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Abstract

Multimodal information (e.g., visible and thermal)

can generate robust pedestrian detections to facilitate

around-the-clock computer vision applications, such as au-

tonomous driving and video surveillance. However, it still

remains a crucial challenge to train a reliable detector

working well in different multispectral pedestrian datasets

without manual annotations. In this paper, we propose a

novel unsupervised domain adaptation framework for mul-

tispectral pedestrian detection, by iteratively generating

pseudo annotations and updating the parameters of our

designed multispectral pedestrian detector on target do-

main. Pseudo annotations are generated using the detec-

tor trained on source domain, and then updated by fixing

the parameters of detector and minimizing the cross entropy

loss without back-propagation. Training labels are gener-

ated using the pseudo annotations by considering the char-

acteristics of similarity and complementarity between well-

aligned visible and infrared image pairs. The parameters

of detector are updated using the generated labels by mini-

mizing our defined multi-detection loss function with back-

propagation. The optimal parameters of detector can be

obtained after iteratively updating the pseudo annotations

and parameters. Experimental results show that our pro-

posed unsupervised multimodal domain adaptation method

achieves significantly higher detection performance than

the approach without domain adaptation, and is competi-

tive with the supervised multispectral pedestrian detectors.

1. Introduction

Pedestrian detection has become an important and pop-

ular topic within the field of computer vision community

over the past few years [6, 1, 24, 32, 34, 33]. Given sensing

images captured in complex and changing real-world envi-

ronment, pedestrian detection solution is required to predict

the regions of human. It provides significant information

for various human-centric sensing applications. In order to

facilitate the around-the-clock robotic applications, such as
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(b)

Figure 1. Detection results of the current state-of-the-art multi-

spectral pedestrian detector well-trained using visible and thermal

image pairs from KAIST [11] dataset following the method pre-

sented by Cao et al. [4]. (a) Results on the KAIST dataset; (b)

Results on the CVC-14 [8] dataset. Please note that the visible im-

ages in KAIST dataset are transferred from RGB to gray level in

order to decrease domain differences between these two datasets.

autonomous driving and video surveillance, multimodal in-

formation (e.g., visible and thermal) have applied to gener-

ate more robust and reliable pedestrian detection results in

the recent years [15, 11, 13, 29, 14, 10].

Although significant improvements have been accom-

plished in the research area of multispectral pedestrian de-

tection recently, it still remains a crucial challenge to train

a reliable multispectral pedestrian detector working well in

different open benchmark datasets simultaneously. The de-

tection performance of a multispectral pedestrian detector

well-trained on one benchmark dataset may drop signifi-

cantly when applying to another one. Specifically, we uti-

lize the KAIST [11] and CVC-14 [8] benchmark datasets

to display this phenomenon. Considering that the visible

images from CVC-14 dataset are gray scale without much

color information, we transfer the visible images in KAIST

dataset from RGB to gray level in order to decrease do-
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Figure 2. Illustration of our proposed unsupervised domain adaptation framework for multispectral pedestrian detection. Pseudo annota-

tions are generated using the detector trained on source domain, and then updated by fixing the parameters of detector and minimizing the

cross entropy loss without back-propagation. Training labels are generated using the pseudo annotations by considering the characteristics

of similarity and complementarity between well-aligned visible and infrared image pairs. The parameters of detector are updated using the

generated labels by minimizing our defined multi-detection loss function with back-propagation. The optimal parameters of detector can

be obtained by iteratively generating pseudo annotations and updating the parameters of our designed multispectral pedestrian detector on

target domain.

main differences between these two datasets. For example,

as shown in Fig. 1, the current state-of-the-art multispec-

tral pedestrian detector [4] well-trained in the KAIST [11]

dataset can’t generate reliable detection results on the im-

ages from CVC-14 [8] dataset. This is because multispec-

tral pedestrian detectors well-trained on major open dataset

tend to overfit the training data, which is usually biased to

specific environments [36]. Different benchmark datasets

exist domain differences caused by varying conditions of

viewpoints, cameras, weather and etc.

