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Abstract

From speech to images, and videos, advances in machine

learning have led to dramatic improvements in the qual-

ity and realism of so-called AI-synthesized content. While

there are many exciting and interesting applications, this

type of content can also be used to create convincing and

dangerous fakes. We seek to develop forensic techniques

that can distinguish a real human voice from synthesized

voice. We observe that deep neural networks used to syn-

thesize speech introduce specific and unusual spectral cor-

relations not typically found in human speech. Although not

necessarily audible, these correlations can be measured us-

ing tools from bispectral analysis and used to distinguish

human from synthesized speech.

1. Introduction

Recent advances in AI-synthesized content-generation

are leading to the creation of highly realistic audio [11, 4],

image [6, 5], and video [10, 7, 14, 13, 1]. While there

are many interesting and artistic applications for this type

of synthesized content, these same techniques can also be

weaponized to, for example, create a video of a world leader

threatening another nation leading to an international cri-

sis, or a video of a presidential candidate saying something

inappropriate which, if released 24 hours before an elec-

tion, could lead to interference with a democratic election,

or a video of a CEO privately claiming that her company’s

profits are down leading to global stock manipulation. Ad-

vances in deep learning have led to the development of syn-

thesis tools for creating the video and audio that can create

these types of fakes.

As these synthesis tools become more powerful and

readily available, there is a growing need to develop foren-

sic techniques to detect the resulting synthesized content.

We describe a technique for distinguishing human speech

from synthesized speech that leverages higher-order spec-

tral correlations revealed by bispectral analysis. We show

that these correlations are not present in a wide variety of

recorded human speech, but are present in speech synthe-

sized with several state of the art AI systems. We also show

that these correlations are likely the result of fundamental

properties of the synthesis process, which would be diffi-

cult to eliminate as a counter measure.

In the general area of audio forensics, there are a num-

ber of techniques for detecting various forms of audio

spoofing [15]. These techniques, however, do not explic-

itly address the detection of synthesized speech. Previous

work [3] showed that certain forms of audio tampering can

introduce the same type of higher-order artifacts that we ex-

ploit here. This previous work, however, did not address the

issue of synthesized content.

In comparing different features and techniques for

synthetic-speech detection, the authors in [12] found that

features based on high-frequency spectral magnitudes and

phases are most effective for distinguishing human from

synthesized speech. These features are based on first-order

Fourier coefficients or their second-order power spectrum

correlations. In contrast to these first- and second-order

spectral features – which might be easy to adjust to match

human speech – we explore higher-order polyspectral fea-

tures which are both discriminating and should prove to be

more difficult to adjust by the synthesizer.

2. Methods

We begin by describing the data set of human and syn-

thesized content that we recorded and created. We then

describe the polyspectral analysis tools that underlie our

technique followed by a qualitative assessment of the dif-

ferences in the bispectral properties of human and synthe-

sized content. We conclude this section with a description

of a simple classifier that characterizes these differences for

the purposes of automatically distinguishing between hu-

man and synthesized speech.

2.1. Data set

We collected a data set consisting of 1, 845 human and

synthesized speech recordings. The human speech are ob-

tained from nine people (five male and four female). These
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recordings were extracted from various high-quality pod-

casts. Each recording averaged 10.5 seconds in length.

The same texts spoken by the human subjects (tran-

scribed from the recordings) were used to synthesize au-

dio samples using various automatic text-to-speech synthe-

sis methods including Amazon Polly, Apple text-to-speech,

Baidu DeepVoice, and Google WaveNet1. We also include

samples generated using the Lyrebird.ai API, which, un-

like other synthesis methods, generates personalized speech

styles (because of limited access to this API, the texts

spoken were not matched to the human and other synthe-

sized speech). In synthesizing these recordings, a range of

speaker profiles was selected to increase the diversity of the

synthesized voices.

2.2. Bispectral Analysis

In this section, we describe the basic statistical tools used

to analyze audio recordings. The bispectrum of a signal

represents higher-order correlations in the Fourier domain.

An audio signal y(k) is first decomposed according to

the Fourier transform:

Y (ω) =

∞
∑

k=−∞

y(k)e−ikω, (1)

with ω ∈ [−π, π]. It is common practice to use the

power spectrum of the signal P (ω) to detect the presence

of second-order correlations, which is defined as:

P (ω) = Y (ω)Y ∗(ω), (2)

where ∗ denotes complex conjugate. The power spectrum

is, however, blind to higher-order correlations, which are of

primary interest to us. These third-order correlations can

be detected by turning to higher-order spectral analysis [9].

