
JPEG Grid Detection based on the Number of DCT Zeros

and its Application to Automatic and Localized Forgery Detection

T. Nikoukhah J. Anger T. Ehret M. Colom J.M. Morel R. Grompone von Gioi

CMLA, CNRS, ENS Paris-Saclay, Université Paris-Saclay

{nikoukhah,anger,ehret,colom,morel,grompone}@cmla.ens-cachan.fr

Abstract

This work proposes a novel method for detecting

JPEG compression, as well as its grid origin, based

on counting the number of zeros in the DCT of 8 × 8
blocks. When applied locally, the same method can be

used to detect grid alignment abnormalities. It therefore

detects local image forgeries such as copy-move. The

algorithm includes a statistical validation step which gives

theoretical guarantees on the number of false alarms and

provides secure guarantees for tampering detection. The

performance of the proposed method is illustrated with

both quantitative and visual results from well-known image

databases and comparisons with state of the art methods.

1. Introduction

Image tampering is currently used massively on the web

and continuously feeds fake news [12]. This issue has

become important since digital image manipulation tools

are available to the general public. Some social networks

even allow to edit images and videos directly online.

Since these platforms (Facebook, Instagram, Snapchat, etc.)

delete all metadata for confidentiality reasons, there is

a crucial need for journalists and mass-media producers

to have access to tools for detecting forgeries from the

image itself. Several such tools are readily available

online, Fotoforensics, Forensically, Ghiro and Reveal1 for

instance. These tools provide a number of “tampering

localization maps” [26] in the form of so-called image

heat maps revealing suspicious alterations. However, those

localization maps work only as trace enhancers and do not

provide any solid proof of forgery. The result needs to be

analyzed with care and interpreted by experts. We attempt

here to fill in this gap by producing an automatic method

using the tampering traces left in the image and taking

an automatic decision about forgeries and their precise

1https://fotoforensics.com, https://29a.ch/photo-forensics,

https://www.getghiro.org, http://reveal-mklab.iti.gr

Figure 1: Result of the proposed method, from top left to

bottom right: original image, forged image (input of the

method), detected forgeries, ground-truth. The fisherman

and the fishing rod have been removed. The resulting

detected mask does not require visual interpretation.

location. Indeed, even in absence of image metadata,

much information about the history of the image is still

present in the image itself. Many processes undergone

by an image leave invisible but detectable traces all over

the image. Following [2, 3, 10, 11, 12, 15, 20, 29], we

address one of the most common processes, namely the

JPEG compression. This compression leaves traces in the

form of 8 × 8 pixels blocking artifacts that produce a grid

over the image.

Here we propose an automatic and statistically founded

method for detecting the grid division of the image. The

proposed method, hereafter referred to as ZERO, performs

a global grid detection and then applies it more locally to

detect forgeries. Indeed, image splicing generally breaks

locally the original grid alignment. A locally detected

grid therefore may contradict the global grid and become

a reliable cue that a forgery took place. We evaluate

ZERO against several state of the art algorithms on publicly

available datasets. The detection does not require a human

expert’s decision as shown in Figure 1, and is associated

with theoretical guarantees.

1110

The paper is organized as follows. A brief description of

the JPEG compression algorithm is presented in Section 2,

followed by a review of the state of the art in Section 3.

In Section 4, the proposed method is described and its

application to forgery detection is detailed in Section 5.

Finally, evaluations of the performances of the method are

presented in Section 6. A discussion concludes this article.

2. JPEG Compression

The JPEG image format is widely used by most digital

cameras (including smartphones) and by social networks to

share images on the Internet [16, 27]. First, the image is

converted from the RGB to the Y CbCr colorspace. The

Y channel is the luminance component while Cb and Cr

correspond to the chroma components. For simplicity,

we will focus on the Y channel2 since it contains most

of the image visual information, which we will refer to

as the luminance image. The luminance image is then

partitioned into non-overlapping 8× 8 pixel blocks and the

2D discrete cosine transform (DCT) type II is applied to

each of these blocks. Due to the independent encoding of

the blocks, pixel discontinuities are introduced across the

block boundaries of the decompressed image.

