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Abstract

We propose a new deep learning architecture for the

tasks of semantic segmentation and depth prediction from

RGB-D images. We revise the state of art based on the

RGB and depth feature fusion, where both modalities are

assumed to be available at train and test time. We propose

a new architecture where the feature fusion is replaced with

a common deep representation. Combined with an encoder-

decoder network for feature map extraction, the architec-

ture can jointly learn models for semantic segmentation and

depth estimation based on their common representation.

This representation, inspired by multi-view learning, offers

several important advantages, such as using one modality

available at test time to reconstruct the missing modality.

In the RGB-D case, this enables the cross-modality scenar-

ios, such as using depth data for semantically segmentation

and the RGB images for depth estimation. We demonstrate

the effectiveness of the proposed network on two publicly

available RGB-D datasets. The experimental results show

that the proposed method works well in both semantic seg-

mentation and depth estimation tasks.

1. INTRODUCTION

Visual scene understanding is a critical capability en-

abling robots to act in their working environment. Modern

robots and autonomous vehicles are equipped with many,

often complementary sensing technologies. Multiple sen-

sors aim to satisfy the need for the redundancy and robust-

ness critical for achieving the human level of the navigation

safety.

The most frequent case is RGB-D cameras collecting

color and depth information for different computer vision

tasks [5, 15, 28]. As information collected by the depth

camera is complementary to RGB images, the depth can

help decode structural information of the scene and improve

the performance on such tasks as object detection and se-

mantic segmentation [28].
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Development of convolutional neural networks (CNNs)

boosted the performance of the image classification, object

detection and semantic segmentation tasks. The key contri-

bution of CNN models lies in their ability to model com-

plex visual scenes. Current CNN-based approaches provide

the state-of-the-art performance in semantic segmentation

benchmarks [4, 9].

When RGB images are completed with depth informa-

tion, the straightforward idea is to incorporate depth infor-

mation into a semantic segmentation framework. Different

methods have been developed including deep features pool-

ing, dense feature, multi-scale fusion, etc. [7, 8, 11, 18, 27].

Most recent methods, like FuseNet [13, 16], use an encoder-

decoder architecture, where the encoder part is composed

of two branches that simultaneously extract features from

RGB and depth images and fuse depth features into the

RGB feature maps. Moreover, training individual RGB and

depth models has been replaced with the joint learning. It

was shown that the semantics predictions of jointly learned

network can be fused more consistently than predictions of

a network trained on individual views [23].
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Figure 1. Scenarios for RGB-D data include semantic segmenta-

tion from RGB (1), depth (3) or both (1+3), depth prediction from

RGB (2) and depth completion from depth (4).

In this paper, we propose a new deep learning archi-

tecture for tasks of semantic segmentation and depth esti-

mation from RGB-D images. Usually, these tasks are ad-

dressed separately, with a special design for semantic seg-

mentation [13, 23] or depth prediction [7]. We develop a

unifying framework capable to cope with either task in dif-

ferent scenarios (see Figure 1).

We adopt the multi-view approach to RGB-D data,

where RGB and depth are two channels (modalities) provid-
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ing complementary information about a visual scene. All

existing methods, whether they train individual models in-

dependently or jointly, adopt the fusion-based representa-

tion. The feature fusion takes benefit from the view comple-

mentarity to reduce the uncertainty of segmentation and la-

belling. The fusion-based approaches however require both

views to be available at train and test time.

We revise the fusion-based approach and replace it with

the common representation [24]. Adopting the principle of

the common representation gives a number of benefits well

known in the multi-view learning [2]. First, it allows to

obtain the common representation from one view and then

reconstruct all other views. It can accomplish the task when

one view is unavailable due to technical or other reasons,

thus increasing the robustness and fault-tolerance of the sys-

tem. Working with one-view data at test time enables cross-

view scenarios rarely addressed in the state of art. In se-

mantic segmentation, when the RGB view is unavailable,

the depth view can be used to obtain the common represen-

tation and accomplish the semantic segmentation task. And

vice-versa, in the case of a depth estimation, the common

representation allows to use the RGB view to reconstruct

the depth of a scene or an object.

