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Abstract

With advances in Generative Adversarial Networks

(GANs) leading to dramatically-improved synthetic images

and video, there is an increased need for algorithms which

extend traditional forensics to this new category of imagery.

While GANs have been shown to be helpful in a number

of computer vision applications, there are other problem-

atic uses such as ‘deep fakes’ which necessitate such foren-

sics. Source camera attribution algorithms using various

cues have addressed this need for imagery captured by a

camera, but there are fewer options for synthetic imagery.

We address the problem of attributing a synthetic image to

a specific generator in a white box setting, by inverting the

process of generation. This enables us to simultaneously

determine whether the generator produced the image and

recover an input which produces a close match to the syn-

thetic image.

1. Introduction

Because of its use in ‘fake news’ and ‘revenge porn’,

the implications of fully- or partially-synthetic imagery has

recently become a matter of broad social concern. Under-

lying both of these is the technology of deep networks used

to generate imagery, often of faces, that are increasingly re-

alistic. Whereas traditional image forensics already include

powerful techniques applicable to images captured with a

wide range of cameras [15, 11, 3, 4, 9], there are relatively

fewer options available to forensic analysts operating on

synthetic imagery.

We aim to close the capability gap between source

camera attribution and source generator attribution, and

to provide additional functionality for generator attribu-

tion. Source camera attribution methods vary consider-

ably, but typically use low-level cues (such sensor non-

uniformity) and statistical indicators; they are unable to re-

create the image capture process, because the physical cam-

era may be unattainable and the scene being photographed

may be ephemeral. Neither of these restrictions apply to

Figure 1. Image attribution by generator inversion: Given a syn-

thetic probe image I and pre-trained generators Gi, the generators

are inverted to find latent vectors z̃i such that generated outputs

Gi(z̃) approximate the probe. Attribution is assigned to the gen-

erator with the best reconstruction (red dashed line).

synthetically-generated imagery, so we expand the attri-

bution problem to encompass both the determination of

whether the generator produced the image and the inputs

necessary to re-create the generation process. Mathemati-

cally, we describe the generator as a function G which trans-

forms a vector z into an image Ig as

Ig = G(z). (1)

When there are multiple (known) generators G1, G2, etc.

the limited attribution problem is to determine for a

‘probe’ image I the value of i that - for some value z - satis-

fies Gi(z) = Ĩ ≈ I . The related inversion problem, given

a specific generator G and probe image I , is to estimate a

latent vector z̃ such that G(z̃) = Ĩ ≈ I. In both, we use ap-

proximation to acknowledge that small differences should

be expected due to quantization, dynamic range clipping,

and perhaps compression applied to I .

In our extended attribution problem (Fig. 1), we con-

sider the case where there are multiple (known) generators

and, given a probe image, we determine both i and z̃ such

that Gi(z̃) = Ĩ ≈ I . The utility of attribution, in the context
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of synthetically generated imagery, is that training GAN-

based generators for high-resolution outputs is compute-

intensive, data-intensive, and error-prone. As such, the ma-

jority of users are more likely to download and use publicly-

available generators than they are to train their own from the

ground up. We also believe that, beyond limited attribution,

the ability to re-create the generation process (enabled by

our estimation of z) is critical to improving the explainabil-

ity of the attribution decision.

In our experiments, we demonstrate extended attribution

on generators from two different domains, trained via two

different methods. We first show that the generative layers

of an auto-encoder, trained on MNIST [12] characters, can

successfully be attributed in increasingly difficult scenar-

ios, up to and including discrimination between generators

trained on the same data, in the same order, but with differ-

ent random seeds. We then show that generators trained to

produce realistic facial images in a GAN can be attributed,

and discuss some of the interesting similarities and differ-

ences between the probe and reconstructed image.

