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Abstract

Reasoning about the relationships between object pairs

in images is a crucial task for holistic scene understanding.

Most of the existing works treat this task as a pure visual

classification task: each type of relationship or phrase is

classified as a relation category based on the extracted vi-

sual features. However, each kind of relationships has a

wide variety of object combination and each pair of ob-

jects has diverse interactions. Obtaining sufficient training

samples for all possible relationship categories is difficult

and expensive. In this work, we propose a natural language

guided framework to tackle this problem. We propose to use

a generic bi-directional recurrent neural network to predict

the semantic connection between the participating objects

in the relationship from the aspect of natural language. The

proposed simple method achieves the state-of-the-art on the

Visual Relationship Detection (VRD) and Visual Genome

datasets, especially when predicting unseen relationships

(e.g., recall improved from 76.42% to 89.79% on VRD zero-

shot testing set).

1. Introduction

Scene understanding is one of the most primal topics

in the computer vision and machine learning communi-

ties. It ranges from the pure vision tasks, such as ob-

ject classification/detection [18, 31], semantic segmenta-

tion [23, 45], to the comprehensive visual-language tasks,

e.g., image/region caption [16, 39], scene graph genera-

tion [40, 38, 21], and visual question-answering [2, 37], etc.

Boosted by the impressive development of deep learning,

the research of pure version tasks is becoming gradually

mature. However, it is still challenging to let the machine

understand the scene at a higher semantic level. Visual rela-

tion detection is a promising intermediate task to bridge the

gap between the vision and the visual-language tasks and

has caught increasing attention [24, 21, 41, 42, 15].

Visual relation detection targets on understanding the

visually observable interactions between the detected ob-
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Figure 1: Visual relationships represent the interactions be-

tween observed objects. Each relationship has three ele-

ments: subject, predicate and object. Here is an example

image from Visual Genome [17]. Our proposed method is

able to effectively detect numerous kinds of different rela-

tionships from such image.

jects in images. The relationships can be represented in

a triplet form of 〈subject-predicate-object〉, e.g., 〈kid-on-

skate board〉, as shown in Figure 1. A natural approach for

this task is to treat it as a classification problem: each kind

of relationships/phrase is a relation category [32], as shown

in Fig. 2. To train such reliable and robust model, suffi-

cient training samples for each possible 〈subject-predicate-

object〉 combination are essential. Consider the Visual Re-

lationship Dataset (VRD) [24], with N = 100 object cate-

gories and K = 70 predicates, then there are N2K = 700k
unique combination in total. However, it contains only 38k
relationships, which means that each combination has less

than 1 sample on average. The previous classification-based

works can only detect the most common relationships, e.g.,

[32] studied only 13 frequent relationships.

To handle above challenges, another approach is to pre-

dict the object categories and their predicate types indepen-

dently. However, the semantic relationship between the ob-

jects and the predicates are ignored in this kind of method.

Consequently, the phrase which has the same predicate but

different agents is considered as the same type of relation-

ship. For instance, the ”clock-on-wall” (Fig. 2a) and ”dog-
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(a) picture-on-wall (b) dog-on-sofa (c) girl-playing-seesaw (d) kid-riding-horse (e) cat-siting on-horse

Figure 2: Examples of the wide variety of visual relationships, and its difference with the phrases. The solid bounding boxes

indicate the individual objects and the dash red bounding boxes denote a phrase.

on-sofa” (Fig. 2b) belong to the same predicate type ”on”,

but they describe different semantic scenes. On the other

hand, the type of relationship between two objects is not

only determined by their relative spatial information but

also their categories. For example, the relative position of

between the kid and the horse (Fig. 2d) is very similar as

the ones between the cat and the horse (Fig. 2e), but it is

preferred to describe the relationship ”cat-sitting on-horse”

rather than ”cat-riding-horse” in the natural language. It’s

also very rare to say ”person-sitting on-horse”.