To improve multispectral pedestrian detection perfor-

mance on target domain, multiple-cue information should

be generated to update the detector on target data. A na-

ture idea is to annotate data on the target domain. However,

densely annotating images is costly and unscalable, since

the target domain might change frequently. To overcome

this limitation, we propose a novel unsupervised domain

adaptation framework for multispectral pedestrian detec-

tion, by iteratively generating pseudo annotations and up-

dating the parameters of our designed multispectral pedes-

trian detector on target domain, as shown in Fig. 2. Pseudo

annotations are generated using the detector trained on

source domain, and then updated by fixing the parameters

of detector and minimizing the cross entropy loss with-

out back-propagation. Training labels are generated using

the pseudo annotations by considering the characteristics of

similarity and complementarity between well-aligned vis-

ible and infrared image pairs. The parameters of detec-

tor are updated using the generated labels by minimiz-

ing our defined multi-detection loss function with back-

propagation. We show in the experimental part that our de-

signed unsupervised multimodal domain adaptation method

achieves significantly higher detection performance than

the approach without domain adaptation, which can ver-

ify the effectiveness of our proposed approach. Comparing

with the supervised multimodal domain adaptation method

which need extremely time-consuming manual annotating

effort, our proposed unsupervised method barely increase

the training time because the additional processing time is

caused by the optimization of pseudo annotations without

back-propagation.

Overall, the contributions of this paper are summarized

as follows:

1 we demonstrate the usefulness of visible and thermal

data for the task of unsupervised domain adaptation for

multispectral pedestrian detection. Characteristics of

similarity and complementarity between well-aligned

visible and infrared image pairs can be used to adapt

the detector trained on an annotated source domain to

a target one without manual annotations. To the best of

our knowledge, this is the first attempt to explore char-

acteristics of visible and infrared images on the task

of unsupervised domain adaptation for multispectral

pedestrian detection.



2 We propose a novel unsupervised domain adaptation

framework for multispectral pedestrian detection, by

iteratively generating training labels and updating the

parameters of our designed multispectral pedestrian

detector on target domain. Training labels are gener-

ated using the pseudo annotations, which are updated

by fixing the parameters of detector and minimizing

the cross entropy loss without back-propagation. The

parameters of detector are updated using the generated

labels by minimizing our defined multi-detection loss

function with back-propagation.

3 Our proposed unsupervised multimodal domain adap-

tation method achieves significantly higher detec-

tion performance than the approach without domain

adaptation, and is competitive with the supervised

multispectral pedestrian detectors. Comparing with

the supervised approach which need extremely time-

consuming manual annotating effort, our proposed un-

supervised method barely increase the training time.

2. Related works

Pedestrian detection applications in intelligent robotics,

urban surveillance, and self-driving vehicles have been

widely spread. Constantly emerging pedestrian detectors

and related improvements have accelerated its practical ap-

plication. Zhang et al. [30] adopted a hybrid strategy that

extracting the candidate regions utilizing region proposal

networks [21] along with boosted classifiers [25]. Mao et

al. [19] proposed a powerful framework which implements

representations of channel features to benefit the detection

by additionally learning extra features to assist inference.

Brazil et al. [2] put detection and segmentation together

during the training period, where it suggests that weak box-

level annotations could bring benefit to the improvement of

detection accuracy. Wang et al. [27] designed a novel re-

pulsion loss to restrain the predicted boxes from shifting to

surrounding ground truth boxes. The superior visible pedes-

trian detection performance had achieved with the detectors

trained using the repulsion loss.

With the complementary informations given by infrared

images, multispectral pedestrian detection expands the re-

search field beyond the traditional visible images and turns

to be a potential solution to shrink the gap between ma-

chine and human observers. Hwang et al. [11] noticed the

phenomenon and released the first large-scale multispec-

tral pedestrian dataset (KAIST), containing well-aligned

visible and infrared image pairs annotated densely. Liu

et al. [13] methodically explored the performance of two-

stream deep convolutional neural networks where the multi-

information feature integrates, showing the architecture that

merges two-branch features on the middle-level convolu-

tional layers outperforms any other ones. König et al. [14]