Each of the 8 × 8 blocks undergoes a quantization step

performed in the spectral domain. A quantization table

(related to the compression quality) provides a factor for

each DCT component. At this step, some DCT coefficients

are cancelled out when they have a small value relative to

the quantization factor. After this step, all 8×8 blocks have

a number of zeros that depends both on the compression

quality and on the image content. Finally, the quantized

DCT coefficients are losslessly compressed by exploiting,

among other things, the presence of zero values.

3. State of the art

There are several tools for detecting forgeries based on

JPEG compression traces. The most famous ones (used by

mass-media online) are ELA (Error Level Analysis) [18]

and GHOST [11], which are very similar. Both attempt to

detect JPEG compression ratio differences throughout the

image. In JPEG forensics, the main methods are either

based on the histograms of DCT coefficients [2, 29] or

based on the detection of a higher contrast at the block edges

[3, 10].

Three methods [15, 20, 23] are closely related to ours as

they detect forgeries by locating inconsistencies of JPEG

blocking artifacts. In [20], the image is filtered based

on local derivatives, weak edges are detected, and the

coherence with an aligned 8×8 grid is measured. A feature

corresponding to the local strength of the blocking pattern

is extracted. Feature variations indicate local absence

2Y = 0.299R+ 0.587G+ 0.114B.

or misalignment of the grid and can be considered as a

tampering cue. In [15], the authors use the artifact measure

introduced by Fan and Queiroz [10]: their method evaluates

multiple grid positions with respect to a fitting function.

Areas with low contribution are identified as inconsistent

with the main grid and therefore potentially tampered.

An image segmentation step is introduced to differentiate

between inconsistencies produced by tampering and those

attributable to image content. In [23], the authors apply the

filter proposed by Chan and Hsu [3] to reveal these blocking

artifacts before using a statistical method to increase the

reliability of the detection.

These methods make it possible to detect what is

undoubtedly one of the most commonly used tampering

schemes: the copy and paste of image parts which break

the alignment of the original grid, either because of its

location or because of transformations (scaling, rotation,

etc.) of the manipulated area. Another way to alter

an image is by simply cropping it to remove undesirable

parts of the photographed scene. This method, frequent in

photojournalism, can significantly alter the interpretation of

a scene. To detect cropping, Li et al. [20] and Nikoukhah et

al. [22, 23] detect the grid globally and exploit the fact that

its origin may no longer be at [0, 0]. Our method, being

based on the detection of the global JPEG grid, is also able

to detect this type of manipulation.

Finally, besides the spectral and spatial methods, a third

way has been introduced based on the principle that JPEG

compression has the goal to minimize the file size [22].

Therefore, to detect the JPEG grid, the method compresses

the image with all 64 possible grids and selects the one

yielding the shortest file. Our method extends this idea

as we decide to pick the likeliest JPEG blocks as those

containing the largest number of zero DCT coefficients.

4. JPEG grid detection

As described before, the JPEG algorithm sets to zero

some of the DCT coefficients of 8 × 8 blocks. Based on

this fact, the core of the proposed method is thus to count

the total number of zeros of each hypothesized DCT block.

In the presence of JPEG compression, this number should

be maximum when the 8 × 8 block is aligned with the

JPEG grid. Indeed, non-aligned blocks include additional

discontinuities due to blocking artifacts, leading to larger

DCT coefficient values relative to the aligned block, see

Figure 2 (right). A statistical test is used to confirm that

a JPEG grid is actually present.

4.1. Voting process

The first thing to explain is how to determine which DCT

coefficient are “zeros”. During JPEG decompression, an

inverse DCT is performed on each block, transforming the

integer DCT coefficients to real pixel values. Then, those

111

Figure 2: Each pixel (yellow) belongs to 64 different 8× 8
blocks of the image. Six of them were drawn in different

colors on the left. Top right shows (in red) the position

of a patch not aligned with the grid. Bottom right shows

(in green) the position of the patch containing the pixel

matching the JPEG grid.

pixel values are quantized to produce an integer image.

Notice that this quantization step is different from the one

during the compression. This pixel quantization step, of

course, also modifies the corresponding DCT values. Thus,

a DCT coefficient that was put to zero during compression

does not keep an exact zero value after decompression. Yet

it remains close to zero. We propose to count the number

of coefficients with absolute values smaller than 0.5. This

allows to discriminate zeros even when DCT coefficient

quantization is at its finest rate, namely to integer values.

