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Abstract

Inferring the 3D geometry and the semantic meaning of

surfaces, which are occluded, is a very challenging task.

Recently, a first end-to-end learning approach has been

proposed that completes a scene from a single depth im-

age. The approach voxelizes the scene and predicts for

each voxel if it is occupied and, if it is occupied, the se-

mantic class label. In this work, we propose a two stream

approach that leverages depth information and semantic in-

formation, which is inferred from the RGB image, for this

task. The approach constructs an incomplete 3D semantic

tensor, which uses a compact three-channel encoding for

the inferred semantic information, and uses a 3D CNN to

infer the complete 3D semantic tensor. In our experimental

evaluation, we show that the proposed two stream approach

substantially outperforms the state-of-the-art for semantic

scene completion.

1. Introduction

Humans quickly infer the 3D semantics of a scene, i.e.,

an estimate of the 3D geometry and the semantic meaning

of the surfaces. While RGB-D sensors in combination with

CNNs provide geometry and semantic information, the re-

sulting representation is very sparse since large parts of the

3D scene are occluded and not visible. The perception,

however, is not limited to the visible part of the scene. When

looking at a mug on a table, a human can estimate the full

geometry of both objects including parts which are invisi-

ble since they are occluded by the objects themselves. This

information is obtained from semantic understanding of the

scene which allows to estimate the spatial extent of the ob-

jects from experience. Such an ability is highly desirable

for autonomous agents, e.g., to navigate or interact with ob-

jects. A robot that has an intuition about the geometry be-

hind the surface it sees, for example, could plan ahead given

a single view instead of exhaustively explore the occluded

parts of a scene first.

In this work, we aim to estimate the semantics not only

of the visible part, but of the entire scene including the oc-

cluded space. To this end, we build on the work of Song et

al. [36]. They show that semantic scene understanding and

3D scene completion benefit from each other. On one hand,

recognizing a part of the object helps to estimate its location

in the 3D space and the voxels it occupies. On the other

hand, knowing the occupancy in the 3D space gives infor-

mation on form and size of the object and thus facilitates

semantic recognition. For estimating for each voxel in the

scene the occupancy and semantic label, they proposed an

end-to-end trainable 3D convolutional neural network (3D

CNN) which incorporates context from a large field of view

via dilated convolutions. The approach, however, only uses

depth as input and neglects the RGB image. This means

that the semantic label has to be inferred from the geometry

alone and properties such as color, texture, or reflectance

are not taken into account.

We therefore extend the approach [36] by keeping its

beneficial context incorporation and end-to-end trainabil-

ity while modifying it to leverage semantic information in-

ferred from the RGB image at the input stage as well as at

the loss. Given a single RGB-D image, we first use a 2D

CNN to infer the semantic labels from the RGB data and

construct an incomplete 3D semantic tensor. To this end,

we map the inferred semantic labels to the 3D space and

label each visible surface voxel by the inferred class label.

The 3D semantic tensor is incomplete since it only contains

the labels of the visible voxels but not of the occluded vox-

els. The 3D projection is performed using the depth image.

The tensor is then used as input for a 3D CNN that infers a

complete 3D semantic tensor, which includes the occupancy

and semantic labels for all voxels.

Using the RGB images as input leads to a significant

performance gain in scene completion and semantic scene

completion as our experiments show. We outperform [36]

by a substantial margin of up to 9.4 % on NYU. This implies

that RGB images provide a rich discriminative signal.
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2. Related Work

Several works address the problem of semantic segmen-

tation of RGB-D images, e.g., [30, 21, 11, 34], but they in-

fer semantic labels only for the visible pixels of the image,

which means that occluded voxels are not reconstructed.

