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Abstract

Human activity recognition plays an indispensable role

in a myriad of emerging applications in context-aware ser-

vices. Accurate activity recognition systems usually require

the user to carry mobile or wearable devices, which is in-

convenient for long term usage. In this paper, we design

WiVi, a novel human activity recognition scheme that is

able to identify common human activities in an accurate

and device-free manner via multimodal machine learning

using only commercial WiFi-enabled IoT devices and cam-

era. For sensing using WiFi, a new platform is developed

to extract fine-grained WiFi channel information and trans-

form them into WiFi frames. A tailored convolutional neural

network model is designed to extract high-level representa-

tive features among the WiFi frames in order to provide hu-

man activity estimation. We utilized a variant of C3D model

for activity sensing using vision. Following this, WiVi per-

forms multimodal fusion at the decision level to combine the

strength of WiFi and vision by constructing an ensembled

DNN model. Extensive experiments are conducted in an in-

door environment, demonstrating that WiVi achieves 97.5%

activity recognition accuracy and is robust under unfavor-

able situations, as each modality provides the complemen-

tary sensing when the other faces its limiting conditions.

1. Introduction

Nowadays, various emerging applications in the field

of human-computer interaction, home automation, gaming,

and smart healthcare usually require the knowledge of hu-

man activity for human-centric design [2]. For instance,

adaptive air conditioning based on human activity could not

only improve the user’s thermal comfort but also reduce the

building energy consumption. Continuous human activity

sensing could also enable personalized context-aware ser-

vices and improve individual well-being in terms of comfort

and health via activity analysis.

The sensing modalities for human activity recognition

can be classified into two categories: device-based and

device-free, from the user perspective. Device-based sys-

tems need cooperation from the user to perform inference.

In particular, the embedded sensors on mobile and wearable

devices (e.g. accelerometers, gyroscopes, and proximity

sensors) are leveraged to identify activities [5]. Requiring

user to carry or wear a particular set of devices is inconve-

nient for long-term usage even though they usually achieve

high recognition accuracy. Device-free systems infer the

activities in a non-intrusive manner. Vision constitutes the

most popular sensing modality in the device-free category.

Advanced convolutional neural networks (CNNs) perform-

ing image feature extraction have been proposed in recent

years and have enhanced the accuracy of human activity

identification significantly. But it also faces certain limi-

tations. Cameras may not capture valid appearance infor-

mation under poor illumination conditions, as well as with

occlusion [1]. Moreover, the RGB camera may also expose

users privacy. To address the privacy concern, researchers

proposed to utilize depth [6] or thermal infrared camera

[8]. Radio frequency (RF) wireless signals from special-

ized hardware platforms have been exploited for device-free

activity recognition since human body movements alter the

propagation of the signals [17]. However, the high cost of

the dedicated infrastructure involved with these modalities

and the intensive labor needed for their installations hinder

them from large-scale application.

In this paper, we propose WiVi, a novel device-free hu-

man activity recognition scheme that is able to identify

common human activities via multimodal machine learning

with commercial off-the-shelf (COTS) WiFi-enabled Inter-

net of Things (IoT) devices and COTS RGB Vision cam-

era. The reason for selection of WiFi as a sensing modality

for our scheme is that WiFi infrastructure is already widely

available in indoor environments, and can be opportunis-

tically utilized. We exploit a fine-grained channel mea-

surement from WiFi physical layer, namely Channel State

Information (CSI), which describes the detailed propaga-
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tion of WiFi signals from the transmitter (TX) to receiver

(RX) through multiple paths at the granularity of Orthogo-

nal Frequency Division Multiplexing (OFDM) subcarriers

[20]. CSI is able to reveal human activity in a non-intrusive

manner because the body movements during different activ-

ities would interfere with the signal propagation paths and

give rise to distinct variations of CSI. Thus, it’s the ideal

modality to provide complementary information to vision

sensing especially in poor lighting conditions. We first de-

velop a WiFi CSI sensing platform to obtain the CSI mea-

surements from COTS IoT devices directly, and then trans-

form them into WiFi CSI frames for multimodal fusion.