Each pixel may belong to 64 different overlapping 8× 8
blocks, as illustrated in Figure 2. In the first step of the

method, those 64 blocks are evaluated for each pixel. The

64 DCTs are computed as well as the corresponding number

of zeros. Each pixel votes for the grid origin of the block

with most zeros. In the case of a tie, the pixel does not vote.3

Performing the count as described requires computing

64 DCTs per pixel, but every block is shared with 64 other

pixels and this can be exploited to avoid recomputing the

DCT. Algorithm 1 describes the procedure. A table is used

to keep track of the largest number of zeros found for each

pixel. The DCT of every 8 × 8 block in the image and

its number of zeros are computed. Every pixel included

in the block is checked and the table of zeros is updated

when the current block has more zeros than in other blocks

previously evaluated. The table of votes is also updated to

the grid origin corresponding to the block with more zeros

(GridAlignedWith(b)), or to NON VALID in case of a tie.

3There is relevant information when two or more blocks have the same

number of zeros. However, exploiting this information would make the

statistical evaluation more complex. Given that the method is already

reasonably sensitive, we preferred to keep a simple formulation.

Algorithm 1: Compute grid votes

input : luminance channel L defined on Ω
output: grid vote map

1 votes(Ω)← NON VALID initialize votes

2 zeros(Ω)← 0 initialize number of zeros

3 for b ∈ Blocks8x8(Ω) do loop on all 8x8 blocks

4 d← DCT(L(b)) DCT of the block

5 z ←∑

di∈d 1|di|<0.5 number of zeros in the block

6 for (x, y) ∈ b do

7 if z = zeros(x, y) then tie, do not vote

8 votes(x, y)← NON VALID

9 else if z > zeros(x, y) then

10 zeros(x, y)← z
11 votes(x, y)← GridAlignedWith(b)

12 return votes

Figure 3: Left: Uncompressed image and its vote map.

Right: JPEG compressed image and its vote map. In both

cases, the pixels which return a NON VALID vote (a tie) are

shown in dark red.

Figure 3 shows two examples of vote maps. On the

left, the image is uncompressed and we observe a random

vote map. On the right, the same is shown for a JPEG

compressed image.

4.2. Statistical validation

When analyzing a JPEG image, the most voted grid

probably corresponds to the right one. But, even in

uncompressed images, one of the grids will get more

votes than the others, probably by a small margin. A

statistical criterion is therefore needed to decide whether

this prominence is caused by JPEG compression or not.

The proposed validation procedure is based on the a

contrario theory [8], which relies on the non-accidentalness

principle [21, 28]. Informally, this principle states that there

should be no detection in noise. In the words of D. Lowe,

112

Figure 4: Zoom on a vote map for an image of Gaussian

noise. Each color represents a vote for a given grid origin.

The dark red color correspond to NON-VALID votes (the

ties). One can observe entire blocks of 8 × 8 pixels voting

for the same origin; this is the case when a block has a local

maximum of number of zeros.

“we need to determine the probability that each relation in

the image could have arisen by accident, P (a). Naturally,

the smaller that this value is, the more likely the relation is

to have a causal interpretation” [21, p. 39]. This principle

has shown its practical use for detection purposes such as

line segment detection [14], vanishing points detection [19],

anomaly detection [7], or forgery detection [1, 23].

In our context, we need to assess the probability that a

given grid origin gets a large number of votes purely by

chance. To that aim, a stochastic null model H0 for the votes

is required. It is here easily given by Laplace’s principle

of indifference: in absence of JPEG compression, each of

the 64 blocks containing a given pixel would have the same

chance of being the one with the largest number of zeros;

that would depend on the image content and there is no

reason to suppose that it is synchronized with a particular

8 × 8 grid origin. However, the votes of neighbor pixels

are not independent, even in noise images. Indeed, there are

always blocks that are local maxima of the number of zeros,

and those blocks get the votes of every pixel belonging to it.

Figure 4 shows a vote map obtained in an image of noise.

Votes are correlated within a distance of 8 pixels; on the

other hand, pixels at distance larger than eight are largely

uncorrelated. Thus, we define a stochastic null model H0

for votes at distance eight in which votes are independent

and uniformly distributed among all the 64 grid origins.