A possible strategy for semantic scene completion is

the generation of 3D object proposals and subsequent 3D

shape completion of the respective object. The problem

of completing the 3D shape has been addressed in several

works [31, 37, 38, 40, 39, 41, 13, 7]. In the context of in-

ferring a voxel-wise segmentation, holes between objects

have to be filled. As long as these missing parts are small,

they can be filled using plane fitting [28] or object symmetry

[19, 26]. Objects that are not detected, however, heavily dis-

turb the 3D scene completion. Completing the scene geom-

etry without predicting the semantics has been addressed by

[9]. Their model assumes that objects of semantically dis-

similar classes can still be represented by similar 3D shapes,

i.e., it is possible to predict the unobserved voxels from the

frontal geometry. However, this approach fails for complex

scenes where these geometric constraints are violated.

An alternative is to use instances of 3D mesh models and

fit them to the scene geometry [10, 12, 19, 22, 27, 29, 35,

32, 23, 33]. The mesh models, however, do not model shape

variations of objects of the same category and increasing the

number of mesh models per category is not practical since

the number of available CAD models is limited and the

shape retrieval becomes more expensive. The approaches

[17, 24] even neglect fine-grained details and simply fit 3D

primitives to the scene.

Various contextual cues proved to be helpful for seman-

tic scene completion. While physical reasoning is employed

in [44], [18] predict voxel labels with a conditional random

field (CRF) whose unary potentials are determined by floor

plans. The CRF, however, only models contextual informa-

tion within a short distance. In [1] and [15], semantic scene

completion and multi-view reconstruction are jointly per-

formed. The approaches do not rely on end-to-end learning

approaches, but they use predefined features and heuristics

to integrate context information.

To facilitate learning of scene completion in an end-to-

end manner, [6, 43, 2] collected large scale datasets with

real world data. Previously, synthetic datasets were em-

ployed to provide ground truth data for object completion

[3, 40] or for entire scenes [14]. Due to these datasets,

training of an end-to-end approach for semantic scene com-

pletion became feasible [36]. Parallel to our work, [42]

have proposed a new network architecture which leverages

sparse feature map encodings and allows for much deeper

network architectures. While we address the problem of

scene completion from a single viewpoint as in [36, 42], se-

mantic scene completion from multiple RGB-D images is

addressed in [8].

3. Two Stream Semantic Scene Completion

3.1. Semantic Scene Completion

The goal of 3D semantic scene completion is to clas-

sify every voxel in the view frustum into one of K + 1 la-

bels c = c0, ..., cK where c0 represents an empty voxel and

c1, ..., cK represents one of K = 11 class labels like ceil-

ing, floor, wall, window, chair, bed, sofa, table, tv, furniture

and object. As illustrated in Figure 1, the camera observes

only a part of the scene while other voxels are occluded.

The occluded voxels can either be empty (c0) or belong to

one of the K classes.

To address the task of 3D semantic scene completion,

we propose an approach that leverages two input streams,

namely RGB and depth. An overview of the approach is

given in Figure 2 a). While the depth data is converted

into a volumetric representation, the RGB image is first pro-

cessed in a separate branch to infer 2D semantic segmenta-

tion maps and then transformed into a volumetric represen-

tation referred to as color-volume (Section 3.3). The volu-

metric representation is then fed to a 3D convolutional neu-

ral network (3D-CNN). The 3D-CNN infers a 3D semantic

tensor where every voxel is classified as either being empty

or belonging to one of the K semantic classes. In the fol-

lowing, each step will be discussed in detail.

3.2. Depth Input Stream

To obtain the volumetric input encoding, the depth map

is projected into a regular voxel grid using the camera pose,

which is provided along with each image. The voxel grid is

of size 240 x 144 x 240 voxels and encodes a scene of 4.80m

horizontally, 2.88m vertically, and 4.80m in depth with a

resolution of 0.02m. For every pixel in the depth map, its

corresponding voxel in the 3D input volume is computed

using the camera pose. The obtained binary voxel mask

encodes the location of surface points that are visible to the

camera, see Figure 2 b).

As pre-processing, all 3D scenes are rotated such that the

room orientations are aligned. For indoor room scenes, one

can assume that most of the observed surface normals are

oriented either like the normals of the walls, floor or ceiling,

which are usually planar. Therefore a principal component

analysis of the surface normals is used to infer the room

orientation, which is used to align the scene.