Second, the common representation is the central com-

ponent allowing to deploy the same architecture for both

RGB-D tasks. Representation common to RGB and depth

allows to enforce the consistency between the views and

improve the segmentation quality and depth estimation ac-

curacy.

Third, the proposed architecture encourages a higher

modularity of the deep network. Our proposal combines

the state of art components, the encoder-decoder networks

for semantic segmentation and a multi-view autoencoder for

the common representation. The system can then benefit

from any progress in individual components. The modu-

larity allows to upgrade a component without changing the

entire system, training and optimization routines.

The remainder of the paper is organized as follows. In

Section 2, we review the state of art of semantic segmenta-

tion and depth estimation for RGB-D images. In Section 3,

we introduce the multi-view deep architecture and describe

in details each component, the two-stage training and opti-

mization. Section 4 reports results of evaluating the network

on public NUY2 and SUN datasets; it also discusses some

open questions. Section 5 concludes the paper.

2. RELATED WORK

Depth representation. Depth information is rarely used

in any segmentation network as raw data, most methods use

HHA representation of the depth [11]. This representation

consists of three channels: disparity, height of the pixels

and the angle between normals and the gravity vector based

on the estimated ground floor. The color code provided by

HHA helps visualize depth information; it can reveal some

patterns that resemble RGB patterns.

Semantic segmentation and depth estimation. These two

fundamental tasks for RGB-D images are strongly corre-

lated and mutually beneficial, and most efforts were on

putting both views in one architecture. In particular, with

the success of CNN architectures, many methods aimed to

inject the depth information into the semantic segmentation

network [8, 13, 16, 18, 23, 29].

Ladicky at al. [18] were first to replace single-view depth

estimation and semantic segmentation by a joint training

model. They considered both semantic label loss and depth

label loss when learning a classifier. Using properties of

perspective geometry, they reduced the learning of a pixel-

wise depth classifier to a simpler classifier predicting one of

fixed canonical depth values [18].

Two separate CNN processing streams, one for each

modality, were proposed by Eitel at al. [8]; they are consec-

utively combined in a late fusion network. The method also

introduced a multi-stage training methodology for handling

depth data with CNNs. It used the HHA representation of

depth and the data augmentation scheme for robust learning

with depth images.

A unified framework for joint depth and semantic pre-

diction was proposed by Wang at al. [30]. Given an image,

they first use a trained CNN to jointly predict a global lay-

out composed of pixel-wise depth values and semantic la-

bels. The joint network showed to provide more accurate

depth prediction than a state-of-the-art CNN trained solely

for depth prediction. To further obtain fine-level details, the

image is decomposed into local segments for region-level

depth and semantic prediction.

By considering RGB and depth channels as multi-modal

data, [23] enforced the multi-view consistency during train-

ing and testing. At test time, the semantic predictions of

the network are fused more consistently than predictions of

a network trained on individual views. The network archi-

tecture uses a single-view deep learning approach to RGB

and depth fusion and enhances it with multi-scale loss min-

imization.

FuseNet [13] developed an encoder-decoder type of net-

work, where the encoder part is composed of two branches

of networks that simultaneously extract features from RGB

and depth images and fuse depth features into the RGB fea-

ture maps as the network goes deeper.

Although most of the above methods apply the late fu-

sion, it is also possible to fuse depth information into the

early layers of fully convolutional neural network [16].

Coupled with the dilated convolution for later contextual

reasoning, it combines a depth-sensitive fully-connected

CRF with the previous convolution layers to refine the pre-

liminary result.

A step forward from the fusion approach is undertaken
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Figure 2. The architecture is composed of two encoder-decoder networks for RGB and depth images and the common representation

network. Depending on the setting, the depth network is trained with the segmentation labels or depth ground true values. Better seen in

colors.

by Hoffman et al.[14]; they designed a modality hallucina-

tion architecture for training an RGB object detection model

which incorporates depth information at training time. A

convolutional hallucination network learns a new and com-

plementary RGB image representation which is taught to

mimic convolutional mid-level features from a depth net-

work. At test time images are processed jointly through

the RGB and hallucination networks. Thus, information ex-

tracted from depth data is transferred to a network extract-

ing that information from the RGB data.

