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1. Introduction

Semantic segmentation of images [11, 3] and sound
source separation in audio [8, 4, 1] are two important and
popular tasks in the computer vision and computational au-
dition communities. Traditional approaches have relied on
large, labeled datasets, but recent work has leveraged the
natural correspondence between vision and sound to apply
supervised learning without explicit labels. In this paper, we
develop a neural network model for visual object segmen-
tation and sound source separation that learns from natural
videos through self-supervision. The model is an extension
of recently proposed work that maps image pixels to sounds
[9]. This paper is a workshop edit of Rouditchenko et al.
2019 [5].

In the Mix-and-Separate framework proposed in [9],
neural networks are trained on videos through self-
supervision to perform image segmentation and sound
source separation. However, following training, the model
could only be applied to videos with synchronized audio,
limiting their use in real applications where synchronized
data are not available. Here we seek to enable a system that
can perform segmentation and separation tasks using test
input containing only video frames or sound mixtures. We
introduce a learning approach that disentangles concepts
learned by neural networks, enabling independent inference
of images and audio mixtures without needing to combine
visual and auditory features.

We evaluate performance on image-only and audio-only
tasks, which was not possible using the previous model.
Furthermore, we substantially extend the scale of previous
work [9] by training on a video dataset of naturally occur-
ring audio-visual events with 28 event categories and over
4000 videos [6]. The results show that we can achieve
promising semantic segmentation and source source sepa-
ration performance.

2. Self-Supervised Cross-Modal Training

Our approach adopts the Mix-and-Separate framework
used in [9], which first generates a synthetic sound separa-
tion training set by mixing the audio signals from two differ-
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Figure 1. Joint audio-visual training and independent image and
audio inference. After our neural networks are trained jointly
on images and sounds from videos using our proposed learning
method, they can be used independently for image-only semantic
segmentation and audio-only source separation.

ent videos, and then trains a neural network to separate the
audio mixture conditioned on the visual input correspond-
ing to one of the audio signals. As shown in Fig. 2, the
framework we use consists of three components: an im-
age analysis network, an audio analysis network, and an
audio synthesizer network. The learning method is self-
supervised because the neural networks do not require la-
belled data for training.

2.1. Disentangling Internal Representations

We designed a learning schedule with the sigmoid and
softmax activation functions to disentangle the learned in-
ternal representations before the audio synthesizer network
combines audio and visual features. Our technique anneals
the temperature parameter in the softmax activation func-
tion in order to push output activations towards one-hot vec-
tors. As the temperature parameter 7" in the softmax acti-
vation function changes from high to low, the shape of the
output distribution changes from uniform to one-hot:
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where yy, is the value of the k;;, visual feature channel after
activation, T is the temperature, and ¢; is the value of the
1;p, visual feature channel before activation.

The model is initially trained using a sigmoid activation
on the visual feature vector ¢, which leads to diverse activa-
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Figure 2. Joint audio-visual training and independent image and audio inference. After training on synthetic mixtures of videos, the image
analysis network performs image-only segmentation and the audio analysis network performs audio-only source separation.

tions and helps with convergence to an initial solution. The
sigmoid activation is then replaced with the softmax acti-
vation, and the temperature is gradually decreased, pushing
the visual feature vector toward a one-hot vector, and caus-
ing the visual and audio feature representations to become
sparse and disentangled.

2.2, Category to Channel Assignment

After training the networks without labels, we then use
the video labels in the dataset to match categories to net-
work feature channels. We use a matching algorithm [2]
which assigns each dataset category to a network feature
channel according to how strongly the visual feature vector
is activated. For example, the dataset category, “cars,” could
correspond to the first network channel, “male speech” to
the second network channel, and so forth.

The assignment of input categories to network feature
channels allows independent image and audio processing
without needing the audio-synthesizer network to combine
the features. For object segmentation, the last spatial max
pooling layer of the image analysis network is removed
to preserve activation feature maps. Given an input video
frame, the activation map in the channel assigned to the
video’s category is selected, upsampled to the input size,
and thresholded to obtain a predicted segmentation. Given
an audio mixture, the audio analysis network outputs spec-
trogram features. The channels assigned to the two source
video categories are selected, and used as spectrogram
masks to recover each respective source.

3. Experimental Results

The learning schedule was implemented with two stages:
a training stage with a fixed sigmoid activation function
and a fine-tuning stage with a softmax activation function
and varying schedules for the temperature parameter. The
custom schedules varied the initial temperature, the decay

Model Name Learning Schedule Performance
Temp. Decay Epochs | SDR SIR IOU
Sigmoid Only - - - 0.865 6.04 0.204
Softmax Only 1.0 0.3 10, 20 0.172 3.37 0.207
Schedule A 10.0 0.5 4,8,12,16(-0.536 4.52 0.112
Schedule B 1.5 075 4,8,12,16| 0.341 6.23 0.152
Schedule C 1.0 0.3 4,8 0.716 6.21 0.232
Schedule D 1.0 03 3,6,9,12 | -1.88 2.82 0.205
Schedule E 1.0 0.5 5,10,15 | 1.03 6.37 0.225

NMF [8] - - - 0.196 394 -
CAM [10] - - - - - 0.190

Table 1. Sound Separation (SDR, SIR) and semantic segmentation
(IoU) performance.

rate, and the epochs at which the temperature was decayed,
which proved to be important.

In Table 1, we show the performance of the proposed
model (“Schedule”) with several different schedule settings
for the softmax fine-tuning stage, as well as of the baseline
models. The sigmoid training stage is identical for A — E of
our proposed model. The sound source separation metrics
are the Signal to Distortion Ratio (SDR) and the Signal to
Interference Ratio (SIR) [7], and the semantic segmentation
metric is Intersection over Union (IoU). The best sound sep-
aration performance was achieved by our proposed model,
“Schedule F.,” and the best segmentation performance was
achieved by our proposed model, “Schedule C,” although
“Schedule E” performed nearly as well. Qualitative results
are shown in Fig. 1. Qualitatively, the model succeeds in
separating the sound from different sources to a large ex-
tent, which is visible in the source spectrogram recovery.
Despite the low resolution of the activation maps, the lo-
cations of the predicted segmentations were fairly accurate.
Our model is also more interpretable than the baseline mod-
els because it is sparsely activated. Overall, we achieve
promising results.
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