and independent image and

audio inference. After our neural networks are trained jointly

on images and sounds from videos using our proposed learning

method, they can be used independently for image-only semantic

segmentation and audio-only source separation.

ent videos, and then trains a neural network to separate the

audio mixture conditioned on the visual input correspond-

ing to one of the audio signals. As shown in Fig. 2, the

framework we use consists of three components: an im-

age analysis network, an audio analysis network, and an

audio synthesizer network. The learning method is self-

supervised because the neural networks do not require la-

belled data for training.

2.1. Disentangling Internal Representations

We designed a learning schedule with the sigmoid and

softmax activation functions to disentangle the learned in-

ternal representations before the audio synthesizer network

combines audio and visual features. Our technique anneals

the temperature parameter in the softmax activation func-

tion in order to push output activations towards one-hot vec-

tors. As the temperature parameter T in the softmax acti-

vation function changes from high to low, the shape of the

output distribution changes from uniform to one-hot:

yk =
exp(φk

T
)

∑n

i=1
exp(φi

T
)
, (1)

where yk is the value of the kth visual feature channel after

activation, T is the temperature, and φi is the value of the

ith visual feature channel before activation.

The model is initially trained using a sigmoid activation

on the visual feature vector φ, which leads to diverse activa-
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Figure 2. Joint audio-visual training and independent image and audio inference. After training on synthetic mixtures of videos, the image

analysis network performs image-only segmentation and the audio analysis network performs audio-only source separation.

tions and helps with convergence to an initial solution. The

sigmoid activation is then replaced with the softmax acti-

vation, and the temperature is gradually decreased, pushing

the visual feature vector toward a one-hot vector, and caus-

ing the visual and audio feature representations to become

sparse and disentangled.

2.2. Category to Channel Assignment

After training the networks without labels, we then use

the video labels in the dataset to match categories to net-

work feature channels. We use a matching algorithm [2]

which assigns each dataset category to a network feature

channel according to how strongly the visual feature vector

is activated. For example, the dataset category, “cars,” could

correspond to the first network channel, “male speech” to

the second network channel, and so forth.

The assignment of input categories to network feature

channels allows independent image and audio processing

without needing the audio-synthesizer network to combine

the features. For object segmentation, the last spatial max

pooling layer of the image analysis network is removed

to preserve activation feature maps. Given an input video

frame, the activation map in the channel assigned to the

video’s category is selected, upsampled to the input size,

and thresholded to obtain a predicted segmentation. Given

an audio mixture, the audio analysis network outputs spec-

trogram features. The channels assigned to the two source

video categories are selected, and used as spectrogram

masks to recover each respective source.

3. Experimental Results

The learning schedule was implemented with two stages:

a training stage with a fixed sigmoid activation function

and a fine-tuning stage with a softmax activation function

and varying schedules for the temperature parameter. The

custom schedules varied the initial temperature, the decay

Model Name Learning Schedule Performance

Temp. Decay Epochs SDR SIR IOU

Sigmoid Only - - - 0.865 6.04 0.204

Softmax Only 1.0 0.3 10, 20 0.172 3.37 0.207

Schedule A 10.0 0.5 4, 8, 12, 16 -0.536 4.52 0.112

Schedule B 1.5 0.75 4, 8, 12, 16 0.341 6.23 0.152

Schedule C 1.0 0.3 4, 8 0.716 6.21 0.232

Schedule D 1.0 0.3 3, 6, 9, 12 -1.88 2.82 0.205

Schedule E 1.0 0.5 5, 10, 15 1.03 6.37 0.225

NMF [8] - - - 0.196 3.94 -

CAM [10] - - - - - 0.190

Table 1. Sound Separation (SDR, SIR) and semantic segmentation

(IoU) performance.

rate, and the epochs at which the temperature was decayed,

which proved to be important.

In Table 1, we show the performance of the proposed

model (“Schedule”) with several different schedule settings

for the softmax fine-tuning stage, as well as of the baseline

models. The sigmoid training stage is identical for A−E of

our proposed model. The sound source separation metrics

are the Signal to Distortion Ratio (SDR) and the Signal to

Interference Ratio (SIR) [7], and the semantic segmentation

metric is Intersection over Union (IoU). The best sound sep-

aration performance was achieved by our proposed model,

“Schedule E,” and the best segmentation performance was

achieved by our proposed model, “Schedule C,” although

“Schedule E” performed nearly as well. Qualitative results

are shown in Fig. 1. Qualitatively, the model succeeds in

separating the sound from different sources to a large ex-

tent, which is visible in the source spectrogram recovery.

Despite the low resolution of the activation maps, the lo-

cations of the predicted segmentations were fairly accurate.

Our model is also more interpretable than the baseline mod-

els because it is sparsely activated. Overall, we achieve

promising results.
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[7] Emmanuel Vincent, Rémi Gribonval, and Cédric

Févotte. Performance measurement in blind au-

dio source separation. IEEE transactions on audio,

speech, and language processing, 14(4):1462–1469,

2006.

[8] Tuomas Virtanen. Monaural sound source separa-

tion by nonnegative matrix factorization with tempo-

ral continuity and sparseness criteria. IEEE trans-

actions on audio, speech, and language processing,

15(3):1066–1074, 2007.

[9] Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl

Vondrick, Josh McDermott, and Antonio Torralba.

The sound of pixels. In The European Conference on

Computer Vision (ECCV), September 2018.

[10] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude

Oliva, and Antonio Torralba. Learning deep features

for discriminative localization. In Proc. CVPR, 2016.

[11] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler,

Adela Barriuso, and Antonio Torralba. Scene parsing

through ADE20K dataset. In Proc. CVPR, 2017.

3