Depth Completion. The problem of completing the depth

channel of an RGB-D image has been addressed in [31]. In-

deed, it often the case that commodity-grade depth cameras

fail to sense depth for bright, transparent, and distant sur-

faces thus leaving entire holes in the depth images. They

train a deep network that takes a RGB image as input and

predicts dense surface normals and occlusion boundaries.

Those predictions are then combined with raw depth obser-

vations provided by the RGB-D camera to solve for depths

for all pixels, including those missing in the original obser-

vation.

2.1. Multi-view learning

In the previous section we reviewed different ways to

fuse RGB and depth feature maps. Meanwhile, there

exist alternative representations for multi-view data [2].

One such alternative, the common representation learning

(CRL), tries to embed different views of the data in a com-

mon subspace [2]. It allows to obtain a common represen-

tation from one view and use it to reconstruct other views.

Two complementary approaches to CRL are based on

canonical correlation analysis (CCA) and multi-modal au-

toencoders. CCA based approaches learn a joint representa-

tion by maximizing correlation of the views when projected

into the common subspace. Second approach to embed

two views is based on multi-modal autoencoders (MAEs)

[24]. The idea is to train an autoencoder able to perform

two kinds of reconstruction. Given one view, the model

learns both self-reconstruction and cross-reconstruction (re-

construction of the other view).

As CCA-based and MAE-based approaches appear to

be complementary, several methods tried to combine them

in one framework [30]. For example, Correlational Neural

Network (CorrNet) [3] tried to explicitly maximize the cor-

relation between the views when projecting them into the

common subspace. We adopt the idea of CorrNet in our

architecture.

3. DEEP ARCHITECTURE

We aim to solve two fundamental tasks for RGB-D im-

ages: semantic segmentation and depth prediction. We as-

sume that we are given a training set of N RGB-D im-

ages (xi,di), i = 1, . . . , N . All xi and di images are

assumed to be resized to width W and height H . Depth

images are in HHA representation and have the same value

range as RGB images, xi,di ∈ RH×W×3. RGB im-

ages are annotated with yi ∈ LH×W , where L is the la-

bel set, L = {1, . . . ,K}. In the case of depth estima-

tion, we assume to have additionally the ground true values

d∗

i ∈ RH×W .

We propose an architecture composed of two separate

branches, one for each modality, which are consecutively

fed into a common representation network. Two individual

modality networks are of the encoder-decoder type, where

the encoder applies dilated convolution to extract an infor-

mative feature map, while the decoder applies ”atrous” con-

volution at multiple scales to encode contextual information

and refine the segmentation boundaries. This choice is mo-

tivated by the recent success of the encoder-decoder archi-

tecture of DeepLabV2/V3 networks [4]. It has been also

used in FuseNet [13] and SegNet [1] and has showed good
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segmentation performance.

Both RGB and depth encoders are initialized by the

Resnet101 model pretrained on the MS-COCO dataset. The

encoders generate the feature maps, which the decoders use

in ”atrous” spatial pyramid pooling (ASPP) to robustly seg-

ment objects at multiple scales [4].

Feature maps generated by two modality branches are

fed into the common representation network implemented

in the form of a multi-view autoecoder [30]. Unlike the

conventional fusion of RGB and depth feature maps, the

multi-view autoencoder allows to extract the shared repre-

sentation from either one or two views.

3.1. Training RGB network

Our architecture enables two different settings. In the

semantic segmentation (SS) setting, both RGB and depth

views are jointly used to segment an image. In the case

of segmentation and depth estimation (SS-D), we face the

multi-task setting and expect to achieve good results in both

tasks.

We first proceed by training two individual modality

branches (see the purple and blue sections in Figure 2).

Let θI and θD be parameters of RGB and depth networks,

respectively. Let x
p
i = gI(xi; θ

I) be the feature map ex-

tracted from the last (fully connected) layer of the RGB de-

coder when applied to image xi, x
p
i ∈ Rd×H

′

×W
′

. Anal-

ogously, let d
p
i = gD(di; θ

D) be the feature map extracted

from depth decoder when applied to the depth image di,

d
p
i ∈ Rd×H

′

×W
′

.