Another important observation is that the relationships

between the observed objects are naturally based on our

language knowledge. For example, we would like to say

the kind ”sitting on” or ”playing” the seesaw but not ”rid-

ing” (Fig. 2c), even though it has the very similar pose as

that the kind ”riding” the horse in Fig. 2d. On the other

hand, similar categories have a similar semantic connec-

tion, for example, ”person-ride-horse” and ”person-ride-

elephant”, because ”horse” and ”elephant” belong to the

same category of animal. It is an important cue for in-

ferring the infrequent relationships from the frequent in-

stances. Fortunately, this semantic connection has been well

researched in the language model [26, 27]: an object class is

closed to another one if they belong to the same object cate-

gory and far from the one belonging to a different category

in the word-encoded space. The vivid example given in [26]

king-man=queen-woman reveals that the inherent seman-

tic connection between ”king” and ”man” is the same as

”queen” and ”woman”. Here, ”king” and ”queen” belong to

the same category (ruler) while ”man” and ”woman” in the

same category (person). Therefore, we resort the powerful

semantic connection in the language to handle the challeng-

ing problems in the task of visual relationship detection.

In this work, we propose a new framework for visual

relationship detection in large-scale datasets. The visual re-

lationship detection task is roughly divided into two sub-

tasks. The first task is to recognize and localize objects that

are present in a given image. It provides the visual cues

of ”what” and ”where” are the objects. The second task

is to reason about the interaction between an arbitrary pair

of the observed objects. It understands ”how” they con-

nect with each other in a semantic context. We show that

our model is able to scale and detect thousands of relation-

ship types by leveraging the semantic dependencies from

language knowledge, especially to infer the infrequent rela-

tionships from the frequent ones.

The major contributions of this work are as follows:

1. We propose to use a generic bi-directional recurrent

neural network (RNN) [33, 25] to predict the semantic

connection, e.g., predicate, between the participating

objects in the relationship from the aspect of natural

language knowledge.

2. The natural language knowledge can be learned from

any public accessible raw text, e.g., the image captions

of a dataset.

3. The visual features of the union boxes of the two par-

ticipating objects in the relationships are not required

in our method. State-of-the-art methods [24, 20, 21,

43, 6] rely on such features. Furthermore, our method

is able to infer infrequent relationships from the fre-

quent relationship instances.

4. Our model is competitive with the state-of-the-art

in visual relationship detection in the benchmark

datasets of Visual Relationship Dataset [24] and Vi-

sual Genome [17], especially when predicting unseen

relationships (e.g., recall improved from 76.42% to

89.79% on VRD zero-shot testing set).

2. Related Work

As an intermediate task connecting vision and vision-

language tasks, many works have attempted to explore the

use of visual relationship for facilitating specific high-level

tasks, such as image caption [4, 8], scene graph genera-

tion [40, 38], image retrieval [30], visual question and an-

swering (VQA) [2, 1, 37], etc. Compared to these works

which treat the visual relationship as an efficient tool for

their specific tasks, our work dedicates to provide a robust

framework for generic visual relationship detection.

Visual relationship detection is not a new concept in lit-

erature. [9, 11] attempted to learn four spatial relationships:
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Figure 3: The proposed framework for visual relationship detection. First, Faster RCNN is utilized to localize objects and

provide the classification probability of each detected object in the given image. Then, the possible meaningful object pairs

are selected as the candidate relationships. Each object converted into the corresponding word vector.

”above”, ”below”, ”inside”, and ”around”. [34, 40] de-

tected the physical support relations between adjacent ob-

jects: support from ”behind” and ”below”. In [32, 7], each

possible combination of visual relationship is treated as a

distinct visual phrase class, and the visual relationships de-

tection is transformed to a classification task. Such methods

suffer the long trail problem and can only detect a handful of

the frequent visual relationships. Besides, all above works

used the handcraft features.

In recent years, deep learning has shown its great power

in learning visual features [18, 35, 13, 36, 23]. The most

recent works [24, 38, 20, 21, 6, 44, 28, 29] use deep learn-

ing to learn powerful visual features for visual relationships

detection. In [38], the visual relationships are treated as

the directed edges to connect two object nodes in the scene

graph. The relationships are inferred along the processing

of constructing the scene graph in an iterative way. [20, 21]

focused on extracting more representative visual features

for visual relationships detection, object detection, and im-

age caption [21]. [6, 44] reasoned about the visual relation-

ships based on the probabilistic output of object detection.