adopted the architecture of RPN+BDT [30] in a fusion way,

which merges the features generated by two-branch middle-

level convolutional layers, in the purpose of multispectral

pedestrian detection. Researchers also paid attention to the

main difference between visible and infrared images, and

proposed illumination-aware weighting mechanism to give

extra information to detectors [10, 17]. Guan et al. [9] pre-

sented a unified multispectral fusion framework, which in-

fuses the multispectral semantic segmentation masks as su-

pervision for learning human-related features, getting more

accurate detection results. Li et al. [16] designed a cascaded

multispectral classification network to distinguish hard neg-

atives sample from pedestrian and human-like instances.

Cao et al. [4] developed a novel box-level segmentation su-

pervised networks, which can generate more accurate mul-

tispectral pedestrian detections on small-size training im-

ages. Experimental results showed that their proposed ap-

proach achieved the current state-of-the-art pedestrian de-

tection performance using visible and thermal images on

both accuracy and speed.

Although significant improvements have been accom-

plished in the research area of pedestrian detection recently,

it still remains a crucial challenge to train a reliable pedes-

trian detector working well in different open benchmark

datasets simultaneously. In the past few years, some re-

searchers have developed different unsupervised domain

adaptation schemes in order to avoid the annotation effort.

Wang et al. [26] presented a new method to achieve unsu-

pervised domain adaptation for a scene-specific pedestrian

detector. The approach explores multiple context cues (e.g.,

structures, locations and sizes) in the static video surveil-

lance to select high-confident training sample on target do-

main. Liu et al. [18] proposed an effect algorithm to it-

eratively select negative annotations on source domain and

annotate positive labels with high score on target domain

as the training samples on the task of unsupervised do-

main adaptation for pedestrian detection in surveillance sit-

uations. Wu et al. [28] designed a selective ensemble algo-

rithm to adapt the human detector based on Haar-like fea-

tures [31] and boosted classifier [25] to target domain. The

selective ensemble algorithm recombined the useful com-

ponents that are capable of generating human-related char-

acteristics related to target domain. Cao et al. [3] developed

a novel unsupervised domain adaptation method to adapt a

visible pedestrian detector on source domain to a multispec-

tral pedestrian detector on target domain without using any

annotations. An auto-annotation framework was designed

to iteratively annotate pedestrian labels.

As far as we know, it has not been solved yet to adapt a

multispectral pedestrian detector on source domain to target

one without manual annotations. Thus, we propose an un-

supervised domain adaptation framework for multispectral

pedestrian detection in this paper.
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Figure 3. Architecture of our proposed detector for joint training of multispectral pedestrian detections associated with visible and thermal

detection supervisions. It contains four major components: feature extraction, feature fusion, pedestrian detection, and detection super-

vision. The feature extraction module learn features from visible and thermal channels individually; the feature fusion module integrate

the visible and thermal features to generate multimodal feature maps; the pedestrian detection module learn the generated multimodal fea-

tures to produce multispectral pedestrian detections; the detection supervision module learn the individual features to generate visible and

thermal pedestrian detections, which provide additional feature information to facilitate the training of multispectral pedestrian detector.

3. Our approach

We first design a new multispectral pedestrian detector

and train it on source domain. Based on our designed detec-

tor, a novel unsupervised adaptation framework for multi-

spectral pedestrian detection is proposed by iteratively gen-

erating training labels and updating the parameters of de-

tector on target domain. Visible and thermal pseudo anno-

tations are generated using our designed detector trained on

source domain, and then updated by fixing the parameters

of detector and minimizing the cross entropy loss without

back-propagation. Training labels in visible, thermal and

multispectral channels are generated using the pseudo anno-

tations by considering the characteristics of similarity and

complementarity respectively, which are existing in well-

aligned visible and infrared image pairs. The parameters

of detector are updated using the generated labels by mini-

mizing our defined multi-detection loss function with back-

propagation.