3.3. Color Input Stream

The input RGB image is first processed by a 2D-

CNN [4], which is an adaptation of the Resnet101 architec-

ture [16] for semantic segmentation. While all but one pool-

ing layer are omitted, dilated convolutions are used to keep

the output resolution high while simultaneously increasing

the receptive field. The 2D-CNN predicts the softmax prob-

abilities for every class and pixel at a resolution which is
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outside view
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occluded space
observed free space

observed surface
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Figure 1. Using the protocol of [36], ground truth labels are provided for all voxels of a 3D volume. Voxels that are outside the intersection

of the camera frustum and ground truth volume are outside the room or outside the view and not taken into account. Within the intersection,

there are observed surface voxels (green) and observed non-occupied voxels (light gray), but other voxels are not observed by the camera.

These voxels are either non-occupied (blue) or belong to an object (black).
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Figure 2. a) The proposed two stream approach for semantic scene completion transforms first the depth data and RGB image into a

volumetric representation, which represents the geometry and semantic of the visible scene and then uses a 3D-CNN to infer a 3D semantic

tensor for the entire scene. b) Given 2D depth map and camera pose, a binary voxel mask is created by setting each voxel that belongs to

a depth pixel to one and all other voxels to zero (blue). c) Visualization of TSDF vs. flipped TSDF. One can see the long ‘shadow’ caused

by the observed surface which produces high gradients at the occlusion boundary (between -1 and 1). In the flipped TSDF, this effect is

suppressed. The gradient is highest at the surface.

four times smaller than the input image. The output is then

upsampled to the original resolution of the image using bi-

linear interpolation. A densely connected CRF [20] is then

used in combination with the inferred class probabilities and

the RGB image to refine the semantic segmentation map.

For training, we use the same setting as in [4]. As initial-

ization, we use a model that is pre-trained on MSCOCO

[25] and fine-tune it on the dataset for 3D semantic scene

completion. Furthermore, we present results using the more

recent model Deeplab v3+[5] which is pretrained on ADE-

20k and finetune it on NYUv2 using an initial learning rate

of 0.001. We also apply a CRF [20] on the resulting outputs.

As in Section 3.2, we convert the 2D segmentation map

into a volumetric representation. Since each pixel in the

depth map corresponds to a pixel in the 2D semantic seg-

mentation map, every class pixel can be projected into the

3D volume at the location of its corresponding depth value.

This yields an incomplete 3D semantic tensor that assigns to

every surface voxel its corresponding class label. The class

labels can be encoded by one-hot encoding, i.e., a channel

for each class, or by a single channel for the class label. In

our experiments, however, we show that none of them is

optimal. Encoding semantic classes with only one channel

implies a semantic proximity of classes by the numerical

proximity of their class values, which introduces undesir-

able artifacts based on the class values. The one-hot en-

coding has the disadvantage that it is insufficient in terms

of memory consumption since it requires to store a K di-

mensional vector per voxel. We therefore represent the se-

mantic information by a lower dimensional vector. We use



a three-dimensional vector and encode the classes linearly

from (0, 0, 1) over (0, 1, 1), (0, 1, 0), (1, 1, 0) to (1, 0, 0).

3.4. 3DCNN

For the 3D-CNN, we adapt the architecture of [36] by

increasing the number of input channels of the first convo-

lutional layer such that it fits to our input. The architecture

is illustrated in Figure 3. It is inspired by the 2D-CNN for

semantic segmentation. The major difference apart from us-

ing 3D instead of 2D convolutions is that the network only

has a depth of 14 convolutional layers. The network has

therefore significantly less parameters than its two dimen-

sional counter part. Moreover, batch-normalization layers

are omitted due to the small size of the batches.

We adapt the training protocol of [36] as follows. We

train for 150,000 steps with a learning rate of 0.01 that is

reduced by a factor of 0.1 after 100,000 iterations. As op-

timizer, stochastic gradient (SGD) with momentum is ap-

plied. As initialization, we chose a random initialization

with a Gaussian distribution with mean µ = 0 and a stan-

dard deviation of σ = 0.01.