Let us suppose that we are observing a square patch of

an image where the number of votes for a given valid grid

origin is counted at a distance of eight pixels. Let us say

that k votes are counted for that valid grid among a total

of n votes. Under the null hypothesis H0, votes for the

given grid origin become Bernoulli random variables with

probability 1
64 . So under H0, the number of votes becomes a

random variable K and, given the independence of votes (at

distance larger than eight), it follows a binomial distribution

of parameter p = 1
64 . Thus,

P(K ≥ k) = B(n, k, p) =
n
∑

j=k

(

n

j

)

pj(1− p)n−j ,

where B(n, k, p) is the tail of the binomial distribution.

Given an observed number of votes k, P(K ≥ k) is the

probability of obtaining at least k votes under H0. When

this probability is small enough, there exists evidence to

reject the null hypothesis and declare that a significant

grid origin was found. However, the multiplicity of tests

needs to be taken into account. Indeed, if 100 tests were

performed, it would not be surprising to observe an event

that appears with probability 0.01 under random conditions.

The number of tests NT needs to be included as a correction

factor, as it is standard in statistical multiple hypothesis

testing [13].

Following the a contrario methodology, we define the

Number of False Alarms (NFA) of a candidate grid g on a

given window w as

NFA(g, w) = NTP(K ≥ k). (1)

One can show [8] that under the null hypothesis H0 the

expected number of false alarms with NFA(g, w) < ε, is

bounded by ε:

EH0

∑

(g,w)∈NT

1NFA(g,w)<ε

 < ε, (2)

where NT is the set of NT tests. As a result, ε corresponds

to the mean number of false detections per image under

H0. In most practical applications, the typical value

ε = 1 is suitable; we will set it once and for all in our

application as well. With this choice, the expected number

of false detections per image under H0 is guaranteed to be

upper-bounded by 1.

The same criterion will be used for the whole image

as well as for all sub-images. We want the tests to be

selective enough to discriminate a JPEG grid using only a

local region of the image. As we will see later, this also

allows to detect local forgeries. Thus, every square window

of a X × Y pixels image is included in the family of tests

and the 64 grid origins are tested for each one. Then, the

number of tests can be approximated by

NT = 64 ·XY ·
√
XY , (3)

where
√
XY gives a rough estimation of the possible

window sides, and XY gives the number of possible

positions for the square windows of a given size. All in

all, given a window to be analyzed, the grid origin with the

maximum of votes is selected and its number of votes at

distance eight pixels is counted. Then, the NFA is given by

NFA = 64 ·XY ·
√
XY · B(n, k, p). (4)

113

Algorithm 2: JPEG grid detection

input : image I of size X × Y
output: main grid G
output: NFA value of the main grid

1 L← Luminance(I)
2 votes← ComputeVotes(L) algorithm 1

3 G← argmax
g is VALID

∑

x,y

1votes(x,y)=g most voted valid grid

4 v ←
∑

x,y

1votes(x,y)=G number of votes for main grid

5 NFA← 64XY
√
XY · BinTail

(

XY
64 , v

64 ,
1
64

)

6 if NFA < 1 then

7 return G, NFA JPEG grid found

8 else

9 return ∅ JPEG grid not found

A JPEG grid is detected when NFA < 1.

According to the theory, to test a grid we must count one

vote out of eight in both directions. These are the votes

inside the window with coordinates (x0 + 8i, y0 + 8j) for

integers i and j. This test must be performed for all other

64 grids with x0 and y0 in {0, 1, . . . , 7}. A simpler way

to evaluate a lower bound for the number of votes in the

most voted grid is as follows. Instead of counting votes

at distance of eight pixels for those offsets, we can count

every vote and divide the number by 64. Indeed, let v
be the total of votes in the window for the given grid. If

those votes were equally distributed on the sub-samplings,

one would have k = v
64 for each of the sub-samplings. If

not, necessarily one of the sub-samplings will have more

votes. Hence we can deduce that there is at least one of

those sub-samplings with k votes satisfying k ≥ v
64 . So

by counting every vote and dividing the count by 64 we are

considering the worst case and we are sure that a detected

grid is meaningful. Naturally, the count of votes for every

pixel in the window is also divided by 64. Algorithm 2

describes the ensuing JPEG grid detection method.