WiVi consists of a WiFi sensing module and a vision

sensing module that process WiFi frames and visual frames

for unimodal inference, followed by a multimodal fusion

module. A dedicated CNN architecture is designed as the

feature extractor and classifier of the WiFi sensing mod-

ule. We leverage a pre-trained C3D model on the Sports1M

Dataset [11] as the architecture for the vision sensing mod-

ule and fine-tune it with our vision dataset. WiVi conducts

multimodal fusion at the decision phase (after both WiFi

and vision has made a classification) because the mecha-

nism is more flexible and robust to unimodal failure com-

pared to feature level fusion. We concatenate the outputs

of the SoftMax layer from the two modules and feed them

into a four-layer deep neural networks (DNN) model to ex-

ploit the correlations and interactions between the modality

estimations. The output of the DNN model is considered

as the final activity estimation of WiVi. Real-world experi-

ments are conducted in an indoor environment, demonstrat-

ing that WiVi recognizes common human activities with an

accuracy of 97.5% by leveraging only two commercial WiFi

routers and one camera. It also provides consistent activity

inference under unfavorable lighting conditions. In general,

WiVi makes substantial steps towards device-free human

activity recognition using existing and pervasive vision and

WiFi infrastructure for context-aware service applications.

2. Related Work

2.1. Sensing Modalities for Activity Recognition

The device-based human activity recognition systems re-

quire active cooperation from the user. For instance, the

built-in inertial sensors on mobile devices, including ac-

celerometers, gyroscopes and proximity sensors, are lever-

aged to identify various activities [5]. Smart watches and

wristbands have also been exploited for activity recognition

[7]. Although fine-grained activity recognition can be ob-

tained from these sensors, the users have to carry these de-

vices all the time, which is inconvenient and invasive for

long-term usage.

The most popular sensing modality for device-free sys-

tems is visual frames captured by cameras. With the recent

development of deep CNN and the availability of large la-

beled visual dataset, the accuracy of vision-based activity

recognition has improved tremendously [2]. The fundamen-

tal challenges of vision-based approaches are poor illumi-

nation conditions and occlusion, since the camera requires

line-of-sight for sensing, as well as appropriate brightness

level. More importantly, using cameras for large-scale ac-

tivity recognition raises severe privacy concerns. Although

researchers also proposed to use depth camera [6] and ther-

mal infrared camera [8] to overcome the privacy issue, the

high cost of these cameras hinder them for ubiquitous im-

plementation. In addition to visual frames, wireless signals

have been exploited for device-free human activity recog-

nition. RF signals from specialized hardware platform (e.g.

USRP and FMCV) are utilized to identify human activities

and poses [17]. Its limitations include requirement of dedi-

cated wireless transmitters and receivers.

Meanwhile, WiFi has been acknowledged as the most

pervasive wireless signal in indoors. With the booming de-

velopment of IoT, billions of WiFi enabled IoT devices,

e.g. thermostats, smart switch, sound bar, and smart TV

are en route to being ubiquitous in buildings. Due to the

low cost and privacy preserving properties, WiFi has been

recognized as the primary sensing modality for occupancy

sensing in indoors [15]. Numbers of occupancy sensing ap-

plications, e.g. occupancy detection [21], crowd counting

[20], location estimation [18, 9], human identification [22],

and activity recognition [14], have been realized. The basic

rationale behind this is, when we perform different activi-

ties, the movement of our human body alters WiFi signal

propagation paths between the TX and RX. Thus, human

activities can be inferred by analyzing these changes and

variations at the RX without user instrumentation or extra

infrastructure. Furthermore, CSI, a fine-grained reading in

WiFi PHY layer became accessible recently, which can cap-

ture the subtle variations of WiFi signals caused by human

activities and can be analyzed at the RX. In this work, we

aim to explore the potentials of using WiFi CSI readings

from COTS WiFi-enabled IoT devices for device-free hu-

man activity recognition.

2.2. Multimodal Machine Learning

Multimodal machine learning is a modelling approach

which aims to extract the novelty of multiple sensing

modalities by processing and relating information from

them via fusion, co-learning and other methodologies. Mul-

timodal machine learning derives its motivation from the

fact that unimodal models have their own shortcomings

making them perform sub-optimally, e.g. vision-based

models do not work well when the images have issues with

respect to illumination, camera angle or background clutter.

In such cases, an ensemble of data from different modal-

ities prove beneficial. Additionally, human experience of



the world is multimodal, with vision, audio, language and

olfactory receptors among others, which encourages intro-

duction of multimodal learning.