The bispectrum, for example, is used to detect the presence

of third-order correlations:

B(ω1, ω2) = Y (ω1)Y (ω2)Y
∗(ω1 + ω2). (3)

Unlike the power spectrum, the bispectral response reveals

correlations between the triple of harmonics [ω1, ω1, ω1 +
ω1], [ω2, ω2, ω2+ω2], [ω1, ω2, ω1+ω2], and [ω1,−ω2, ω1−
ω2]. Note that, unlike the power spectrum, the bispectrum

in Equation (3) is a complex-valued quantity. From an inter-

pretive stance it will be convenient to express the complex

bispectrum with respect to its magnitude:

|B(ω1, ω2)| = |Y (ω1)| · |Y (ω2)| · |Y (ω1 + ω2)|, (4)

1Sources: Amazon Polly aws.amazon.com/polly/, Apple

text-to-speech API developer.apple.com/documentation/

appkit/nsspeechsynthesizer, Baidu DeepVoice r9y9.

github.io/deepvoice3_pytorch/, and Google WaveNet

r9y9.github.io/wavenet_vocoder/.

and phase:

∠B(ω1, ω2) = ∠Y (ω1) +∠Y (ω2)−∠Y (ω1 +ω2). (5)

Also from an interpretive stance it is helpful to work with

the normalized bispectrum [2], the bicoherence:

Bc(ω1, ω2) =
Y (ω1)Y (ω2)Y

∗(ω1 + ω2)
√

|Y (ω1)Y (ω2)|2|Y (ω1 + ω2)|2
. (6)

This normalized bispectrum yields magnitudes in the range

[0, 1].
In the absence of noise, the bicoherence can be estimated

from a single realization as in Equation (6). However in the

presence of noise some form of averaging is required to en-

sure stable estimates. A common form of averaging is to

divide the signal into multiple segments. For example the

signal y(n) with n ∈ [1, N ] can be divided into K seg-

ments of length M = N/K, or K overlapping segments

with M > N/K. The bicoherence is then estimated from

the average of each segment’s bicoherence spectrum:

B̂c(ω1, ω2) =
1

K

∑

k
Yk(ω1)Yk(ω2)Y ∗

k
(ω1 + ω2)

√

1

K

∑

k
|Yk(ω1)Yk(ω2)|2

1

K

∑

k
|Yk(ω1 + ω2)|2

.

(7)

Throughout, we compute the bicoherence with a segment

length of N = 64 with an overlap of 32 samples.

2.3. Bispectral Artifacts

Shown in Figure 1 is the bicoherent magnitude and phase

for three different human speakers. Shown in the second

to the sixth rows are the bicoherent magnitude and phase

for five different synthesized voices, as described in Sec-

tion 2.1. Each bicoherent magnitude and phase panel are

displayed on the same intensity scale. At first glance, there

are some glaring differences in the bicoherent magnitude

(with the exception of Apple) between the human and syn-

thesized speech. There are also strong differences in the

bicoherent phases across all synthesized speech.

Because most synthesis methods use deep neural net-

works, we hypothesize that these bicoherence differences

are due to the underlying speech-synthesis network archi-

tecture and, in particular, that long-range temporal connec-

tions give rise to the unusual spectral correlations. To de-

termine if this might be the case, we created three “clipped”

WaveNet network architectures in which the network con-

nectivity was effectively reduced. This was done by first

noticing that WaveNet employs 3-tap filters in its convolu-

tional layers. We, therefore, truncate the full WaveNet mod-

els in which the left-most value of the convolution filter in

one of three layers was fixed at a value of zero2. With a

2A more direct approach is to use simply use a 2-tap filter. This, how-

ever, would require retraining the entire model and so we adopted the sim-

pler approach of zeroing out one of the filter values.
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speaker 1 speaker 2 speaker 3

Human

Amazon

Apple

Baidu

Lyrebird

WaveNet

WaveNet

(low clipped)

WaveNet

(medium clipped)

WaveNet

(high clipped)

Figure 1. Bicoherent magnitude and phase for human speakers and five different synthesized voices. Shown in the lower three rows are the

results for three different clipped versions of the WaveNet architecture. The magnitude plots are displayed on an intensity scale of [0, 1]
and the phase plots are displayed on a scale of [−π, π]. Note the generally larger magnitudes and the stronger phase correlations in the

synthesized speech as compared to the human speech, and the reduction in magnitude for the clipped WaveNet architectures.
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total of 24 convolutional layers we performed this manipu-

lation at level 24 (closest to the output level), 12, or 1 (clos-

est to the input level). The effective network clipping was

more pronounced for the manipulations at the levels closest

to the input level, as this clipping propagates through the

entire network.