[44] attempted to project the observed objects into relation

space and then predict the relationship between them with

a learned relation translation vector. [6] proposed a particu-

lar form of RNN (DR-Net) to exploit the statistical relations

between the relationship predicate and the object categories,

and then refine the estimates of posterior probabilities iter-

atively. It achieves substantial improvement over the exist-

ing works. However, most of the existing works [20, 21, 6]

require additional union bounding boxes which cover the

object and subject together to learn the visual features for

relationship prediction. Besides, their works are mainly de-

signed based on visual aspect. In this paper, we analyze

the visual relationships from the language aspect. The most

related works are [24, 43, 29], which proposed to use lin-

guistic cues for visual relationship detection. [24] attempted

to find a relation projection function to transform the word

vectors [26] of the participating objects into the relation

vector space for relationship prediction. [43] exploited the

role of both visual and linguistic representations and used

internal and external linguistic knowledge to regularize the

network’s learning process. [29] proposed a framework

for extracting visual cues from a given image and linguis-

tic cues from the corresponding image caption comprehen-

sively. In particular, for visual relationship detection in the

VRD dataset, 6 Canonical Correlation Analysis [10] mod-

els are trained. Different from their works, our method uses

a modified Bidirectional RNN (BRNN) to leverage the nat-

ural language knowledge, which is much simpler and out-

performs [10] regarding visual relationships prediction.

3. Visual Relationship Prediction

The general expression of visual relationships is

〈subject-predicate-object〉. The component ”predicate” can

be an action (e.g. ”wear”), or relative position (e.g. ”be-

hind”), etc. For convenience, we adopt the widely used

convention [32, 24] to characterize each visual relationship

in the triplet form as 〈s-p-o〉, such as 〈person-wave-bat〉.
Here, s and o indicate the subject and object category re-

spectively, while r denotes the relationship predicate. Con-

cretely, the task is to detect and localize all objects presented

in an image and predict all possible visual relationships be-

tween any two of the observed objects. Note that, ”no rela-
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Figure 4: Example of inferring infrequent relationships (the

left image) from frequent instances (the right image) guided

by natural language knowledge. In the middle image, the

blue dashed lines denote the distances between words. We

assume this distance as the inherent semantic connection in

natural language knowledge. The infrequent relationships,

which is connected with red dashed lines, can be inferred

from the frequent relationships.

tion” is also a kind of visual relationship between two ob-

jects in this work. For instance, in Fig. 2e, there is no ex-

plicit visual relationship between the ”cat” and the ”tree”.

An overview of our proposed framework is shown in Fig. 3.

It comprises multiple steps, as described as follows.

3.1. Object detection

Before reasoning about the visual relationships, objects

present in the given images must be localized as a set of

candidate components of the relationships. In this work,

the Faster RCNN [31] is utilized for this task because of its

high accuracy and efficiency. Each detected object comes

with a bounding box to indicate its spatial information, and

the predicted object class distribution po = {p1, · · · , pNo
},

No is the total number of object categories. And the location

of each detected object is denoted as (xs, ys, w, h), where

(xs, ys) is the normalized coordinate of the the bounding

box center on the image plane, and (w, h) is the normal-

ized width and height of the bounding box. The subscript

’s’ denotes the ’spatial’ and prevents from confusion with

following denotation.

3.2. Natural language guided relationship recogni­
tion

The word vectors embed the semantic context between

different words in a semantic space [26, 27]. The words

which have similar semantic meaning are close to each

other in the space, for example as shown in the middle im-

age of Fig. 4. On the other side, the distances between the

words in a semantic group and the words in different se-

mantic groups could be similar. Even though the distance

between different words in the embedded word space is cal-

culated as cosine distance [26], we assume that it is inher-

ent semantic relationships connecting the two words rather

than a mathematics distance in the embedding space. For

example, the semantic connection between ”person” and
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Figure 5: The standard BRNN model [33] (a), and (b) our

BRNN model used for predicate prediction. Our BRNN has

three inputs in sequence(subject, spatial information and

object) and one output (predicate prediction).