Multimodal machine learning involves two major tech-

niques, Fusion and Co-learning, which essentially con-

tribute towards the novelty that it offers. Fusion involves

combining information from multiple sensing modalities,

either at the feature or decision level, to perform a pre-

diction. Feature based fusion integrates the features from

different modalities immediately after they are extracted,

whereas decision-based fusion performs integration after

each of the modalities has made a decision (e.g., classifi-

cation or regression). The feature-based fusion learns to

exploit the correlations between low-level features of dif-

ferent modalities and is simple to train as it involves train-

ing a single model. On the other hand, decision-based fu-

sion fuses the unimodal decisions using some mechanism

such as averaging, voting schemes or a learned model. In

retrospect, decision-based models have several important

advantages. First, they allow more flexibility by allowing

different models for different modalities. Second, they are

more robust to loss of data from single or multiple modal-

ities. We adopt the decision-based fusion for the current

research. Co-learning enables modelling of a resource poor

(lack of annotated data, noisy input) modality by exploiting

knowledge from other resource rich modalities. It achieves

the capability by utilizing state of the art transfer learning

and domain adaptation methods [12, 23]. Current day ma-

chine learning algorithms rely heavily on annotated data for

their training, whose availability needs significant human

effort. So, there has been a lot of discussion on improvis-

ing unsupervised learning methods. In such scenario, co-

learning proves worthy of its existence. We introduce newer

avenues where co-learning finds important application com-

bined with our proposed sensor fusion method.

3. Method

In this section, we first elaborate the sensing methodol-

ogy and designed models for WiFi and vision sensing mod-

ules. Then, we introduce the proposed ensemble learning

method for WiFi and vision multimodal fusion.

3.1. WiFi Sensing Module

3.1.1 WiFi CSI Sensing Platform

Due to the complexity of the indoor environment, WiFi sig-

nals usually travel through more than one path between TX

and RX. The signals get scattered and reflected by furni-

ture and human movements [16]. Since multiple antennas

are commonly equipped with commercial WiFi IoT devices,

signals obtained from them provide significant information

for data analytics. CSI provides sophisticated information

(e.g. amplitude attenuation, phase shift and time delay)

about how signals propagate between TX and RX at each

OFDM subcarrier through multiple paths [19]. We model

the WiFi signal as a channel impulse response h(τ). In

the frequency domain, since a sampled version of the sig-

nal spectrum on each subcarrier can be obtained from the

RX, the CSI measurements can be summarized as complex

numbers: Hi = ‖Hi‖e
j∠Hi , where ‖Hi‖ denotes the am-

plitude attenuation and ∠Hi represents the phase shift at the

ith subcarrier.

Most of the conventional CSI-based sensing systems

leverage the Intel 5300 NIC tool [4] to collect CSI measure-

ments. A laptop and an external dedicated WiFi adapter are

required to construct the receiver for CSI data acquisition

[13], which is impractical for pervasive implementation. To

relieve the requirement of introducing extra hardware, we

develop an OpenWrt firmware that can run on commercial

WiFi routers for CSI data acquisition. With our firmware,

the routers can analyze the data packets transmitted in the

WiFi traffic and extract the CSI measurements from those

frames. By upgrading the Atheros CSI Tool [13], our plat-

form can also provide CSI readings from all 114 subcarri-

ers for 40MHz channel when the routers are operating at 5

GHz. Thus, we obtain NTX ×NRX × 114 CSI streams at

each time for analyzing how human activities interfere with

WiFi signals, where NTX and NRX represent the number

of antennas on TX and RX, respectively.

3.1.2 WiFi Frames of Human Activities

To validate whether human activity information can be ex-

plored from WiFi CSI data, an experiment was conducted

in a (6.1m × 4.4m) conference room. We upgraded the

firmware of 2 TPLINK N750 WiFi routers to our WiFi CSI

sensing platform (served as TX and RX, put 3 meters apart).

A volunteer performed a series of common human activi-

ties, including sitting, standing, and walking near the TX-

RX pair. The CSI phase difference readings across 2 RX

antennas during the experiment are depicted in the second

row of Fig. 1. It can be seen from Fig. 1 that distinct pertur-

bations on CSI measurements are generated by different hu-

man activities. The readings were relatively smooth under

sitting and standing than walking. Based on these observa-

tions, we can conclude that unique information associated

with each activity can be revealed from CSI measurements.

Since the platform does not require user to carry or wear

any device, it is another ideal information source for device-

free human activity recognition. Furthermore, as depicted

in Fig. 1, the 2D WiFi CSI time-series data encapsulate the

same human activities as video, but from a different per-

spective.

Thus, we divide the CSI streams into small chunks with

a sliding window ∆t and transform them into WiFi frames.