5. Forgery detection

Our JPEG grid detection can be performed globally but

also at every square window of the image. When a local

region has a meaningful grid that is different from the main

one, it means that it is a foreign grid and so the result of

a forgery. Indeed, when part of a JPEG image is copied

and pasted, it retains its grid traces. In 63 over 64 times

(assuming that the forger did not explicitly align the grid),

the grid origin will not correspond to the main one, thus

allowing its detection. This is true whether it is a case of

copy-move from the same image or when the copied part is

taken from a different JPEG image.

Algorithm 3: Forgery detection

input : grid vote map defined on Ω of size X × Y
input : main grid G
input : neighborhood size W = 12
output: forgery mask

1 mask(Ω)← FALSE initialize forgery mask

2 for (x, y) ∈ Ω do

3 if votes(x, y) is VALID and votes(x, y) 6= G then

4 R← GrowRegion(votes, x, y,W)
5 B ← BoundingBox(R)
6 N ← max(Bx, By) size of square bounding box

7 NFA← 64XY
√
XY · BinTail

(

N2

64 ,
|R|
64 ,

1
64

)

8 if NFA < 1 then forgery found

9 mask(R)← TRUE mark tampered region

10 votes(R)← NON VALID do not test again in R

11 mask(Ω)← Closing(mask,W) fill holes in mask

12 return mask

The same algorithm as described in Section 4 can be

applied directly on every square window. But this would be

computationally expensive. Instead, we propose a heuristic

method using a greedy algorithm to accelerate the search

for forged regions. Nevertheless, the final validation uses

the same statistical test used for the global grid.

Algorithm 3 describes the method. The vote map is

partitioned into connected regions sharing the same grid

vote. A region growing algorithm is used for partitioning

the vote map: starting from a seed pixel (x, y), the neighbor

pixels are iteratively aggregated when voting for the same

grid. As Figure 4 shows, votes for the same grid often have

gaps, so a relaxed notion of neighborhood is needed. A

window with a meaningful grid origin must have a vote

density of at least 1
64 for the right grid origin. Thus, the

votes for the right grid should not be further away than eight

pixels. To allow for some variation in the distribution, we

set this neighborhood size a little larger and use W = 12.

Then, for each region with a valid grid origin different

from the main one, a square bounding box is computed and

the statistical test is performed with the NFA framework

introduced before. When a meaningful region is found with

a grid origin different from the main one, the pixels in the

region (which all voted for the same grid) are marked in a

forgery mask. Figure 5 shows an example. After a region is

evaluated, its votes are marked as NON VALID to gain time

by preventing the same pixels from being explored again.

Due to variations in the number of votes, the raw forgery

mask contains holes. To give a more useful forgery map,

these holes are filled by a mathematical morphology closing

operator [25] with a square structuring element of size W
(the same as the neighborhood used in the region growing).

114

Figure 5: Up-left: an image with a tampered region

indicated in red. Down-left: grid origin vote map.

Up-right: raw forgery mask. Down-right: final forgery

mask after holes filled by a mathematical morphology

closing operation.

Figure 5 shows an example of the final forgery mask.

Figure 6 illustrates some limitations of the proposed

method. Forgeries are detected as regions in which the local

grid does not agree with the global grid. This means that

when the grid of the forged regions aligns perfectly with

the global grid, our method will fail to detect the forgery.

Nevertheless, this happens only once for every 64 positions.

In a saturated region, the DCT coefficients of the blocks are

all equal to zero except for the DC coefficient. The number

of zeros are tied and the votes are all non-valid. This means

that it is impossible to distinguish the JPEG grid in saturated

regions. Since no valid JPEG grid can be found, it will never

disagree with the global grid and therefore saturated parts of

a forgery cannot be found. However, as soon as a part of the

forgery is not saturated it can be detected as it is shown in

Figure 6. Another limitation is when the forged region is too

small. Since the statistical test must be satisfied to detect

a forgery, there is a minimal detectable region size that

depends on the image size, the JPEG compression quality

and the image contents.