3.1. Multispectral pedestrian detector

Inspired by the multi-task framework for joint training

of multispectral pedestrian detection and semantic segmen-

tation [9], we combine the visible and thermal pedestrian

detection supervision module with the box-level segmenta-

tion supervised deep neural networks [3] to build multispec-

tral pedestrian detector, as illustrated in Fig. 3. During the

training procedure, the bounding box annotations are used

to generate box-level segmentation mask as training labels

for the detector on multispectral, visible and thermal chan-

nels simultaneously.

Let {x, y} denote the training images x with box-level

segmentation masks y = {yi, i = 1, ..., I} (I pixels), where

yi = 1 represents the foreground pixel and yi = 0 denotes

the background one. At each iteration step, the parameters

θ is updated by minimizing a multi-detection loss function,

which is defined as:

θk+1 = argmin
θk

(Lc(yM , y, I |x; θk)

+Lc(yV , y, I |x; θ
k) + Lc(yT , y, I |x; θ

k));
(1)

where yM , yV and yT represent the prediction of pedestrian

regions on multispectral, visible and thermal channels; I

represents the set of training pixels on the box-level seg-

mentation masks; and Lc(y, y, I |x; θ) is the cross entropy

loss for classification which is defined as:

Lc(y, y, I |x; θ) = −
∑

i∈I

(yilog(yi) + (1− yi)log(1− yi)),

(2)

where yi ∈ [0, 1] represents the confident score which pre-

dicts the probability of the corresponding pixel belonging

to pedestrian regions, yi = 1 presents the foreground pixel

and yi = 0 denotes the background pixel.

The optimal parameters of detector θ∗ can be obtained

after iteratively updating the parameters θ. During the test-

ing phase, the output of our designed detector is multispec-

tral pedestrian detections, which are form of full-size heat

map predictions.



Figure 4. Framework of our proposed unsupervised multimodal domain adaptation model. At each iteration step, visible and thermal

pseudo annotations are updated by fixing the parameters of detector and minimizing the cross entropy loss without back-propagation.

Training labels in visible, thermal and multispectral channels are generated using the pseudo annotations by considering the characteristics

of similarity and complementarity respectively, which are existing in well-aligned visible and infrared image pairs. The parameters of

detector are updated using the generated labels by minimizing our defined multi-detection loss function with back-propagation.

3.2. Unsupervised multimodal domain adaptation

Based on our designed multispectral pedestrian detector,

we propose an unsupervised domain adaptation framework

for multispectral pedestrian detection by iteratively generat-

ing training labels and updating the parameters of detector

on target domain, as illustrated in Fig. 4. Firstly, the visible

and thermal pseudo annotations {ŷ0V , ŷ
0
T } are initialized us-

ing the visible and thermal pedestrian detection supervision

module of our designed detector, which has been trained on

source domain. At each iteration step k, the most confident

pseudo labels can be selected by fixing the parameters of de-

tector θk and minimizing the cross entropy loss function Lc.

The visible and thermal pseudo annotations {ŷk+1

V , ŷk+1

T }
are generated by adding the most confident pseudo labels

into the existing set {ŷkV , ŷ
k
T }.

Thus, the optimization of visible pseudo annotations

ŷk+1

V ∈ {0, 1} is defined as:

ŷk+1

V = argmin
ŷV

(Lc(yV , ŷV , I |x; θ
k)) ∪ ŷkV , (3)

and the thermal pseudo annotations ŷk+1

T ∈ {0, 1} is opti-

mized as:

ŷk+1

T = argmin
ŷT

(Lc(yT , ŷT , I |x; θ
k)) ∪ ŷkT . (4)

The optimized visible and thermal pseudo annotations

are used to generate training labels on visible, thermal and

multispectral channels, by considering the characteristics of

similarity and complementarity between well-aligned visi-

ble and thermal image pairs. The similarity means that there

exists obvious human-related features on both visible and

thermal channels, which can be used as a cue to train the

visible and thermal pedestrian detection supervision mod-

ule simultaneously. We consider the intersection of visible

and thermal pseudo annotations as the regions that exist ob-

vious human-related features on both channels. Thus, the

visible and thermal training labels are generated as:

yk+1

V = yk+1

T = ŷk+1

V ∩ ŷk+1

T . (5)