The network is trained in two stages. We first train two

modality branches, then we train the entire network. In the

first stage, we place a randomly initialized softmax classi-

fication layer on top of gI and train the RGB network to

minimize the semantic loss of the training data. The seman-

tic loss Lss
rgb is defined as the cross-entropy loss

Lss
rgb = −

N∑

i=1

P (yi|x̂i), (1)

where x̂i is a pixel-wise prediction for image xi, yi is

the ground truth labels, P (y|x) =
∑

j log p(yj |xj), and

p(yj |xj) is the probability of semantic label yj at pixel j.

The RGB network is trained using the stochastic gradi-

ent descent on mini-batches of RGB images. After the con-

vergence, all parameters θI of the network are kept for the

second stage, except the last layer which will be replaced

by the common representation and reconstruction layer.

3.2. Training depth network

Training the depth branch depends on the setting. In

the SS setting, the depth network is trained, similarly

to the RGB network, to minimize semantic loss Lss
d =

−
∑N

i=1
P (yi|d̂i), where d̂i is a prediction for depth im-

age di.

In the SS-D setting, we train the depth branch to min-

imize the regression loss on the training depth data. We

tested several state-of-art proposals for the loss function Ld
d.

One is the scale-invariant loss [7]; it measures the relation-

ships between points in the image irrespectively of the abso-

lute values. We also considered the standard L2 and Huber

loss [10]. Less sensitive to outliers that the L2 loss, the

Huber loss is defined as LH
1 (d∗

i , d̂i) =
∑

j D(d∗

ij − d̂ij),
where

D(x) =

{
βx2, if |x| ≤ 1
|x| − β, otherwise.

(2)

with β = 0.5.

3.3. Common representation

Common representation network is implemented as a

multi-view autoencoder [3, 24]. It includes a hidden layer

and an output layer. The input to the hidden layer is two

feature maps xp,dp fed by two modality branches. Simi-

lar to conventional autoencoders, the input and output layer

has the same shape as the input, d×H ′ ×W ′, whereas the

hidden layer is shaped as k ×H ′ ×W ′, with k being often

smaller than d (in Figure 2, d=256 and k=128).

Given a two-view input z = (xp,dp), the hidden layer

computes an encoded representation as the convolution

h(z) = h(Wx ∗ xp +Wd ∗ d
p + b), (3)

where Wx, Wd are projection weights, b is a bias vector,

and h is an activation function, such as sigmoid or tanh.

The output layer tries to reconstruct z from this hidden

representation h(z) by computing

zr = g([Vx ∗ h(z),Vd ∗ h(z)] + br), (4)

where Vx, Vd are reconstruction weights, br is a output

bias vector, g is an activation function and [·] is the concate-

nation operation.

Given feature maps {(xp
i ,d

p
i )}

N
i=1 from RGB and depth

branches, the common representation is designed to min-

imize the self- and cross-reconstruction errors. The first

minimizes the error of reconstructing xr
i from x

p
i and dr

i

from d
p
i . The second one is the error of reconstructing xr

i

from d
p
i and dr

i from x
p
i .

To achieve this goal, we try to find the parameter val-

ues θA = {Wx,Wd,Vx,Vd,b,br} by minimizing the

reconstruction loss function Lrec =
∑N

i=1
Li
rec, with Li

rec

defined on the pair (xi,di) as follows

lr(zi, g(h(zi)))+lr(zi, g(h(x
p
i )))+lr(zi, g(h(d

p
i ))), (5)

where lr is the reconstruction error, lr(x,x
′) = ||x− x′||22.

Shorthands h(xi) and h(di) denote the representations
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h((xi, 0)) and h((0,di)) that are based only on a single

view. For each instance with 2 modalities x and d, h(xi)
refers to computing the hidden representation using only the

x-view. In other words, in Equation (3) for h(z), we set

dp = 0 and obtain h(z) = h(Wx ∗ xp + b).
In the reconstruction loss Li

rec (5), the first term is the

usual autoencoder objective function which helps in learn-

ing meaningful hidden representations. The second term

ensures that both views can be predicted from the shared

representation of the first view alone. The third term en-

sures that both views can be predicted from the shared rep-

resentation of the second view alone.