2. Related Work

Both the limited attribution and inversion problems de-

scribed in the introduction have attracted attention in recent

years. For attribution, Yu et al. [22] and Marra et al. [18]

have recently presented methods which use noise-type sig-

natures to attribute a given image to a specific generator,

which is conceptually similar to how Photo Response Non-

Uniformity (PRNU) [15] provides source camera identifi-

cation. These methods are very successful, providing nearly

perfect attribution performance, even being able to discrim-

inate between two generators with the same architecture,

having been trained on the same data. A related prob-

lem is the detection of whether a given image was gener-

ated by any GAN-type generator, which has successfully

been demonstrated by several groups using various meth-

ods [17, 20, 7, 6, 13, 19].

The generator inversion problem has likewise attracted

attention. Creswell and Bharath [5] develop a generator in-

version method as a means to explore GAN performance

as a function of attributes in the image space. Luo et al.

[16] solve inversion by training an encoder coupled to a

pre-trained generator in an auto-encoder framework. Lip-

ton and Tripathi [14] introduce a method called stochastic

clipping to recover arbitrarily precise approximations of z,

even in the presence of simple types of noise. None of the

prior inversion work has addressed attribution.

Another related work, by Kilcheret al. [10], demon-

strates that generators instantiated with random weights can

produce blurry versions of real images from various bench-

mark datasets. This demonstrates that the convergence of

inversion, by itself, does not signal that the image can be

attributed to a generator.

3. Method

Our method for attributing a probe image I to a genera-

tor Gi is predicated on the assumption that other generators

Gj (j 6= i) cannot generate I as well as the true generator

Gi, so the minimum reconstruction error will correspond

to the true generator i. We offer a brief discussion on why

one may reasonably expect that situation to often (though

not always) hold: First, we note that generators map a low

dimensional latent vector z into very high dimensional out-

put space Gj(z). For instance, in the case of ProGAN

[8], dim(z) = 512 and dim(I) = 3,145,728 (3x1024x1024).

Hence, the mapping from z to Gj(z) parameterizes a union

of low dimensional manifolds (of dimension ≤ dim(z)) in

the high dimensional space [1]. Furthermore, there are

a number of sources of inherent randomness in generator

training, such as random initialization of network weights,

ordering of training images, and absence or inclusion of par-

ticular images in training batches. Arjovksy and Bottou [1]

have shown that it is highly improbable for low-dimensional

manifolds in high-dimensional spaces to perfectly overlap

everywhere if subjected to random perturbations; this is in

fact part of the motivation for using a Wasserstein metric

in Wasserstein GANs [1, 2]. Furthermore, in the case of

GANs, training failures such as mode dropping may make

the generator incapable of generating some regions of the

manifold of natural images.

In the extended attribution problem, illustrated in Figure

1, we start from a probe image I which was generated by

one of several generators G1, G2, . . . , Gn , where we as-

sume we know both the architecture and weights of all gen-

erators. We do not know a-priori which generator Gi made

the probe image, nor do we know the latent vector z, but

we seek to determine them. Note that if we could perfectly

identify z and i, we could (in the ideal case) perfectly recre-

ate the probe image I = Gi(z). In practice, there may be

some residual discrepancies due to post-processing of the

generated image, e.g. quantization, clipping, image com-

pression, etc., so we allow for for some small differences

between the probe image and the generator output. Hence,

we seek to estimate a latent vector z̃ such that Gi(z̃) = Ĩ

is as close as possible to the true probe I . For our experi-

ments, we formalize generator inversion as an optimization

problem, where we minimize the loss function

Lj(z) =
1

MN
||I −Gj(z)||

2, (2)

with N and M being the number of pixels and color chan-

nels in the image, respectively.

We separately minimize Eq. 2 for each generator j, using

an optimization algorithm to find the best latent vector z

which minimizes the loss function. Attribution is assigned

to the generator i with the smallest residual error, and the
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estimated latent vector z̃ is the point of minimum loss

z̃ = argmin
z

1

MN
||I −Gi(z)||

2 . (3)

Because generators used in GANs and autoencoders are

neural networks, they are readily differentiable via back-

propagation, so the loss function in Eq. 2 may be optimized

efficiently using gradient-based methods; in this work, we

found the Adam optimization algorithm to perform well for

all tested generators. Because Eq. 2 is not convex, there

is no guarantee that the optimization will converge to a

global minimum. Hence, to ensure low reconstruction er-

rors are obtained, we perform a multi-start optimization,

where we perform each optimization multiple times, each

starting from different random initial starting guesses for

the latent vector z, and we chose the result with the lowest

residual error.