Shown in the last three rows of Figure 3 are the result-

ing bicoherence magnitudes and phases for three record-

ings synthesized with these three networks with increasing

amounts of “clipping”. As can be clearly seen, the bico-

herence magnitude reduces with an increasing reduction in

network connectivity, and begins to appear more like the

human speakers in the first row of Figure 3. At the same

time, there is little impact on the bicoherence phase, most

likely because our network manipulation did not remove all

of the long-range connections. Although this does not prove

that the network architecture is solely responsible for the in-

creased bicoherence properties, it provides preliminary ev-

idence to suggest that this is the case. We note that the ar-

tifacts from Apple are more subdued than others. This may

be related to the fact that Apple’s quality of speech is sig-

nificantly less realistic than Google and Amazon, possibly

because the underlying technique is not based on the same

type of network architecture that we believe is introducing

the polyspectral correlations. Regardless of precisely why

these correlations are introduced, we next show that the bi-

coherence differences can be used to automatically distin-

guish between human and synthesized speeches.

2.4. Bispectral Classification

The bicohernece, Equation (7), is computed for each hu-

man and synthesized speech, from which the bicoherence

magnitude and phase are computed. These two-dimensional

quantities are normalized such that the magnitude and phase

for each frequency ω1 are normalized into the range [0, 1] by

subtracting the minimum value and dividing by the result-

ing maximum value.

The normalized magnitude and phase are each character-

ized using the first four statistical moments. Let the random

variable M and P denote the underlying distribution for the

bicoherence magnitude and phase. The first four statistical

moments are given by:

• mean, µX = EX [X]

• variance, σX = EX [(X − µX)2]

• skewness, γX = EX

[

(

X−µX

σX

)3
]

• kurtosis, κX = EX

[

(

X−µX

σX

)4
]

where EX [·] is the expected-value operator with regards to

random variable X . From the magnitude X = M and phase
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Figure 2. A 2-D slice of the full 8-D statistical characterization of

the bicoherence magnitude and phase. The open blue circles cor-

respond to human speech and the remaining filled colored circles

correspond to synthesized speech. Even in this reduced dimen-

sional space, the human speech is clearly distinct from the synthe-

sized speech.

X = P , these four moments are estimated by replacing the

expected-value operator with an average. With this statis-

tical characterization, each recording is reduced to an 8-D

feature vector.

Shown in Figure 2 is a scatter plot of the mean bicoher-

ence magnitude versus the mean bicoherence phase for the

human speech and each type of synthesized speech. This

figure illustrates some interesting aspects of the bicoherence

statistics of the human and synthesized recordings. Even in

this reduced-dimensional space that does not account for

variance, skewness, or kurtosis, each type of signal is well

clustered and (with the exception of Amazon and WaveNet)

distinct from the other types. This suggests that it will be

relatively straight-forward to distinguish between these dif-

ferent recordings.

Also shown in Figure 2 are six speech samples syn-

thesized with a more recent generative adversary network

(GAN) based model [8]3. Although the GAN-based model

has a different synthesis mechanism, the synthesized con-

tents still exhibit distinct bispectral statistics.

The scatter plot in Figure 2 suggests two possible ap-

proaches to building a classifier. A one-class non-linear

support vector machine (SVM) or a collection of linear clas-

sifiers. We, primarily for simplicity, choose the latter. In

particular, we train a linear classifier to distinguish each

3There is no code publicly available and the six samples were down-

loaded from fangfm.github.io/crosslingualvc.html.
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Figure 3. ROC curve for binary classification of human versus syn-

thetic speech (solid red line). The dashed and dotted lines corre-

spond to the accuracies for these same recordings with varying

amounts of additive noise. See also Figure 4.

category of recording – human, Amazon, Apple, Baidu,

Google, and Lyrebird – from all other recordings. Fol-

lowing this strategy, five separate logistic regression clas-

sifiers are trained to distinguish each synthesized audio

from all other categories. For example, the first classifier

is trained to distinguish Amazon recordings from Apple,

Baidu, Google, Lyrebird, and human recordings. Our full

data set consists of 100 human recordings, and 800 Ama-

zon (8 speaker profiles), 400 Apple (4 speaker profiles),

100 Baidu (1 speaker profile), 400 Google (4 speaker pro-

files), and 45 Lyrebird recordings (5 recordings for each of

9 speaker profiles). Because of the across class imbalance,

the training data set consisted of 70% of these samples with

a maximum of 90 samples per category, with the remaining

data used for testing.