Considering that the pseudo annotations should not be

considered as negative training labels, we define the set of

visible training pixels as:

IV = I − ŷk+1

V + yk+1

V , (6)

and the set of thermal training pixels as:

IT = I − ŷk+1

V + yk+1

T . (7)

The complementarity means that visible and thermal

data can provide complementary information about objects

of interest to improve the detection accuracy. We con-

sider the union of visible and thermal pseudo annotations

as the complementary information to update the parameters

of multispectral pedestrian detector. Thus, the multispectral

training labels are generated as:

yk+1

M = ŷk+1

V ∪ ŷk+1

T . (8)

The parameters of detector are updated using the gen-

erated training labels by minimizing a multi-detection loss



function with back-propagation, which is defined as:

θk+1 = argmin
θk

(Lc(yM , yk+1

M , I |x; θk)

+Lc(yV , y
k+1

V , IV |x; θk)

+Lc(yT , y
k+1

T , IT |x; θk)).

(9)

The optimal parameters of detector θ∗ can be obtained

after iteratively updating the visible and thermal pseudo an-

notations {ŷV , ŷT } and the parameters θ.

4. Experiments

4.1. Datasets

In order to conduct our experiments on multimodal do-

main adaptation, we utilize the KAIST [11] and CVC-14 [8]

multispectral pedestrian benchmarks as the source and tar-

get domain datasets respectively.

The KAIST training dataset contains 50172 well-aligned

color visible and thermal infrared sequential image pairs

with 13853 dense pedestrian annotations. The images on

KAIST dataset were captured in various traffic environ-

ments with a resolution of 640× 512. Considering that the

visible images from CVC-14 dataset are gray scale without

much color information, we transfer the visible images in

KAIST dataset from RGB to gray level in order to decrease

domain differences between these two datasets. According

to the current state-of-the-art multispectral pedestrian de-

tector designed by Cao et al. [4], the training images are

downscaled to the resolution of 320× 256 through bilinear

interpolation and the bounding box annotations are trans-

fered to box-level segmentation masks to train the detectors

on source domain.

The CVC-14 training dataset consists of 7085 aligned

gray visible and thermal infrared sequential image pairs

with 8105 dense pedestrian annotations. It should be noted

that the manual annotations on the CVC-14 training dataset

are abandoned in our designed unsupervised multimodal

domain adaptation method. The CVC-14 testing dataset

contains 1433 aligned image pairs in which 706 pairs were

captured during daytime and others in nighttime. All the

images on CVC-14 dataset were captured in city traffic en-

vironments with a resolution of 640× 480. For a fair com-

parison with the current state-of-the-art multispectral pedes-

trian detector designed by Cao et al. [4], we downscale the

images to the resolution of 320×240 through bilinear inter-

polation during training and testing phase on target domain.

The annotations of CVC-14 test set under the reasonable

setting (pedestrians larger than 50 pixels [8]) are used to

evaluate detection performance.

4.2. Implementation Details

All the detectors are trained and tested using the

Caffe [12] deep learning framework with the image-centric

strategy to generate mini-batches. We set the batch size to

one. For the supervised multimodal domain adaptation, the

box-level segmentation masks are generated as training la-

bels using the bounding box annotations, following the mul-

tispectral pedestrian detection method designed by Cao et

al. [4]. Each stream in multispectral deep neural networks is

initialized using the parameters in VGG-16 [23] pre-trained

on the ImageNet dataset [22] and the other convolutional

layers are initialized according to Xavier initialization fol-

lowing [7]. The multispectral pedestrian detector on source

domain is trained with stochastic gradient descent (SGD)

algorithm [35] for the first 2 epochs with learning rate (LR)

0.001 and 1 more epoch with LR 0.0001 following [4]. The

multispectral pedestrian detector on target domain is fine-

tuned with SGD algorithm for 4 epochs with a low LR of

0.00005. In order to avoid gradient exploding, we utilize

the adjustable gradient clipping method [20] in the training

procedure to suppress exploding gradients.