In addition to the common representation and view re-

construction, we also considered a possibility of maximiz-

ing the view correlation, as suggested in CorrNet [3]. In

such a case, we try to maximize the correlation between the

hidden representations of the two views. The correlation

term can be included as the fourth term of Lrec in (5), it

makes sure that the hidden representations of the two views

are highly correlated.

3.4. Objective function

Common representation allows to obtain the recon-

structed feature maps for both RGB and depth images as

f(g(xp)) and f(g(dp)). The entire set of network param-

eters is θ = {θI , θD, θA}. The objective function to mini-

mize is then defined as

L = Lss
rgb + Ld + λLrec, (6)

where the depth branch loss Ld is Lss
d in the SS setting and

Ld
d in the SS-D setting; λ is a scaling parameter for the re-

construction loss. In the above formulation, the semantic,

depth and reconstruction losses are optimized jointly.

3.5. Training and optimization

The architecture is implemented on the PyTorch frame-

work. At the first stage, we train individual branches in-

dependently. In the SS setting, we train RGB and depth

branches with segmentation labels, they are denoted RGB-

SS and D-SS. Each branch is trained for 20,000 iterations

using SGD with momentum 0.9, batch size 24, and mini-

mizing the modality losses, Lss
rgb and Lss

d . We retain the

model parameters θI and θD for the second stage.

In the SS-D setting, we train the RGB branch with seg-

mentation labels (RGB-SS) and the depth branch with depth

ground truth (D-D). The D-D branch is trained using the

scale irrelevant loss, standard L2 loss or the Huber loss. We

apply weight decay 0.0005 and the polynomial decay for

the learning rate, with the base LR 0.0001 and power 0.9.

In the second stage, we start with the two branch param-

eters θI and θD trained in the first stage, and refine them

as well as the common representation network θA by mini-

mizing the objective function L which combines semantic,

depth and reconstruction losses. We fine-tune the entire net-

work with the Adam optimizer, but we freeze parameters of

two modality encoders, it allows to speed-up the training

without performance loss.

For the segmentation task, we additionally perform the

data augmentation, by flipping and randomly rotating in-

put images on an angle between [-10, 10] degrees. RGB-D

images to be augmented are selected randomly, but the aug-

mentation is identical for both views.

4. EVALUATION

We evaluated the proposed network on two publicly

available RGB-D datasets: NYU depth dataset, 2nd ver-

sion [27] and SUN [28]. NYU2 is a popular dataset, with

27 indoor categories. As not all categories are well rep-

resented, the publicly available split [27] reorganized the

dataset into 13 most common categories and other category

for all remaining images. The training/test split is 795/654

images. Images are resized to 512 × 512 at training time,

full size images are used at test time.

SUN dataset contains 10,335 RGB-D images with 40

categories [28]. Following the publicly available split with

37 most common and other categories [12], it consists of

5,285 images for training and 5,050 images for testing. Im-

ages are resized to 360× 360 at training time; full size im-

ages are used at test time. All depth images are encoded

using the HHA representation.

4.1. Qualitative analysis

We start with the qualitative analysis and test the pro-

posed architecture with exemplar RGB-D images. Fig-

ure 3.a shows how a NYU2 example gets processed by the

network. In addition to the input images and ground truth

segmentation, it shows feature maps extracted at different

layers of the network. The upper row refers to the RGB

branch, the lower row refers to the depth branch. Column

2 visualizes feature maps generated by two modality de-

coders. Column 3 shows the common representations ob-

tained from each modality map. A close resemblance of

the two maps supports the idea that a common represen-

tation which can be obtained from either view. Then, the

reconstructed feature maps for both modalities are shown

in column 4 and final predictions in column 5.

Figure 3.b shows the cross-view reconstruction, where

the RGB image is only available at test time. It starts with

feature maps extracted from RGB network and the common

representation. Then it shows how the common representa-

tion is used for two reconstruction and prediction maps.