”horse” is normally ”ride”. ”horse” and ”elephant” are

in the same semantic group (animal). Therefore, ”ride” is

very likely the semantic connection between ”horse” and

”elephant”. This semantic property is important to lean the

infrequent relationship (e.g., ”person ride elephant, camel,

tiger, etc. ”) from the very normal relationship (”person ride

horse”) in the real world. Fig. 4 illustrates a brief process of

this inference.

Bi-directional RNNs (BRNNs) [33] have achieved great

successes for natural language processing tasks [14, 3, 5,

12]. The standard BRNN structure is shown in Fig. 5a. The

vector xt is the input of a sequence at time point t and yt
is the corresponding output, while ht is the hidden layer.

A BRNN computes the hidden states twice: a forward se-

quence
−→
h and a backward sequence

←−
h . Each component

can be expressed as follows:

−→
ht = H(Wx

−→

h
xt +W−→

h
−→

h

−→
h t−1 + b−→

h
), (1)

←−
ht = H(Wx

←−

h
xt +W←−

h
←−

h

←−
h t+1 + b←−

h
), (2)

yt = W−→
h y

−→
ht +W←−

h y

←−
ht + by. (3)

where W
x
−→

h
denotes the input-hidden weight matrix in for-

ward direction. b−→
h

denotes the bias vector of the hidden

layer in forward direction. H is the activation function of

the hidden layers. We use the RELU function [19] in this

work. The output sequence y is computed by iterating the

considering both of the forward and backward input se-

quence x. This process plays an important role in visual

relationship detection. Since in a relationship expression

〈subject-predicate-object〉, the order of the two objects is

decisive for the final prediction. E.g., 〈person-ride-horse〉 is

completely different from 〈horse-ride-person〉. A BRNN is

able to learn such difference caused by the input sequence.

This is the main reason why we used BRNN to learn the

linguistic cues between the objects categories.

Besides the object categories, the relative position of the
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Figure 6: The relative position of the two objects is crucial

for the relationship prediction.

participating objects is crucial for predicate prediction, as il-

lustrated in Fig. 6. Even though the object categories are the

same in all instances, the predicate between the ”person”

and the ”skateboard” is different in each image. There-

fore, we modify the standard BRNN with 3 sequential in-

puts [x1, x2, x3](Fig. 5b). x1 and x3 are the 300-dim word

vectors of the participating objects, respectively. They are

obtained by sum of the word vectors of each object category

weighted by the predicted probability (namely soft embed-

ding) formally defined as:

xi = poiWword2vec, i ∈ 1, 3 (4)

where Wword2vec ∈ RN×300 is the matrix of word vectors

of N object categories, and poi is the predicted distribu-

tion of object i. Here, the Glove algorithm [27] is used to

learn the word vectors because of its high efficiency and ro-

bust performance. x2 is the spatial configuration of the two

objects and is obtained as fellows. firs, the relative spatial

relationship of the two objects is represented as:

s =[xs
1, y

s
1, w1, h1,

xs
1 − xs

3

W
,
xs
1 − xs

3

H
,

log
w1

w3

, log
h1

h3

, xs
3, y

s
3, w3, h3],

(5)

where [xs
i , y

s
i , wi, hi] is the predicted bounding box of

object i ∈ 1, 3. WandH is the width and height of

the union bounding box of the two objects, respectively.
xs

1
−xs

3

W
,
xs

3
−xs

3

H
, logw3

w3

, log h1

h3

encodes their relative spatial

relationship which is important for relationship represen-

tation. s is then feed to a 2-layer MLP to achieve a 300-

dim sparse spatial representation x2 of visual relationship.

Eq. (3) are redefined in our framework as:

y =(W−→
h1y

−→
h1 +W−→

h2y

−→
h2 +W−→

h3y

−→
h3)+

(W←−
h1y

←−
h1 +W←−

h2y

←−
h2 +W←−

h3y

←−
h3) + by

.

(6)

person bat

person-waving-bat

person bat

person-waving-bat

person

person

person-behind-person

person-waving-bat

person-behind-person

Predicate Det. Phrase Det. Relationship Det.