4.3. Evaluation Metric

The final output of our approach contains human regions

and background regions classified by the confident scores

according to our frameworks prediction in a heat map style,

following the method presented by Cao et al. [4]. Consider-

ing the difference of results depicted in heat map and tradi-

tional bounding box style, to compare impartially, we turn

detection results in bounding box into heat map represen-

tation depending on the prediction scores. As its utilized

diffusely, we also adopt the average precision (AP) [5, 4] in

pixel-level as metric to quantify the comparison result be-

tween our method and others. More specifically, the average

precision (AP) refers to 4 concepts including true positive

(TP), true negative (TN), false positive (FP), false negative

(FN). Provided with the human-target labels, some bound-

ing box in this case, we call the pixels in bounding box

containing human-target foreground pixels, while those sur-

rounding ones is treated as background pixels. After we get

the final heat map, true positive (TP) counts those pixels

belonging to human-targets inferred correctly, true negative

(TN) counts those pixels that is not belonging to human-

targets but gets inferred, false positive (FP) counts those

background pixels inferred incorrectly, false negative (FN)

counts those background pixels inferred correctly. The pre-

cision is the ratio TP / (TP + FP), while the recall is the

ratio TP / (TP + FN). The AP depicts the shape of the pre-

cision/recall curve, and is defined as the mean precision at

each recalls by varying the threshold on detection scores.

4.4. Evaluation of UMDA

In order to verify the effectiveness of our proposed

approach, we evaluate the detection performance of

our proposed unsupervised multimodal domain adaptation

(UMDA) model with the detection model without multi-



modal domain adaptation (WMDA). The quantitative per-

formance (pixel-wise AP [4]) of UMDA and WMDA

are compared in Tab. 1. It is observed that our pro-

posed unsupervised multimodal domain adaptation method

achieves multispectral pedestrian detection performance

significantly higher than the approach without domain

adaptation, pixel-level AP [4] of UMDA is 31.37% higher

than the results of WMDA.

Table 1. Comparing the quantitative performance (pixel-wise

AP [4]) of UMDA and WMDA.

Model All-day Daytime Nighttime

WMDA 0.4886 0.3986 0.5584

UMDA 0.8023 0.7688 0.8503

In addition, the qualitative performance of multispectral

pedestrian detection results of UMDA and WMDA are com-

pared in Fig. 5. We can observe that the UMDA can gen-

erate accurate detections in the case that the performance

of WMDA is not satisfactory, as shown in Fig. 5 (a). Even

in the situation when WMDA can’t detect any pedestrian

regions, the UMDA is capable of generating accurate de-

tections.

The quantitative and qualitative comparison of UMDA

and WMDA can prove that our proposed unsupervised mul-

timodal domain adaptation framework is able to improve

the multispectral pedestrian detection performance on tar-

get domain with a large margin.

4.5. Comparison with the State­of­the­art

We define the supervised multimodal domain adapta-

tion (SMDA) model as our proposed multispectral pedes-

trian detector trained on target domain with manual annota-

tions. The proposed SMDA and unsupervised multimodal

domain adaptation (UMDA) models are compared with the

current state-of-the-art multispectral pedestrian detectors,

such as ACF+T+THOG [11], Fusion RPN+BDT [14], and

HMFFN320 [4] on target domain. Considering that these

detectors were trained on the KAIST multispectral pedes-

trian benchmark, we fine-tune these detectors on the CVC-

14 multispectral pedestrian dataset with supervised multi-

modal domain adaptation method.

The quantitative performance (pixel-wise AP [4]) of dif-

ferent multispectral pedestrian detectors are compared in

Tab. 2. It is observed that our proposed SMDA model out-

performs the current state-of-the-art supervised multispec-

tral pedestrian detectors, pixel-level AP [4] of SMDA is

0.91% higher than the results of HMFFN320 [4] and 5.18%

higher than the ones of Fusion RPN+BDT [14]. Consider-

ing that our proposed SMDA model incorporates the vis-

ible and thermal pedestrian detection supervision module

into the HMFFN320 [4] model, we can prove that the two-

stream detection supervision module is able to provide ad-

WMDA UMDA

(a)

(b)
Figure 5. Comparing the qualitative performance of multispec-

tral pedestrian detection results of UMDA and WMDA. (a) The

performance of WMDA is not satisfactory while the UMDA can

generate accurate detections; (b) WMDA can’t detect any pedes-

trian regions while the UMDA is capable of generating accurate

detections.

ditional feature information to facilitate the training of mul-

tispectral pedestrian detectors.