6. Experimental results

In this section we evaluate the proposed method on

two tasks: global grid detection and forgery detection.

Comparisons with other available methods are performed

which illustrate the superiority of our approach, both in

terms of low false rate and accuracy on true detections.

6.1. Grid detection

Grid detection is our main application as it represents

the first step of most forgery detection algorithms but

this is not the only application. In image restoration,

grid detection is also used to remove grid artifacts by a

Figure 6: Up: images with tampered regions indicated in

red. Middle: grid origin vote maps. Down: detected forgery

masks. On the left, an example of a missed detection: one

of the two forged regions was not detected because its local

grid was correctly aligned with the global grid. On the right,

an incomplete detection caused by saturation in the image.

deblocking procedure [4]. To this aim, it is useful to detect

the grid in every case, and the hardest cases are when the

quality factor is high. Our first evaluation was performed

with cases where no detection should be obtained. This

experiment is important to illustrate the main strength of

the proposed algorithm: it gives a principled method to

decide whether the image has undergone JPEG compression

or not. The first dataset is composed of 200 images of noise

following a Gaussian distribution. Two image sizes were

generated: 500 × 500 and 1000 × 1000. We also used the

UCID [24] uncompressed image collections (886 images)

and Kodak [17] (24 images). The method’s performance is

compared to three other methods in Table 1. ZERO is the

sole to produce no false detection.

To illustrate the validity of the proposed approach, the

second experiment is applied to 12 288 images generated

from the Kodak [17] uncompressed image database. The

24 images (of size 768 × 512) were compressed, using the

imagemagick tool to increasing quality factors (50, 60,

70, 80, 90, 93, 95, 98 and 99), then cropped into the 64

different positions to test all possible grid positions. The

results are shown in Table 2.

This application is useful by itself. Indeed, knowing if

an image has undergone JPEG compression is important.

Moreover, knowing its grid origin can tell whether an image

115

Dataset

Noise UCID [24] Kodak [17]

BLK [20]
% true — — —

% false 100 100 100

GOD [23]
% true — — —

% false 0 0.6 0

SGOD [22]
% true — — —

% false 0 0.5 0

ZERO
% true — — —

% false 0 0 0

Table 1: Results of the proposed method compared to BLK,

GOD and SGOD on uncompressed images. Percentage of

images where a JPEG grid was detected. In this case, every

detection is a false detection.

JPEG quality factor

≤ 80 90 95 98 99

BLK [20]
% true 97 95 85 31 0

% false 3 5 15 69 100

GOD [23]
% true 100 91 70 55 41

% false 0 0.003 0.05 0.06 0.1

SGOD [22]
% true 100 100 100 50 0

% false 0 0 0 0 0

ZERO
% true 100 100 100 100 100

% false 0 0 0 0 0

Table 2: Results of the proposed method compared

to BLK, GOD and SGOD on 12 288 compressed and

cropped images generated from the Kodak [17] database.

Percentages of true and false JPEG grid detections.

has been cropped. Table 2 shows a perfect detection of

JPEG compression and cropping after a JPEG compression

even with a very high quality (99%). JPEG compression at

100% is not detectable by the proposed method as it does

not increase the number of zeros in the DCT. Even in those

cases, the proposed method gives no false detection.

6.2. Forgery detection

To test how detections can be based on JPEG grid

misplacement, we used a database of tampered images

created by copy-paste [5]. The copied area is taken from the

same image and its borders hidden in a smooth transition.

However, the proposed method would work exactly the

same if the copied area came from a different JPEG image.

A detection based on a disparity in the grid position in some

blocks may fail with probability 1/64 when the copied area

is placed so that its grid is aligned with the global grid.

The proposed algorithm gives back two types of

important information: the main JPEG grid origin detection

and the forgery detection when it is the case. The

ZERO GOD [23] CMFD [6]

Original
true — — —

false 0 6 5

Forged
true 35 23 44

missed 2(+11) 21(+4) 4

Table 3: Quantitative results on the dataset [5], containing

48 pairs of original and forged images. 11 of the images

are correctly detected as not JPEG by ZERO (4 for GOD).