Figure 7: Illustration of different task settings. The first row

depicts the inputs for different tasks and the second row is

the corresponding outputs. The solid bounding boxes lo-

calize individual objects while the dashed bounding boxes

localize the locations of phrases.

The first term is the information passed from the forward se-

quence and the second term is from the backward sequence.

The output y ∈ RK is the predicted distribution of the K

predicates.
−→
h0 is set as zero for forward pass, and so as

for
←−
h4 for backward pass. Notes that, any public accessible

corpus can be used to pretrain the word vectors, such as the

image caption of the COCO dataset [22]. The pretrained

word vectors can be further trained during the training of

the models. In Sec. 4, we will study the influence of the

word vectors learned from different corpus.

3.3. Joint recognition

At the test time, the categories of detected objects and the

predicate types are jointly recognized. The joint probability

of relationships and object detection can be written as:

p(Os, r, Oo) = p(Os)p(r|Os, Oo)p(Oo). (7)

where p(Os) and p(Oo) are the probabilities of categories

predicted by Faster RCNN of the subject and object respec-

tively. p(r|Os, Oo) is the probabilities of predicted predi-

cate given by the BRNN. On each test image, we find the

optimal prediction using:

〈O∗s , r
∗, O∗o〉 = argmax

Os,r,Oo

p(Os, r, Oo) (8)

4. Experiments

We evaluated our model on two datasets. (1) VRD [24]:

the dataset contains 5, 000 images with 100 object cate-

gories and 70 predicates. There are 38k visual relationship

instances that belong to 6, 672 relationship types. We fol-

low the train/test split in [24]. Note that, 1, 877 relation-

ships only present in the test set, which are used to eval-

uate the zero-shot relationship detention performance. (2)



Dataset Comparison
Predicate Detection Phrase Detection Relationship Detection

Rec@50 Rec@100 Rec@50 Rec@100 Rec@50 Rec@100

VG

LP [24] 26.67 33.32 10.11 12.64 0.08 0.14

SG [38] 58.17 62.74 18.77 20.23 7.09 9.91

MSDN [21] 67.03 71.01 24.34 26.50 10.72 14.22

DR-Net [6] 88.26 91.26 23.95 27.57 20.79 23.76

Ours 85.02 91.77 28.58 31.69 22.17 23.62

Ours+COCO [22] 83.87 92.17 27.26 30.87 20.54 23.05

Ours* 84.44 89.47 27.97 30.09 22.01 23.53

Ours† 12.79 16.07 5.85 7.58 0.12 0.53

VRD

LP [24] 47.87 47.87 17.03 16.17 14.70 13.86

CCA [29] - - 16.89 20.70 15.08 18.37

DR-Net [6] 80.78 81.90 19.93 23.45 17.73 20.88

LK [43] 85.64 94.65 26.32 29.43 22.68 31.89

Ours 84.39 92.73 28.63 31.97 20.63 21.97

Ours+COCO [22] 82.04 90.15 25.37 31.83 21.02 23.30

Table 1: Experimental results of different methods in the VRD [24] and VG [17]. We compare our method with the existing

works on the three tasks discussed in Sec. 4.1. ”*” indicates that the pretrained word vectors are further jointly trained, and

”†” denotes that the word vectors are randomly initialized and are jointly trained.

Visual Genome (VG) [17] dataset has 108K images and

998K relationships(74, 361 relationship types). We adopt

the data split defined by Li et al. [21] which has 96k images

among which 71k being used for training. There exist 150

object categories and 50 predicate types in this data setting.

4.1. Experiment settings

training details. In the experiments, the Faster RCNN with

VGG16 [35] is used as the underlying object detector and is

pretrained on the ImageNet dataset. The BRNN model has

two hidden layers, and each of them has 128 hidden states.

Its parameters are initialized randomly. The word vectors

(word2vec) are learned by Glove [27] from the caption an-

notation in VG [17]. The differences between fixing the

pretrained word vectors and training them jointly are ana-

lyzed. Additionally, the word2vec are trained on the image

caption from COCO dataset [22] to evaluate the general-

ization ability and the robustness of our method when the

sources of language knowledge are different.