Each frame includes n × m WiFi CSI pixels, which n is



Figure 1. The synchronized RGB frames and WiFi CSI phase difference frames of a series of human activities.

Figure 2. Designed CNN architecture of WiFi sensing module.

the number of consecutive samples and m represents the

number of subcarriers. These WiFi frames are leveraged as

the input dataset for constructing the WiFi sensing module

via deep learning.

3.1.3 Deep Learning Model for WiFi Sensing

The WiFi sensing module consists of the WiFi feature ex-

tractor and the WiFi classifier as demonstrated in Fig. 2.

The sampling rate at RX is 100 packets/s. By measur-

ing the CSI phase difference data from 114 subcarriers, we

constructed a WiFi frame with a size (100 × 114) every

time window ∆t. In order to extract the most discrimina-

tive local features from the raw WiFi frames. WiFi fea-

ture extractor constitutes two pairs of convolutional layer

and subsampling layer in a cascaded manner. The convo-

lutional layer extracts local features by using multiple fil-

ters slided over the input followed by nonlinear activation

functions. The ith feature map θlci in layer lc is given by

θlci = σ
(

∑

m∈Sl−1
wlc

i,m ∗ θlc−1

m + blci

)

, where σ denotes

the activation function. We use rectified linear unit (ReLU)

[10] f(z) = max(0, z) because it has better gradient prop-

agation than sigmoid activation function and at the same

time is also scale-invariant. Sl−1 represents a set of the

feature maps in the previous layer connected to the current

feature map, wlc
i,m is the convolutional kernel for feature

map generation and blci is the bias of the ith feature map in

the current layer lc. In order to reduce the number of fea-

tures and the computational complexity of the network, we

connect a subsampling layer after the convolutional layer to

progressively reduce the spatial size of the feature maps by

downsampling. The features are split into several partitions.

Then, in each partition, we use max operator to generate

the output. The activation function of above max-pooling

operation is: θlci = maxr
k=1

(θlc−1

k ). It preserves the scale-

invariant features from the previous convolutional layer. It

makes the detection of features invariant to changes in scale

[3].

Fig. 2 demonstrates the proposed CNN architecture for

the WiFi sensing module. In the first convolutional layer,

we leverage 32 filters with kernel size 5 × 5 to generate 32

feature maps with size 96 × 110. Following this, we re-

duce the dimensionality of the data while guaranteeing the

invariance of feature maps by max pooling with size 3 × 3
in the subsampling layer. We further process the data with

one more pair of convolutional and subsampling layers, and

obtain 64 feature maps with size 15×16 as shown in Fig. 2.

The WiFi feature extractor is concatenated with a WiFi clas-

sifier, which consists of two fully connected (FC) layers and

a SoftMax transformation layer. The output of the SoftMax

layer (Cw) are used (WiFi sensing estimation) for the mul-

timodal learning module of WiVi.

As an end-to-end network architecture, WiFi feature

extractor and the WiFi classifier are trained jointly via

backpropagation [3] to minimize the cross-entropy loss via

Adam optimizer.

3.2. Vision Sensing Module

Vision based human activity recognition has been exten-

sively studied in recent years and has achieved encourag-

ing accuracy due to the blooming development of CNNs.

Since human activity usually consists of a sequence of

body movements, a video that includes a sequence of RGB

frames is more informative than individual frame to capture

the temporal dependencies. Therefore, we utilize the Con-

volutional 3D (C3D) model [11] as the architecture for the



Figure 3. Architecture of WiVi.

Figure 4. Modified C3D model for vision sensing module. The

network parameters in solid line boxes are fixed and those in

dashed line boxes are trained.

vision sensing module (vision feature extractor and vision

classifier). 3D CNNs are more suitable for spatiotempo-

ral feature learning in videos compared to conventional 2D

CNNs. C3D is a 15-layer 3D CNN architecture dedicated

for action recognition.

In order to train our vision model in a more efficient man-

ner, the parameters are initialized with a pre-trained C3D

model on the Sports1M Dataset. We resize our RGB frames

to 128× 171 and cluster them into sequences of 16 frames,

the default input size for the pre-trained model. All the pa-

rameters in the C3D model remain fixed except the last two

FC layers. As presented in Fig. 4, these layers are replaced

with a FC layer (No. of neurons: 2048) and a FC layer (No.

of neurons: No. of activity categories). The parameters in

these layers are tuned via backpropagation with SGD as the

optimizer to minimize the loss function. The output of the

SoftMax layer (Cv) is used as the input (vision sensing es-

timation) for the multimodal learning module of WiVi.