Since these image are not JPEG the forgery cannot be

detected therefore they are reported in parenthesis.

database [5] contains 48 pairs of original and forged

images. On this dataset, we compare the results of

GOD [23], CMFD [6] and ours. CMFD by Cozzolino

et al. [6] proposes a method that allows a precise and

accurate detection of a copy-move forgeries inside a single

suspicious image. Therefore this method is particularly

appropriate on the tested images and is used as reference

for these types of forgeries. We used the implementation

provided by [9]. Note that our method does not need

the forged region to come from the same image. Both

GOD [23] and ZERO are able to filter out the 11 pairs that

are either not JPEG compressed, or with a quality factor of

100%. On the 37 remaining images, the proposed method

is able to detect most forgeries with no false detection.

The quantitative results are reported in Table 3. Regarding

the two missed forgeries, one is caused by the copied area

having the same grid origin as the global image, and the

other one is due to its small size.

We also qualitatively compared our method to other

forgery detection methods based on compression traces

analysis in Figure 7. This allows us to compare with

state-of-the-art methods that only produce heatmaps.

7. Conclusion

This paper presented a novel JPEG grid detection and

tampering localization method based on the number of

zeros in the DCT blocks. It has a high accuracy detecting

JPEG compression up to quality factor of 99%. It

performs reliable reverse engineering and detects forgeries

by giving an automatic, localized, and reliable result

without requiring any human interpretation. The proposed

algorithm is efficient; the bottleneck is the computation of

the vote map, which has about the same complexity of 64

JPEG compressions. Color information and handling ties in

the number of zeros will be explored in future work.

Reproducibility. The source code of the proposed

method as well as an online demo are available at the

following link: https://github.com/tinankh/ZERO

116

Forgery Original Forgery Original
In

p
u

t
Z

E
R

O
E

L
A

[1
8

]
G

H
O

S
T

[1
1
]

B
L

K
[2

0
]

C
A

G
I

[1
5

]
G

O
D

[2
3

]
C

M
F

D
[6

]

Figure 7: Results of the proposed method compared to the JPEG state-of-the-art methods. The first one produces a difference

image, the three following heat maps and the last two masks. The methods are applied to the forged image and also its

original source.

117

References

[1] Quentin Bammey, Rafael Grompone von Gioi, and

Jean-Michel Morel. Automatic detection of demosaicing

image artifacts and its use in tampering detection. In 2018

IEEE Conference on Multimedia Information Processing

and Retrieval (MIPR), pages 424–429. IEEE, 2018. 4

[2] Tiziano Bianchi, Alessia De Rosa, and Alessandro Piva.

Improved dct coefficient analysis for forgery localization in

jpeg images. In 2011 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages

2444–2447. IEEE, 2011. 1, 2

[3] Yi-Lei Chen and Chiou-Ting Hsu. Image tampering

detection by blocking periodicity analysis in jpeg

compressed images. In 2008 IEEE 10th Workshop on

Multimedia Signal Processing, pages 803–808. IEEE, 2008.

1, 2

[4] Jim Chou, Matthew Crouse, and Kannan Ramchandran.

A simple algorithm for removing blocking artifacts in

block-transform coded images. In Proceedings 1998

International Conference on Image Processing. ICIP98 (Cat.

No. 98CB36269), volume 1, pages 377–380. IEEE, 1998. 6

[5] Vincent Christlein, Christian Riess, Johannes Jordan,

Corinna Riess, and Elli Angelopoulou. An evaluation

of popular copy-move forgery detection approaches.

IEEE Transactions on information forensics and security,

7(6):1841–1854, 2012. 7

[6] Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva.

Efficient dense-field copy–move forgery detection. IEEE

Transactions on Information Forensics and Security,

10(11):2284–2297, 2015. 7, 8

[7] Axel Davy, Thibaud Ehret, Jean-Michel Morel, and Mauricio

Delbracio. Reducing anomaly detection in images to

detection in noise. In 2018 25th IEEE International

Conference on Image Processing (ICIP), pages 1058–1062.

IEEE, 2018. 4

[8] A. Desolneux, L. Moisan, and J.-M. Morel. From Gestalt

Theory to Image Analysis. Springer, 2008. 3, 4

[9] Thibaud Ehret. Automatic Detection of Internal Copy-Move

Forgeries in Images. Image Processing On Line, 8:167–191,

2018. 7

[10] Zhigang Fan and Ricardo L De Queiroz. Identification of

bitmap compression history: Jpeg detection and quantizer

estimation. IEEE Transactions on Image Processing,

12(2):230–235, 2003. 1, 2

[11] Hany Farid. Exposing digital forgeries from jpeg ghosts.