In Tab. 2, we observe that our proposed unsupervised

multimodal domain adaptation (UMDA) model achieves

competitive detection accuracy comparing with the super-

vised multispectral pedestrian detectors, pixel-level AP [4]

of UMDA is 6.67% lower than the results of SMDA and

8.84% higher than the ones of ACF+T+THOG [11]. In or-

der to investigate the gap between unsupervised and super-

vised multimodal domain adaptation models, we also com-

pare the qualitative performance of multispectral pedestrian

detection results of UMDA and SMDA in Fig. 6. When

human-related characteristics are distinct in either visible or



Table 2. Comparing the quantitative performance (pixel-wise

AP [4]) of UMDA and SMDA with the current state-of-the-

art methods. Please note that ACF+T+THOG [11], Fusion

RPN+BDT [14], HMFFN320 [4], and SMDA are supervised mul-

tispectral pedestrian detectors; UMDA is unsupervised domain

adaptation model for multispectral pedestrian detection.

Model All-day Daytime Nighttime

ACF+T+THOG [11] 0.7139 0.6926 0.7334

Fusion RPN+BDT [14] 0.8172 0.8103 0.8241

HMFFN320 [4] 0.8599 0.8355 0.8942

SMDA (ours) 0.8690 0.8485 0.8944

UMDA (ours) 0.8023 0.7688 0.8503

thermal image as illustrated in Fig. 6 (a), the multispectral

pedestrian detection results of UMDA are comparable with

the ones of SMDA. However, the UMDA may generate un-

satisfactory results comparing with the SMDA when either

the pedestrian samples appear indistinct or the background

is clutter. Our future research will focus on enhancing the

multispectral pedestrian detection methods to separate the

human-related features with background ones.

It should be mentioned that manual annotating of large-

scale multispectral pedestrian dataset is extremely time-

consuming. As mentioned in [3], it takes more than 80

hours to annotate the visible and infrared image pairs on

the KAIST training dataset, which contains 50172 aligned

visible and infrared sequential image pairs. Considering

that the CVC-14 training dataset consist of 7085 aligned

multispectral sequential image pairs, we consider that the

annotating time is more than 11 hours. In comparison,

our proposed unsupervised multimodal domain adaptation

(UMAD) framework can be used to train the multispec-

tral pedestrian detector without manual annotating effort.

It is worth mentioning that comparing with the training

procedure of supervised multispectral pedestrian detection

approach, the additional processing time of our proposed

UMAD method is the optimization of visible and thermal

pseudo annotations without back-propagation, which barely

increases the training time.

5. Conclusion

In this paper, we present an unsupervised multimodal

domain adaptation (UMAD) framework for multispectral

pedestrian detection, by iteratively generating pseudo an-

notations and updating the parameters of our designed

multispectral pedestrian detector on target domain with-

out manual annotating effort. Our proposed UMAD

method achieves multispectral pedestrian detection perfor-

mance significantly higher than the approach without multi-

modal domain adaptation (pixel-level AP [4] of UMDA is

31.37% higher than the results of WMDA) , and is com-

petitive with the supervised multispectral pedestrian detec-

tors (pixel-level AP [4] of UMDA is 6.67% lower than

SMDA UMDA

(a)

(b)
Figure 6. Comparing the qualitative performance of multispectral

pedestrian detections of UMDA and SMDA. (a) The results of

UMDA is comparable with SMDA; (b) The results of UMDA is

not satisfactory comparing with SMDA.

the results of SMDA and 8.84% higher than the ones of

ACF+T+THOG [11]). It is worth mentioning that the train-

ing time of our proposed UMAD framework is barely the

same as the training time of supervised approach. Our pro-

posed method can be adapted to other multimodal com-

puter vision tasks on unsupervised domain adaptation with-

out manual annotating effort.
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