The output of the 3D-CNN is a semantic tensor of size

60 x 36 x 60 x (K + 1), where K is the number of object

classes and an additional class is added for empty voxels.

We compute a softmax cross entropy loss on the unnormal-

ized network outputs y:

L = −
∑

i,c

wicŷic log





eyic

∑

c′∈C

eyic′



 (1)

where ŷic are the binary ground truth vectors, i.e., ŷic = 1
if voxel i is labeled by class c, and wic are the loss weights.

Since the ratio of empty vs. occupied voxels is 9:1, the

empty space is randomly subsampled. Therefore wic is cho-

sen as binary mask such that only 2N empty voxels are se-

lected for loss calculation where N is the number of occu-

pied voxels in the scene.

4. Experimental Evaluation

4.1. Evaluation Metric

For evaluation, we follow the evaluation protocol of [36],

which evaluates the accuracy on a subset of voxels. The

evaluation considers only voxels that are part of the oc-

cluded space and within both the room and the field-of-view

as shown in Figure 1. While generating the 3D semantic la-

bels from the annotated CAD models, every voxel in the

input volume is marked as being on surface, free space, oc-

cluded space, outside field of view, outside room or outside

ceiling. For semantic scene completion, a binary evalua-

tion mask is computed such that the evaluation metric is

only computed for voxels which are either occluded, on sur-

face or close to the surface (within the range of the TSDF

function defined by [36]). For scene completion another

mask is computed which comprises all voxels in the oc-

cluded space. To assess the quality of 3D scene comple-

tion, several metrics are computed. First we compute the

Jaccard index, which measures the intersection over union

(IoU) between ground truth and predicted voxel for every

object category c1, ..., cK . As an overall segmentation per-

formance, we compute the average across all classes. For

scene completion all voxels are considered to belong to one

of the two classes empty vs. non-empty. All object cate-

gories c1, ..., cK are counted as ‘non-empty’. For comple-

tion, IoU as well as precision and recall are computed.

4.2. Datasets

We evaluate our method on the NYUv2 dataset, which is

in the following denoted as NYU. NYU consists of indoor

scenes that are captured via a Kinect sensor. For 3D seman-

tic scene completion labels, we use the annotated 3D labels

provided by [31]. They provide 1449 scenes, annotated with

11 classes, 795 of which are used for training and 654 for

testing. These annotations consist of CAD models that are

fitted into the scene. Since the CAD models do not exactly

fit the shape of the annotated objects and neglect small ob-

jects such as clutter, there is a significant mismatch between

the Kinect input data and the output labels. To address this

problem, depth maps generated from the projections of the

3D annotations as in [31] are used for training. For evalu-

ation, we consider two test sets. The first test set, which is

denoted by NYU Kinect, consists of the depth maps from

the Kinect sensor and the second test set, which is denoted

as NYU CAD, uses the depth maps generated by projection.

4.3. Ablation Study

We conduct an ablation study on Kinect to analyze the

design choices of our model.

4.3.1 Effect of Semantic Input

As mentioned in Section 3.3, we compare two network ar-

chitectures for the 2D-CNN, namely Deeplab v2 (DLv2) [4]

and Deeplab v3+ (DLv3+) [5]. Table 1 shows that DLv3+

increases the accuracy for semantic scene completion from

31.3 % to 33.8 %. This is expected since DLv3+ provides

a better 2D segmentation accuracy compared to DLv2 as

shown in Table 2. For scene completion, IoU is slightly

higher for DLv2 than for DLv3+.

We compare the results to a setting when we use ground

truth semantic segmentation masks for the RGB images as

input to the 3D-CNN, which is denoted by GT in Table 1.

This also serves as an upper bound for our method when

the used 2D-CNN provides perfect segmentation masks.