4.2. Quantitative results

Modularity. The proposed architecture is designed in

a modular way. It does not use any particular techniques
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a) b)
Figure 3. a) Processing RGB-D images at different layers of the architecture; b) Reconstruction from one view. Better seen in colors.

invented to improve the semantic segmentation in special

cases and image regions, such as multi-scale input, CRF,

overlapping windows and cross-view ambiguities [16, 22].

This choice is motivated by two main reasons. First, we

wanted to test the effectiveness of the CRL in isolation, by

excluding any impact of the additional improvements and

by comparing to the state of art baseline. We paid most

attention to the multi-view autoencoder and its capacity to

generate common representation and reconstruct RGB and

depth views. Second, the architecture design is general

enough to cope with two different settings (SS and SS-D)

and different modalities. We prefer an ability to work multi-

modal and multi-task to an architecture narrowed to pro-

cessing one particular task. Moreover, since the common

representation is complementary to many of the state of art

improvements, the proposed architecture can integrate most

of them to further boost the performance.

Evaluation metrics. To evaluate our network on the seg-

mentation task, we prefer the intersection-over-union (IoU)

score to the pixel accuracy. The pixel accuracy is known

for being sensitive to the class disbalance, when many im-

ages include the large objects such as bed, wall, floor, etc..

Therefore, the accuracy value may be misleading when the

network performs better on the large objects and worse on

the small ones. Instead, IoU score remains informative on

both balanced and unbalanced datasets.

Let Cij denote the number of pixels those are predicted

as class j but actually belongs to class i, where i, j ∈ L.

Then Cii denotes the number of pixels with correct predic-

tion of class i. Let Ti denote the total number of pixels that

belongs to class i in the ground truth, K is the total num-

ber of classes in the dataset. Then IoU is the average value

of the intersection between the ground truth and the predic-

tions: IoU = 1

K

∑
i

Cii

Ti+
∑

j
Cji−Cii

.

For depth estimation, we use the root mean square er-

ror (RMSE) that measures the error between the estimated

depth and ground truth.

Hyper-parameters. We set W
′

= H
′

= 65 for the

NYU2 set and W
′

= H
′

= 46 for the SUN set. Feature

maps generated by the modality branches are shaped with

d = 256. The number of hidden variables in the common

representation is fixed, k = 128. During the training with

the objective function L in (6), weight λ of reconstruction

loss is 1.

4.3. Semantic segmentation and depth estimation

We consider three different ways to use the architecture

presented in Section 3 to process the RGB-D data.

• Independent learning: In this case, each modality

branch is trained and tested independently. In the SS

setting, we cope with RGB-SS and D-SS branches; in

the SS-D setting, we train and test RGB-SS and D-D

branches to provide the baseline performances.

• Joint learning: The network is trained in two stages

as described in Section 3. In SS and SS-D settings,

the network is trained to minimize the objective func-

tion L, with the corresponding depth branch loss Ld

(see Section 3.4). In either case, we compare them to

the baselines obtained with the independent training.

In the SS setting, we test the common representation

with one or two modalities available at test time, where

the semantic segmentation is evaluated using the RGB,

depth or both images. In the SS-D setting, we test the

semantic segmentation and depth estimation with one

or two modalities available at test time.

Table 1 reports IoU values for the SS and SS-D settings

on NYU2 dataset. In the SS setting, training two modality

branches independently yields 53.1 (RGB) and 37.1 (depth)

IoU values; this reflects the RGB input being more informa-

tive than depth. Learning a joint model and using the com-

mon representation at test time improves the performance in

cases when depth or both views are available. As both views

address the segmentation task, the common representation

makes performance dependent on which modality is avail-

able at test time. Instead it does not depend which modality

is being reconstructed.

In the SS-D setting, the baseline for RGB-SS branch is

the same, the baseline for depth reconstruction using D-D

branch gives RMSE value of 0.51. The common represen-

tation improves the RGB value to 54.3, and reduces the re-

construction error to 0.39 and 0.53 when using the depth
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only or both views, respectively. In the cross-view recon-

struction, using depth for segmentation drops IoU value to

35.0 only, using RGB for depth estimation yields 0.72 error.