Task settings. Visual relationship detection involves lo-

calizing and classifying both the objects and predicting

the predicate. We evaluate our model on three conven-

tion tasks [24]: (1) Predicate detection: In this task, the

ground truth locations and labels of objects are given. This

task aims at measuring the accuracy of predicate recogni-

tion without the effect of the object detection algorithms.

(2) Phrase detection: The input is an image and the ground

truth locations of objects, and the output is a set of relation-

ships. When all the three entities are correctly predicted and

the IoU between the predicted union boxes and the ground

truth is above 0.5, this prediction is considered as correct.

predicate [38] Ours predicate [38] Ours

on 99.71 99.39 under 56.93 83.44

has 96.47 98.47 sitting on 57.01 91.07

in 88.77 93.87 standing on 61.90 78.06

of 96.18 97.80 in front of 64.63 75.67

wearing 98.01 99.59 attached to 27.43 70.00

near 95.14 99.57 at 70.41 86.33

with 88.00 93.69 hanging from 0 67.50

above 70.94 86.33 over 0.69 56.00

holding 82.80 96.18 for 11.21 57.22

behind 84.12 93.30 riding 91.18 95.08

Table 2: The per-type predicate classification accuracy with

metric Rec@5. These predicate types are the Top−20 most

frequent cases in the dataset (sorted in descending order in

the table).

This task evaluates the model ability of object classifica-

tion and predicate prediction. (3) Relationship detection:

Given an image, a set of relationships are predicted. Not

only the two objects categories and their relation muss be

correctly predicted, but also the IoUs between the predicted

locations and their ground truth boxes of both subject and

object are over 0.5 simultaneously. This task evaluates the

model for both object and predicate detection. An illus-

tration for different task settings is shown in Fig. 7. For

evaluation, we follow the metrics for visual relationship de-

tection [38] by using the Top-K recall(denoted as Rec@K),

which is the fraction of ground truth instance which fall in
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Figure 8: Qualitative examples of visual relationships detection on VG [17] (the first row) and VRD [24] (the second row)

respectively. The first three columns illustrate the correctly recognized relationships in the images, while the last column is

the failure example (the ground truth relationship phrase is denoted in red in the image). The red bounding boxes denote

the subjects while the cyan boxes denote the objects. The relationships under the images are the Top − 5 most probable

relationships predicted by our method, in which the red denotes the ground truth.

the Top-K predictions.

4.2. Comparative results

Our method is compared with: LP [24] is the first work

of visual relationship detection. It’s deem as the baseline.

SG [38] is the first work which detects visual relation-

ships on the VG dataset. MSDN [21] and DR-Net [6] are

the most recent work and report the state-of-the-art perfor-

mance CCA [29] and LK [43] use the linguistic cues asso-

ciating with the visual cues for visual relation detection.

Table 1 shows the results of different methods. Our

method outperforms many of the existing works in the three

task settings in both datasets, and competitive with [6, 43]

on some tasks. From the table one can observe that,

even though the improvements for predicate detection from

SG [38] to DR-Net [6] are significant (28.52% for Rec@100

on VG), the improvements for phrase detection are much

less (7.34% for Rec@100 on VG). Because [6, 38] only use

visual features for visual relationship detection which can-

not well represent the semantic connection between the de-

pendencies of different object categories and their possible

predicates. On the other side, our method achieves sub-

stantial improvements on the phrase detection task. These

results show that our method can effectively pair the ob-

jects which have important relationships and precisely pre-

dict their predicate in the images.

LP [24] also used extracted word vectors for visual re-

lationship detection. However, the linear projection func-

tion in their model, which transforms the objects cate-

gories into the relationship vector space, is inadequate for

predicting numerous kinds of relationships. In contrast,

our BRNN model includes multiple nonlinear activation

function which can learn more representative features than

LP [24]. Our method also outperforms CCA [29], which

also used linguistic cues for visual relationship detection.

While the performance of our method is inferior to LK [43]

on the tasks of predicate detection (1.92% for Rec@100)

and relationship detection (9.92% for Rec@100), our ap-

proach performs better on the task of phrase detection

(2.54% for Rec@100).