We note that since the magnitude of the minimum resid-

ual error Lmin

i = Li(z̃) quantifies how well the generated

output Gi(z̃) = Ĩ matches the probe image I , one may use

the residual errors to assess confidence in the attribution as-

signment: for a correct assignment, one would expect the

minimum loss Lmin

i to be very small, and for high confi-

dence it should be significantly smaller than reconstruction

errors Lmin

j from other generators j 6= i.

In the special case where there are only two generators i

and j, we can summarize our attribution decision and con-

fidence by a single numerical score:

S =
Lmin

j − Lmin

i

Lmin

j + Lmin

i

. (4)

Note that S → 1 when the ith generator perfectly recon-

structs the probe (Lmin

i → 0), S → −1 when the jth

generator perfectly reconstructs the probe (Lmin

j → 0), and

S → 0 when both generators reconstruct the probe equally

well (Lmin

i = Lmin

j ; no attribution possible). Hence, the

score S provides a natural way to evaluate attribution per-

formance using Receiver Operating Characteristic (ROC)

curves, effectively treating binary attribution as binary clas-

sification; we do so in Section 4.1.

In the next section, we show that differences in gener-

ator training indeed contribute to detectable differences in

generated images, even in the case of identical generator

architectures.

4. Experiments

In this section, we describe experiments by which we

demonstrate the utility of our generator attribution and in-

version. They present a series of increasingly difficult attri-

bution problems, distinguishing between pairs of generators

with increasing similarity in how they are trained.

4.1. MNIST Experiments

The first set of experiments were carried out with the

MNIST dataset, selected because the smaller image size al-

lows for faster training and testing. In each MNIST exper-

iment, we trained a pair of fully-connected auto-encoders

with sigmoid activations and an L2 loss. The encoder and

decoder parts are symmetric, each having 784 nodes at the

input/output layers and hidden layers with 64 and 32 nodes

each. Each auto-encoder was trained on approximately

30,000 MNIST digits for 20,000 - 60,000 steps (depend-

ing on the experiment) in batches of 256 images using the

Adam optimization algorithm with a learning rate of 0.01.

Once the training was completed, the decoders were sep-

arated from their encoders and the weights were frozen,

rendering them pre-trained generators which map 32 di-

mensional latent vectors into 784 dimensional outputs. We

then performed optimization-based generator inversion for

image attribution. Due to the ease and success of the

optimization-based inversion, multi-start was not employed

for the MNIST experiments. For testing, we used 1000

digits generated from each generator and saved as a PNG.

We summarize the performance as a binary classification

problem and use Receiver Operating Characteristic (ROC)

curves and use Area Under the Curve (AUC) as a summary

performance statistic. We arbitrarily designated one of the

generators as the target generator and measure the True Pos-

itive Rate (TPR) at which outputs from the target generator

are classified as such. The False Positive Rate (FPR) mea-

sures the frequency with which non-target generator outputs

are classified as target outputs. These values are computed

over a range of thresholds on S (as defined in Eq. 4).

4.1.1 Non-overlapping Training Data

In this experiment, we trained the auto-encoders on two

non-overlapping subsets of the MNIST digits using 20,000

optimization steps. For simplicity, we train one using odd

digits and the other with even digits, though we note that our

attribution does not recognize the digit or its parity. Having

thus trained even and odd digit generators, we attribute each

of the test images by the method descried above. Figure 2

shows that the performance of our attribution on this exper-

iment is nearly perfect, despite the fact that the generators

do a surprisingly good job synthesizing digits that they’ve

never seen before. The bottom row of Figure 2, for exam-

ple, shows a ‘9’ synthesized by the odd generator (left col-

umn) and reconstructions from inverting both even and odd

generators (center and right columns, respectively). Despite

never having been trained on ‘9’s, the even number genera-

tor can produce a good approximation of this input, though

less so for the odd generator and the ‘2’ in the row above.
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Figure 2. (Top) ROC curve on attribution between two generators

with non-overlapping training data. One generator is trained on

only even MNIST digits, and the other on odd digits. For refer-

ence, the diagonal line shows the performance of random attribu-

tion. (Bottom rows) Examples of two successful attributions. The

probe image (left) was approximated with the even (middle) and

odd (right) generators via inversion.