3.3. Multimodal Learning Framework

With the activity estimation from the WiFi sensing mod-

ule (Cw), as well as the inference from the vision sensing

module (Cv), WiVi conducts multimodal fusion at the de-

cision phase via ensemble learning. Suppose there are k

synchronized WiFi and vision data samples with c activ-

ity categories. Then, the output of the SoftMax layer of

each sensing module is a k × c matrix, which represents

the categorical distribution over class labels. As depicted in

WiFi Vision WiViWiFi  Vision

Figure 5. Multimodal fusion with ensemble learning at decision

phase.

Fig. 5, we concatenate the outputs of the two modules as a

new input for the ensemble classifier with a size of k × 2c.
After comprehensive evaluations of popular ensemble clas-

sifiers, including majority voting, weighted average, logis-

tic regression and DNN, we found that the performance of

DNN achieves the highest classification accuracy. Thus, a

four-layer DNN model (128-256-128-No. of activity cate-

gories with ReLu as activation function) is leveraged as the

ensemble classifier for WiVi. During the training phase, the

DNN model is trained by leveraging the concatenated esti-

mations from WiFi and vision (k × 2c) with ground truth

being the categorical labels of the training dataset (k × c).

During the testing phase, the synchronized RGB frames and

WiFi frames are fed into the proposed C3D model and CNN

model to obtain unimodal estimations. Then, their estima-

tions are fed into the ensemble DNN model, and the output

of the DNN model is the final activity inference provided

by WiVi, CWiV i.

4. Experiments

4.1. Experimental Setup

To evaluate the human activity recognition performance

of WiVi, we deployed two TPLINK N750 WiFi routers for

WiFi data acquisition and one Logitech C270 webcam to



Figure 6. RGB frames (left) and WiFi frames (right) of various human activities under different illumination conditions.

Figure 7. A sample RGB frame and the floorplan of the testbed,

the locations of the camera and 2 WiFi router (one serves as trans-

mitter (RX) and one servers as receiver (RX).

obtain the vision data in a (6.1m× 4.4m) conference room.

The floorplan of the conference room, as well as the loca-

tions of the routers and cameras, are depicted in Fig. 7. The

firmware of the routers was upgraded to our CSI IoT plat-

form and they formed a WiFi TX-RX pair (3 meters apart)

to sense the nearby human activities. Existing WiFi net-

works were operated as usual during the entire experiments.

The webcam was installed below the ceiling of the room.

The visual frame size is (640 × 480). As shown in Fig. 7,

it captured the majority of human activities but with par-

tial occlusions, where parts of the human body, such as legs

and arms, were hidden by furniture during some phase of

the experiment.

Two volunteers participated in the experiments and per-

formed three common activities, sitting, standing and walk-

ing, at arbitrary locations in the conference room. one vol-

unteer conducted one of the activities for 5 - 6 seconds each

trace and we collected 50 traces per activity per volunteer.

During the experiments, both WiFi and video data were

collected simultaneously with only 4 milliseconds average

synchronization error. In addition to the common light-

on scenario, we also conducted all the experiments under

the light-off mode (to mimic poor lighting conditions) as

demonstrated in Fig. 6. Thus, there were 600 pairs of syn-

chronized WiFi and vision samples in total to fully evaluate

the performance of WiVi. The WiFi sensing module and vi-

sion sensing module were trained with the proposed CNN

model and C3D model respectively as introduced in Section

3.1.3 and Section 3.2. The multimodal fusion DNN model

is tuned afterwards. 80% of the dataset are used for training

and remaining 20% are leveraged for evaluation.

4.2. Accuracy Analysis

We first validate WiVi’s activity recognition perfor-

mance in terms of True Positive Rate (TPR), which is the

ratio of the number of times for identifying an activity cor-

rectly to the total number of activities performed, when

both WiFi and vision modules are operating in normal con-

dition (light-on). According to our experimental results,

WiVi achieves 97.5% cross-validation accuracy on average

for 3 different activities with 2 volunteers. By inheriting

the strengths of both WiFi and vision sensing modalities, it

outperforms each individual modality (WiFi: 95.83%; vi-

sion: 95%). Fig. 8 demonstrates the confusion matrices for

human activity recognition using (a) WiFi, (b) Vision and

(c) WiVi, respectively. It can be observed from Fig. 8 (a)