As expected, using ground truth segmentation masks im-

proves the semantic scene completion compared to DLv3+
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Figure 3. Architecture of the 3D-CNN. The parameters of the convolution kernels are denoted as (number of filters, kernel size, stride,

dilation). All but the last convolution layer have a ReLU activation function assigned to it. Arrows indicate skip connections [16] where

the output of one convolution layer is added to another output at a later stage. Pool denotes max pooling. The output is a volume that is

4 fold downsampled with respect to the input of the 3D CNN and encodes for every voxel the probability of it being empty (label 0) or to

belong to one of K semantic classes.

Scene Completion Semantic Scene Completion

semantic IoU ceil. floor wall win. chair bed sofa table tv furn. objs avg

DLv2 60.1 7.0 93.1 25.9 16.8 14.7 53.3 46.0 16.8 22.7 34.1 13.8 31.3

DLv3+ 60.0 6.7 93.2 26.2 20.6 17.8 56.9 49.2 16.5 29.4 37.6 18.3 33.8

GT 61.0 6.6 93.4 27.5 24.6 23.0 61.6 57.9 24.3 33.5 46.4 24.5 38.5

RGB image 58.2 4.2 93.4 19.3 4.4 10.8 34.9 20.2 11.8 4.9 17.2 10.3 21.0
Table 1. Impact of the quality of the semantic input. For the version ‘RGB image’, the 2D-CNN is omitted and the color values of the

pixels instead of the semantic information is stored in the semantic volume.

by +4.7 %. For scene completion, the improvements com-

pared to DLv3+ are +1.0 %. This shows that the quality

of the 2D-CNN has a strong impact on the accuracy of se-

mantic scene completion but only a minor impact on scene

completion, which is also not the focus of this work.

As it is illustrated in Figure 2 a), the RGB images are

processed by a 2D-CNN and the inferred pixel-wise labels

are used to construct the semantic volume. We also evalu-

ate in Table 1 what happens if the three-channel encoding

is not based on the semantic labels but if the RGB values

of the pixels are directly used for the encoding, i.e., with-

out inferring semantic information from the visible part of

the scene. This setting is denoted by ‘RGB image’ and per-

forms as expected poorly. Besides of the class ‘floor’, all

categories are poorly estimated.

4.3.2 Input Encoding

As we discussed in Section 3.3, the encoding of the se-

mantic information in the semantic volume should provide

a numerical equidistance between classes, which can be

achieved by using one-hot encoding. However, this ap-

proach has a high memory footprint. As an alternative,

we evaluate a one-channel and a three-channel input en-

coding. In the one-channel setup, the numeric class values

are normalized to the range from 0 to 1. For the proposed

3-channel input encoding, every label is mapped to a 3 di-

mensional vector as described in Section 3.3. Table 3 shows

that using only one channel performs poorly since it intro-

duces undesirable artifacts based on the class values. While

some classes like ‘floor’ and ‘bed’ are well recognized, the

accuracy for ‘window’ and ‘tv’ is very low. Using one-hot

encoding (12 channels) performs much better than 1 chan-

nel but it is expensive in terms of memory consumption.

The proposed three-channel encoding requires less memory

while it only slightly decreases the accuracy. Also the train-

ing time of the 3 channel setup is by a factor of 1.7 faster

which reduces the training time from 4 to 2.5 days. There-

fore we adopt the 3 channel setup as it provides an efficient

alternative to the one-hot encoding.

4.3.3 Fusion with flipped TSDF

Furthermore, we have conducted an experiment where we

combine our input with the flipped truncated signed dis-

tance function (fTSDF) proposed by [36] and evaluate dif-

ferent fusing schemes.

The fTSDF is computed as follows: The previously com-

puted binary voxel mask (Figure 2 b) is used to first com-

pute a truncated signed distance function (TSDF) encoding

as illustrated in Figure 2 c). In the TSDF, every voxel con-

tains as value the distance d to the next surface point. The

sign of the distance value indicates whether a voxel lies in

the empty (1) or occluded space (-1). The TSDF has the dis-

advantage of having high gradients at the occlusion bound-

ary, i.e., the boundary between observed and unobserved



ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

Deeplab v2 58.1 85.7 76.6 62.9 58.5 65.8 62.8 37.9 56.8 56.5 54.7 61.5

Deeplab v3+ 71.1 89.8 82.8 72.8 65.8 72.4 66.1 50.7 63.0 64.7 62.9 69.3

Table 2. 2D semantic segmentation accuracies on the NYUv2 dataset (%IoU ). In both cases, a CRF is used.