4.1.2 Same Training Data, Different Order

In this experiment, we trained the auto-encoders on the

same set of MNIST digits, but shuffled the order in which

they’re used in training. Both generators have the same ar-

chitecture, but they have different random initializations.

We again use 20,000 optimization steps for training. Fig-

ure 3 shows that the performance is reduced when our al-

gorithm is asked to differentiate between generators trained

with the same training data, but is still quite good. The fig-

ure also shows two examples of mis-attribution, illustrating

that the outputs of the two generators are quite similar, vi-

sually, and have reconstruction errors which are quite close

to one another. This portends difficulty in successfully at-

tributing images subject to the normal forensic challenges

such as compression and re-encoding.

Figure 3. (Top) ROC curve on attribution between two generators

with different permutations of the same training data. (Bottom

rows) Examples of two unsuccessful attributions.

4.1.3 Same Data, Same Ordering

In the last of our MNIST experiments, the two auto-

encoders are trained on the same subset of MNIST digits,

and those training digits are presented in the same order.

The only difference between the two generators is the initial

(random) weights; we also increased the number of training

steps to 60,000 to be sure the training converged. Despite

this high level of similarity, Fig. 4 shows that our approach

can unambiguously attribute about 55% of the inputs with

extremely high confidence.

4.2. CelebA Experiments

In the second set of experiments, we performed attribu-

tion on generators that were trained as Generative Adver-

sarial Networks (GANs). The two GANs tested were Pro-

GAN [8] and SAGAN [23], both of which were modified

from their original description to output 128x128 resolution

images and were trained on face images from the CelebA

dataset. We re-used pre-trained generator weights shared

by Ning Yu [22]. The SAGAN generator proved easy to

invert via optimization algorithms, so multi-start was not

strictly necessary, but for good measure we employed 10
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Figure 4. ROC curve on attribution between two generators with

the same training data, in the same order. Only the random initial-

ization of the network differs between the two generators, despite

which we can attribute their outputs well.

Figure 5. Histogram of S scores for probe images from ProGAN

and SAGAN. Note that inversion produces a nearly exact recon-

struction of the probe for SAGAN, but a rougher approximation

for ProGAN.

random initial optimization starts per image. For each ran-

dom start, we used the Adam optimization algorithm with a

learning rate of 0.1 and 1000 optimization steps per image,

and chose the best reconstruction with the lowest loss en-

countered. We found it helpful to employ an explicit learn-

ing rate reduction on plateau, to reduce oscillation in the

loss as the optimizer approached the minimum; we used a

learning rate shrink factor of 0.5 and a patience of 30. The

ProGAN generator proved slightly more challenging to in-

vert reliably, so we employed 20 random initial optimiza-

tion starts per image. We also used the Adam optimizer, but

with a learning rate of 0.9, 300 optimization steps per im-

age, and no explicit learning rate reduction (besides those

built into Adam).

We tested inversion-based attribution on a dataset of 200

synthetic images, 100 of which were generated by Pro-

GAN and 100 by SAGAN, which were saved as PNGs. As

summarized in Table 1 and the histogram of scores in Fig.

Source ProGAN SAGAN

Accuracy 95% 100%

Table 1. Inversion-based attribution accuracy, by data source, mea-

sured on a dataset of 200 synthetic images—100 generated by Pro-

GAN and 100 by SAGAN.

Figure 6. Examples of correct attribution of probe images gener-

ated by ProGAN. The left column shows probe images while the

middle and right columns show the closest approximations found

by inverting ProGAN and SAGAN generators. Note the subtle

differences in the 2nd row between the probe and ProGAN recon-

struction.