that the WiFi sensing module can distinguish walking from

other activities easily since the variance of WiFi CSI intro-

duced by walking is much higher than sitting and standing

(as depicted in Fig. 6). On the other hand, since both sit-

ting and standing are relative stationary activities, there are

some misclassifications in each category. With the appro-

priate lighting condition, vision sensing module achieves

high recognition accuracy, especially for sitting and stand-

ing as depicted in Fig. 8 (b). But it misclassified walking

to standing by 15% due to the frame similarities between

standing and certain moments during walking. As shown

in Fig. 8 (c), WiVi integrates the strength of WiFi mod-

ule (strong identification capability for walking), and the

advantage of vision module (strong classification capability

among sitting and standing) and achieve outstanding human

activity recognition performance. Moreover, the results pre-

sented in the bar chart in Fig. 9 also validates that its perfor-

mance is consistent across different users.



Figure 8. The confusion matrices for human activity recognition

using (a) WiFi, (b) Vision and (c) WiVi under lights on scenario.

Figure 9. WiVi’s human activity recognition accuracy (%) of two

volunteers under lights on scenario.

4.3. Robustness Analysis

To validate the robustness of WiVi under unfavorable

sensing circumstance, we turned off all the lamps in the con-

ference room to create a poor lighting condition. The sec-

ond row of Fig. 6 demonstrates the sample RGB frames and

WiFi frames captured for different activities under the light

off scenario. As it can be seen from these figures, although

the table is still partially looming due to the reflection of

the light from outside the conference room, other places are

comparably dark. This directly led to performance degra-

dation of vision sensing module as presented in Fig. 10 (a).

Its recognition accuracy is only 46.67%, which cannot meet

the basic requirement of any context-aware services.

On the other hand, by comparing the WiFi images un-

der lights on and lights off conditions in Fig. 6, it can be

observed that the degree of perturbations on WiFi readings

Figure 10. The confusion matrices for human activity recognition

using (a) Vision and (b) WiFi under lights off scenario.

of same human activities are similar with each other and

distinct from other activities, regardless the variations of

brightness level. By leveraging our designed inference net-

work, the WiFi sensing module provides 95.83% activity

recognition accuracy as shown in Fig. 10 (b). Thus, WiVi

contains a brightness detection module, that ceases the esti-

mation process of the vision sensing module when poor il-

lumination is detected and makes WiVi rely on the estimates

from the WiFi sensing module to ensure the high recogni-

tion accuracy.

Similarly, the performance of WiFi sensing module may

also degrade under certain unfavorable conditions, e.g.

when a huge metal object blocks the antennas of TX or RX,

or the RX IoT device experiences severe wireless interfer-

ences or network congestions that cannot parse the data nor-

mally. So, we use the averaged signal-to-noise ratio (SNR)

at RX as an indicator to determine whether the WiFi sens-

ing module should be operated or not. If the SNR reading is

less than a predefined empirical threshold, the WiFi module

is postponed and the estimation of the vision module is the

output of WiVi. In this manner, WiVi guarantees the activ-

ity recognition performance when one of the modalities is

malfunctioned under adversarial circumstances.

5. Conclusion

In this paper, we proposed WiVi, an innovative human

activity recognition scheme that is able to identify com-

mon human activities in an accurate and robust manner by

conducting multimodal fusion of the pervasive WiFi sig-

nals from COTS IoT devices and RGB frames from cam-

eras via deep learning and ensemble learning. A WiFi CSI

sensing platform is developed that enables CSI data acquisi-

tion from COTS IoT devices and also transforms them into

WiFi frames. A tailored CNN model is designed to extract

representative features among the WiFi frames and provide

estimations from the WiFi sensing module. A modified

C3D model is fine-tuned as the vision sensing module to

fit our activity dataset. Following that, we designed a DNN

model as the ensemble classifier to reveal the correlations

and interactions between the inferences provided by the two



modalities. The output of DNN is the final activity estima-

tion of WiVi. We implemented WiVi using only two com-

mercial routers and one camera and connected experiments

in real-world indoor space. According to the experimen-

tal results, WiVi achieves 97.5% human activity recognition

accuracy which inherits the strengths of both WiFi and vi-

sion, and its performance is consistent even under harsh or

unfavorable conditions. Future works include multimodal

fusion with other modalities (e.g. acoustic signals), cross-

modal supervision and transfer learning across modalities.
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