IEEE transactions on information forensics and security,

4(1):154–160, 2009. 1, 2, 8

[12] Hany Farid. Photo Forensics. The MIT Press, 2016. 1

[13] A. Gordon, G. Glazko, X. Qiu, and A. Yakovlev. Control

of the mean number of false discoveries, bonferroni and

stability of multiple testing. Ann. Appl. Stat., 1:179–190,

2007. 4

[14] Rafael Grompone von Gioi, Jeremie Jakubowicz,

Jean-Michel Morel, and Gregory Randall. Lsd: A fast

line segment detector with a false detection control. IEEE

transactions on pattern analysis and machine intelligence,

32(4):722–732, 2010. 4

[15] Chryssanthi Iakovidou, Markos Zampoglou, Symeon

Papadopoulos, and Yiannis Kompatsiaris. Content-aware

detection of jpeg grid inconsistencies for intuitive image

forensics. Journal of Visual Communication and Image

Representation, 54:155–170, 2018. 1, 2, 8

[16] Eric Kee, Micah K Johnson, and Hany Farid. Digital image

authentication from jpeg headers. IEEE Trans. Information

Forensics and Security, 6(3-2):1066–1075, 2011. 2

[17] Kodak. Kodak Lossless True Color Image Suite, Nov. 1999.

6, 7

[18] Neal Krawetz and Hacker Factor Solutions. A pictures

worth... Hacker Factor Solutions, 6, 2007. 2, 8

[19] José Lezama, Rafael Grompone von Gioi, Gregory Randall,

and Jean-Michel Morel. Finding vanishing points via

point alignments in image primal and dual domains. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 509–515, 2014. 4

[20] Weihai Li, Yuan Yuan, and Nenghai Yu. Passive detection of

doctored jpeg image via block artifact grid extraction. Signal

Processing, 89(9):1821–1829, 2009. 1, 2, 7, 8

[21] David G Lowe. Visual recognition from spatial

correspondence and perceptual organization. In IJCAI, pages

953–959. Citeseer, 1985. 3, 4

[22] Tina Nikoukhah, Miguel Colom, Jean-Michel Morel, and

Rafael Grompone von Gioi. Détection de grille JPEG par

compression simulée. preprint, 2019. 2, 7

[23] Tina Nikoukhah, Rafael Grompone von Gioi, Miguel Colom,

and Jean-Michel Morel. Automatic jpeg grid detection with

controlled false alarms, and its image forensic applications.

In 2018 IEEE Conference on Multimedia Information

Processing and Retrieval (MIPR), pages 378–383. IEEE,

2018. 2, 4, 7, 8

[24] Gerald Schaefer and Michal Stich. Ucid: An uncompressed

color image database. In Storage and Retrieval Methods

and Applications for Multimedia 2004, volume 5307, pages

472–481. International Society for Optics and Photonics,

2003. 6, 7

[25] Jean Serra. Image Analysis and Mathematical Morphology.

Academic Press, 1982. 5

[26] Denis Teyssou, Jean-Michel Leung, Evlampios Apostolidis,

Konstantinos Apostolidis, Symeon Papadopoulos, Markos

Zampoglou, Olga Papadopoulou, and Vasileios Mezaris.

The invid plug-in: web video verification on the browser.

In Proceedings of the First International Workshop on

Multimedia Verification, pages 23–30. ACM, 2017. 1

[27] Gregory K. Wallace. The JPEG still picture compression

standard. IEEE Transactions on Consumer Electronics,

1991. 2

[28] Andrew P Witkin and Jay M Tenenbaum. On the role of

structure in vision. In Human and machine vision, pages

481–543. Elsevier, 1983. 3

[29] Shuiming Ye, Qibin Sun, and Ee-Chien Chang. Detecting

digital image forgeries by measuring inconsistencies of

blocking artifact. In 2007 IEEE International Conference

on Multimedia and Expo, pages 12–15. IEEE, 2007. 1, 2

118