5, attribution accuracy was 100% for images generated by

SAGAN and 95% for images generated by ProGAN, with

the attribution threshold corresponding to S = 0. Examples

of successful attributions of images generated by ProGAN

and SAGAN are shown in Figures 6 and 7. As can be seen

in Figures 6 and 7, successful reconstruction of the probe

image by a generator offers compelling, interpretable evi-

dence that a probe image was created by the indicated gen-

erator. This ability to offer strong, interpretable evidence

of a synthetic image’s source is unique to our method of

generator attribution, compared to other attribution methods

which tend to operate as black boxes without strong inter-

pretability or confidence measures. In Figure 8, we show

three examples where attribution of images generated by

ProGAN failed. From the middle column of the figure, it

is clear that the cause of the failure is that the optimiza-

tion algorithm failed to converge to the best reconstruction,

causing mis-attribution. In each of the three cases, it is obvi-

ous that the quality of the best image reconstruction is poor,

with relatively large residual error.
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Figure 7. Examples of correct attribution of probe images gener-

ated by SAGAN. The left column shows probe images while the

middle and right columns show the closest approximations found

by inverting ProGAN and SAGAN generators.

Figure 8. Examples of incorrect attribution of probe images gener-

ated by ProGAN. In each case, mis-attribution is caused by failures

of the inversion, evident in the background in the first row, the face

in the second row, and everything in the third.

In addition to the above work, we experimented with

minimizing L1 loss functions, on the hope that it would en-

courage a sparser residual error vector ri = I −Gi(z̃), but

we saw no significant attribution benefit. We also tested

Figure 9. Example inversion with semantically meaningful differ-

ences. In this case, the reconstruction (right) has lips that are

slightly more closed and a smaller reflection in the hair (upper left)

compared to the probe image (left). Note that this inversion was

performed against the full-resolution (1024x1024) version of the

CelebA-HQ ProGAN, whereas inversions in Sec. 4.2 were done

against a lower-resolution version.

the LBFGS optimization algorithm, which uses 2nd-order

derivatives to accelerate convergence; similar to [21], we

found that significantly fewer optimization steps were re-

quired to invert an image, but we saw no significant benefit

in the minimum loss obtained by the optimizer.

5. Discussion

We have shown that generator inversion is a useful means

by which to pursue synthetic image attribution, with the

added advantage of being able to re-create the generation

process by estimating the latent vector via inversion. De-

spite this increased functionality, we achieve similar results

to black box systems such as Yu et al. [22]. Both our method

and Yu’s are able to distinguish between generators that are

quite similar, up to and including generators trained from

the same data in the same order.

While our attribution results correspond to a completely

automated system, it is interesting to consider how our out-

put image would be used and interpreted by a forensic ana-

lyst. As illustrated by Fig. 8, inversion failures are visually

salient and so the assigned attributions could be rejected

by the analyst for failing to meet quality thresholds. We

note, however, that designing such a threshold is non-trivial

in light of semantically meaningful differences between the

probe and reconstruction in the case of successful inversion,

an example of which is illustrated in Fig. 9.

6. Future Work

Though our experiments have so far been limited to at-

tribution between two generators, it can easily be extended

to N -way attribution with a modification of eq. 4; note

that the dynamic range would need to be normalized for

networks having different outputs, i.e. different than the

[−1, 1] range used by ProGAN and SAGAN. However, the

computational complexity of inversion over N generators
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can be quite high. Given the computational complexity of

inverting the generator, a more efficient system could use

an attribution-only method, i.e. one of [22, 18], to deter-

mine the source generator and then apply inversion on only

that generator. Another extension would be to train neural

network encoders to explicitly perform the inverse mapping

from an image to a latent vector, which could also be further

fine-tuned by optimization, as in [24].

One area of future work would be to extend our attri-

bution capabilities into the black box domain, in order to

handle generators which may be offered online as a service,

but without published network weights. It has been shown

that, for deep networks performing classification tasks, rep-

resentative proxy networks can be trained based on a rel-

atively small number of input/output pairs from the target

network. It may be the case that we can develop proxies for

target generators in order to support our white-box attribu-

tion method.
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