Branch Independent Common representation

RGB Depth RGB Depth RGB+D

NYU2 dataset, SS setting

RGB-SS 53.1 - 54.1 41.2 57.6

D-SS - 37.1 54.2 41.1 57.7

NYU2 dataset, SS-D setting

RGB-SS 53.1 - 54.3 35.0 55.2

D-D - 0.51 0.72 0.39 0.53

SUN dataset, SS setting

RGB-SS 39.7 - 39.4 31.1 42.4

D-SS - 31.1 39.4 31.1 42.3

SUN dataset, SS-D setting

RGB-SS 39.7 - 39.3 20.3 39.9

D-D - 0.36 0.62 0.31 0.31

Table 1. Independent and joint learning with one or two views at

test time. The best results are shown in bold.

Methods Sem. Segmentation Depth

RGB D RGB+D RGB

NYU2 dataset

Our method 54.1 41.2 57.6 0.72

Li et al. [20] - - - 0.82

Roy et al. [25] - - - 0.74

Laina et al. [19] - - - 0.57

Eigen et al. [6] - - 52.6 0.64

FuseNet-SF3 [13] - - 56.0 -

MVCNet [23] - - 59.0 -

SUN dataset

Our method 39.49 31.1 42.4 0.62

Segnet [1] 22.1 - - -

Bayes-Segnet [17] 30.7 - - -

Hazirbas [13] 32.4 28.8 33.6 -

FuseNet-SF5 [13] - - 37.3 -

DFCN-DCRF [16] - - 39.3 -

Context-CRF [26] 42.3 - - -

RefineNet [22] 45.9 - - -

CFN [21] - - 48.1 -

Table 2. Comparison to the state of art on different tasks.

Table 1 also reports evaluation results on SUN dataset.

Using both modalities does improve the performance,

moreover depth estimation benefits more from the common

representation than the segmentation task.

We compare our results to the state of art on four typical

scenarios for RGB-D images (Table 2). Our architecture

is the only one able to cope with all the cases. Moreover

it remains competitive to the highly specialized architec-

tures [16, 20] which cope with one or two scenarios only.

4.4. Discussion

Both quantitative and qualitative results validated the

effectiveness of learning the common representation from

RGB and depth images. However the conducted experi-

ments left some questions open; we discuss them in this

section.

In addition to the results reported in Tables 1 and 2, we

tested a number of alternatives and made some conclusions.

First, adding the view correlation term to the reconstruc-

tion loss (see Section 3.3) does not seem to improve the

common representation nor the performance. Second, the

scale-irrelevant loss for the depth estimation, mentioned in

Section 3.2, does not seem to perform better than the L2 and

Huber losses; all SS-D results in Tables 1 and 2 refer to the

Huber loss.

The two-stage training of the network enables to play

with a so-called frozen configuration. The modality

branches trained at the first stage get frozen and extract

feature maps for all RGB-D images in the dataset. Such

a frozen configuration allowed to test different configura-

tions of common representation network before training the

full network at the second stage. Below we finally mention

some ideas on further improving the current architecture.

1. The common representation is currently limited to one

hidden layer. Using deeper multi-view autoencoders

has been beneficial in the frozen case.

2. Learning the common representation is implemented

on one fixed scale (k = 128) of the RGB and depth

feature maps. We consider replacing one-fixed-scale

MAE with multi-scale ones, on each level of the

encoder-decoder networks.

3. ResNet101 model pre-trained on COCO dataset fits

well the segmentation task, but to the less extend the

depth estimation task. We consider setting up a more

appropriate pre-trained model or an option of training

it from scratch or combine the two models [16].

5. CONCLUSION

We proposed a new deep learning architecture for the

tasks of semantic segmentation and depth prediction from

RGB-D images. In the proposed architecture, the conven-

tional feature fusion is replaced with a common deep rep-

resentation of the RGB and depth views. Combined with

an encoder-decoder type of the network, the architecture

allows for a joint learning for the semantic segmentation

and depth estimation based on their common representa-

tion. This approach offers several important advantages,

such as using one modality at test time to build a com-

mon representation and to reconstruct the missing modality.

We reported a number of evaluation results on two standard
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RGB-D datasets. Both quantitative and qualitative results

validated the effectiveness of learning the common repre-

sentation from RGB and depth images.
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