Scene Completion Semantic Scene Completion

channels IoU ceil. floor wall win. chair bed sofa table tv furn. objs avg

1 59.3 8.3 93.3 25.0 13.4 11.5 43.0 31.8 11.2 2.4 26.5 16.8 25.8

3 60.0 6.7 93.2 26.2 20.6 17.8 56.9 49.2 16.5 29.4 37.6 18.3 33.8

12 (one-hot) 60.0 9.7 93.4 25.5 21.0 17.4 55.9 49.2 17.0 27.5 39.4 19.3 34.1
Table 3. Impact of the number of channels for the semantic volume. 12 channels refers to one-hot encoding.

space behind a surface. Therefore in the TSDF encoding

every surface yields a shadow into the unobserved space as

shown in Figure 2 c).

To provide a more meaningful input signal, the signed

distance function is transformed into a flipped TSDF [36],

where every signed distance value d is converted into a dis-

tance df which is 1 or -1 at a surface and linearly falls to 0

at a distance dmax from the surface:

df = sign(d)H(dmax − |d|)
dmax − |d|

dmax

(2)

where dmax is the maximum distance of 24 cm and H is the

Heaviside function:

H(x) =

{

1 if x ≥ 0

0 if x < 0.
(3)

We perform different fusion experiments to evaluate

whether the proposed fTSDF encoding can give us a mean-

ingful signal for semantic scene completion. As one can see

from Figure 3 the 3D-CNN consists of several blocks. We

concatenate the fTSDF before block 1 (early fusion) and

also after block 1, 2 and 5 (fusion 1, 2 and 5). Before con-

catenation, both the color and the fTSDF input stream are

processed separately. In the case of “late fusion” we take

the maximum of the softmax probabilities of both streams.

As can be seen from Table 4, all fusion schemes perform

slightly worse than our approach. This indicates that fTSDF

provides a superfluous signal for our approach. This is in-

teresting since computing the flipped TSDF volume is the

most time-consuming part for inference and our approach

provides a substantial faster alternative while also increas-

ing the accuracy.

4.4. Comparison to StateoftheArt

We evaluate our approach on the two test sets NYU CAD

and NYU Kinect, which are in the following denoted as

CAD and Kinect, and we compare our approach to the state-

of-the-art. The results for scene completion and semantic

scene completion are reported in Table 5. Both of our ap-

proaches with 3-channel input encoding and one-hot encod-

ing perform comparably. Since one-hot encoding yields a

slightly higher accuracy, we only discuss the difference be-

tween the latter and other approaches from the literature.

Our approach sets the new state-of-the-art for semantic

scene completion. We achieve 46.2 % on CAD and 34.1 %
on Kinect and outperform the approach by Song et al. [36]

by +6.2 % on CAD and +3.6 % on Kinect, although they

use SUNCG as additional training data. If the same training

data, i.e. only NYU, is used, our approach outperforms [36]

by +9.4 % on Kinect. For scene completion, we outperform

[36] by +5.8 % on CAD and +4.9 % on Kinect if NYU is

used as training data. However, even if [36] uses additional

training data from SUNCG, our approach still outperforms

it by +2.9 % on CAD and +3.4 % on Kinect. Compared to

the recent ESSCN approach [42], we perform better in both

scene completion (+3.8 %) and semantic scene completion

(+7.4 %). Note also that pretraining on SUNCG [36] and

using a stronger 3D-CNN architecture [42] are orthogonal

to our proposed method. One can assume that our perfor-

mance would further increase by incorporating both ideas.

Table 5 also includes the results of other approaches that

do not rely on end-to-end learning [44, 9, 24, 10]. Further-

more, the approaches [44] and [9] only address scene com-

pletion but not semantic scene completion. These meth-

ods perform substantially worse than the end-to-end learn-

ing approaches.