Fig. 8 shows some qualitative examples of visual rela-

tionships detection in the two datasets. From the first three

columns we can see that the Top − 5 most probable pre-

dicted predicates between the objects are highly close to the

ground truth, e.g., on is very close to ride from the spatial

aspect. The rare relationship of 〈bear-ride-motorcycle〉 is

successfully predicted with the highest probability, which

shows that our model can learn very rare relationships from



Predicate Detection Phrase Detection Relationship Detection

Rec@50 Rec@100 Rec@50 Rec@100 Rec@50 Rec@100

LP [24] 8.45 8.45 3.75 3.36 3.52 3.13

CCA [29] - - 10.86 15.23 9.67 13.43

LK [43] 56.81 76.42 13.41 17.88 12.29 16.37

Ours 80.75 90.52 21.10 22.35 19.61 22.03

Table 3: Experimental results for zero-shot visual relationship detection on the VRD dataset [24].

the normal relationships guided by natural language knowl-

edge. The last column gives a failure example of each

dataset. 〈kid-in-toilet〉 and 〈man-above-bed〉 are both ab-

normal scenes in the real world. The natural language

knowledge extracted by our model guides the prediction to-

wards more probable results. Our current model fails to

detect abnormal interactions in the natural scenes.

We also trained the word vector using the image cap-

tion in COCO dataset [22], as shown in the row of

”Ours+COCO” in Table 1. We can see that the performance

of using COCO corpus decreases a little. The main reason

is that COCO dataset provides richer manual image cap-

tion annotation (5 captions per image) while the VG dataset

provides region caption which is more like a phrase rather

than a sentence. Therefore, the learned word vectors from

VG are more closed to the relationship triplet representa-

tion. nevertheless, ”Ours+COCO” also reports competitive

results, which proofs that, first our model is robust to dif-

ferent corpus source, second natural language knowledge

is useful for visual relationship detection. To further ex-

plore the effectiveness of natural language knowledge, one

extensional experiment is conducted by using randomly ini-

tialized word vectors and jointly training them. The exper-

imental results are listed in the row of ”Ours†” in Table 1.

The performance deteriorates seriously: it reports the worst

performance among the all methods. This phenomenon

demonstrates that, the semantic connection cannot well ex-

plored directly from the visual appearance information. It

also further proof that using natural language knowledge

for visual relationship detection is an effective and robust

scheme. There are many large-scale image datasets for ob-

ject detection. But most of them don’t have the annotation

for visual relationship detection. It could be an effective

solution to generate high-quality annotation of visual rela-

tionships using natural language knowledge automatically.

Table 2 shows the performance on predicting per-type

predicate of SG [38] and our method. These results are

calculated in the task of predicate detection. Our method

reports much better results than SG [38] on each type pred-

icate classification, in particular, 67.50% improvement on

the type hanging from. This table shows that our model

performs well in predicting frequent predicates.

4.3. Zero­shot learning

In the VRD dataset [24], there are 1, 877 relationships

in the test set that have never occurred in the training set.

Our trained model is utilized to detect these unseen rela-

tionships to evaluate its ability of inferring infrequent re-

lationships based on frequent relationships that have ever

seen, namely zero-shot learning. Table 3 shows the results

from different works. Our method outperforms LP [24],

CCA [29] and LK [43] by large margin, while only decreas-

ing slightly compared with the results shown in Table 1.

This table shows that our model has good generalization

ability: it can detect thousands of relationships, even the

instances that have never been seen.

5. Conclusion

This paper presents a natural language knowledge

guided method for detecting visual relationships in images.

The semantic connection between the object categories and

predicate are embedded in the word vector learned by nat-

ural language processing. We designed a BRNN model to

predict the predicate between two observed objects based on

this natural language knowledge and their spatial informa-

tion. In particular, our method is able to infer infrequent re-

lationships from the frequent relationship instances, which

is important to deal with the long tail problem. Experiments

on the Visual Genome and Visual Relationship Datasets

show substantial improvements compared with most exist-

ing works for visual relationship detection in terms of ac-

curacy and generalization ability. In the zero shot learning

task, the proposed method shows the potential for detection

thousands of relationships. In the future work, we would

like to extend our current model to an end-to-end frame-

work which can learn better features from image and lan-

guage knowledge from raw text simultaneously.
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