The logistic regression classifier is implemented using

scikit-learn4. At testing, a speech sample is clas-

sified by each classifier (Amazon, Apple, Baidu, Google,

and Lyrebird). If the maximum classification score across

all five classifiers is above a specified threshold, then the

recording is classified as synthesized, otherwise it is classi-

fied as human.

3. Results

We test the performance of distinguishing human speech

from synthesized speech based on the 8-D summary bico-

herence statistics. Shown in Figure 3 are the receiver opera-

4scikit-learn.org
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Figure 4. Confusion matrix for classifying a recording as human

or as synthesized by one of five techniques. See also Figure 3.

tor characteristic (ROC) curves for this binary classification.

The solid curve with an area under the curve (AUC) of 0.99
corresponds to the original quality recordings. The remain-

ing dashed/dotted colored curves correspond to the record-

ings that were laundered with varying amounts of additive

noise (with a signal-to-noise ratio (SNR) between 20 and 40
dB) followed by re-compression at a quality of 128 kilobits

per second (kbit/s). At high SNR, the AUC remains above

0.98, and the AUC decreases with increasing amounts of

additive noise.

When the original recordings are recompressed at a

lower quality of 64 kbit/s, the overall AUC remains high

at 0.99 suggesting that the bispectral statistics are robust to

recompression.

Shown in Figure 4 is the confusion matrix for the multi-

class classification showing that the differences in bicoher-

ence statistics are sufficient not only to distinguish human

from synthesized speeches but also, with a reasonable de-

gree of accuracy, to distinguish between different types of

synthesized speech.

4. Discussion

We have developed a forensic technique that can distin-

guish human from synthesized speech. This technique is

based on the observation that current speech-synthesis al-

gorithms introduce specific and unusual higher-order bis-

pectral correlations that are not typically found in human

speech. We have provided preliminary evidence that these

correlations are the result of the long-range correlations in-
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troduced by the underlying network architectures used to

synthesize speech. This bodes well for us in the forensic

community as it appears that these network architectures are

also what is giving rise to more realistic sounding speech

(despite the unusual bispectral correlations). More work,

however, remains to be done to more precisely understand

the specific source of the unusual bispectral correlations.

As with any forensic technique, thought must be given

to counter-measures that our adversary might adopt. While

it would be straight-forward to match first-order spectral

correlations between human and synthesized speech, the

higher-order spectral correlations are not so easily matched.

In particular, we know of no closed-form solution for invert-

ing the bispectrum or bicoherence. It remains to be seen if

other techniques like generative adversarial networks can

synthesize audio while matching the bispectral artifacts that

currently can be used to distinguish human from synthe-

sized speech.

Acknowledgment

This research was developed with funding from Mi-

crosoft, a Google Faculty Research Award, and the Defense

Advanced Research Projects Agency (DARPA FA8750-16-

C-0166). The views, opinions, and findings expressed are

those of the authors and should not be interpreted as repre-

senting the official views or policies of the Department of

Defense or the U.S. Government.

References

[1] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and

Alexei A Efros. Everybody dance now. arXiv preprint

arXiv:1808.07371, 2018. 1

[2] J.W.A. Fackrell and Stephen McLaughlin. Detecting

nonlinearities in speech sounds using the bicoherence.

Proceedings of the Institute of Acoustics, 18(9):123–

130, 1996. 2

[3] Hany Farid. Detecting digital forgeries using bispec-

tral analysis. Technical Report AI Memo 1657, MIT,

June 1999. 1

[4] Yu Gu and Yongguo Kang. Multi-task WaveNet: A

multi-task generative model for statistical parametric

speech synthesis without fundamental frequency con-

ditions. In Interspeech, Hyderabad, India, 2018. 1

[5] Tero Karras, Timo Aila, Samuli Laine, and Jaakko

Lehtinen. Progressive growing of GANs for im-

proved quality, stability, and variation. arXiv preprint

arXiv:1710.10196, 2017. 1

[6] Tero Karras, Samuli Laine, and Timo Aila. A style-

based generator architecture for generative adversarial

networks. arXiv preprint arXiv:1812.04948, 2018. 1

[7] Hyeongwoo Kim, Pablo Garrido, Ayush Tewari,

Weipeng Xu, Justus Thies, Matthias Nießner, Patrick
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