5. Conclusions

In this work, we have proposed a two stream approach

for 3D semantic scene completion. In contrast to previ-

ous works, the proposed approach leverages depth and se-

mantic information of the visible part of the scene for this

task. In our experiments, we have shown that the pro-

posed three-channel encoding for the semantic volume is

not only memory efficient but it also results in higher accu-

racies compared to a single-channel encoding and is com-

petitive to a memory expensive one-hot encoding. The pro-

posed approach achieves state-of-the-art results for seman-

tic scene completion on the NYUv2 dataset while also pro-

viding much faster inference times than approaches based

of TSDF input features.



Scene Completion Semantic Scene Completion

input IoU ceil. floor wall win. chair bed sofa table tv furn. objs avg

proposed, no fTSDF 60.0 6.7 93.2 26.2 20.6 17.8 56.9 49.2 16.5 29.4 37.6 18.3 33.8

with fTSDF, early fusion 60.2 8.1 94.4 25.6 17.1 17.8 53.6 48.0 17.0 28.0 36.0 18.4 33.1

with fTSDF, fusion 1 60.0 4.8 94.1 25.5 21.5 16.6 56.9 47.2 16.7 27.5 37.3 18.1 33.3

with fTSDF, fusion 2 54.4 5.9 93.6 22.0 11.0 16.5 50.4 41.0 12.4 23.1 31.9 12.4 29.1

with fTSDF, fusion 5 59.1 5.1 92.9 23.0 19.4 15.1 53.9 46.7 16.3 28.2 34.6 15.0 31.8

with fTSDF, late fusion 60.4 5.7 93.9 25.7 20.3 15.9 55.7 44.8 17.0 28.1 34.9 16.0 32.5

RGB image 58.2 4.2 93.4 19.3 4.4 10.8 34.9 20.2 11.8 4.9 17.2 10.3 21.0
Table 4. Impact of the input for the 3D-CNN. The proposed architecture is shown in Figure 2 a). The versions ‘with fTSDF’ refers to a

version where not only the semantic volume but also the flipped TSDF volume [36] are used.

NYU CAD Scene Completion Semantic Scene Completion

method trained on IoU ceil. floor wall win. chair bed sofa table tv furn. objs avg

Zheng et al. [44] NYU 34.6

Firman et al. [9] NYU 50.8

SSCNet [36] NYU 70.3

SSCNet [36] SUNCG+NYU 73.2 32.5 92.6 49.2 8.9 33.9 57.0 59.5 28.3 8.1 44.8 25.1 40.0

Ours, 3ch NYU 76.1 28.3 94.0 48.6 33.0 33.4 67.9 54.7 31.1 33.8 50.8 30.6 46.0

Ours, one-hot NYU 76.1 25.9 93.8 48.9 33.4 31.2 66.1 56.4 31.6 38.5 51.4 30.8 46.2

NYU Kinect Scene Completion Semantic Scene Completion

Lin et al. [24] NYU 36.4 0.0 11.7 13.3 14.1 9.4 29.0 24.0 6.0 7.0 16.2 1.1 12.0

Geiger et al.[10] NYU 44.4 10.2 62.5 19.1 5.8 8.5 40.6 27.7 7.0 6.0 22.6 5.9 19.6

SSCNet[36] NYU 55.1 15.1 94.7 24.4 0.0 12.6 32.1 35.0 13.0 7.8 27.1 10.1 24.7

SSCNet[36] SUNCG+NYU 56.6 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5

ESSCN [42] NYU 56.2 17.5 75.4 25.8 6.7 15.3 53.8 42.4 11.2 0.0 33.4 11.8 26.7

Ours, 3ch NYU 60.0 6.7 93.2 26.2 20.6 17.8 56.9 49.2 16.5 29.4 37.6 18.3 33.8

Ours, one-hot NYU 60.0 9.7 93.4 25.5 21.0 17.4 55.9 49.2 17.0 27.5 39.4 19.3 34.1
Table 5. Comparison to the state-of-the-art.
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