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Abstract

Camera model identification has earned paramount im-

portance in the field of image forensics with an upsurge of

digitally altered images which are constantly being shared

through websites, media, and social applications. But, the

task of identification becomes quite challenging if metadata

are absent from the image and/or if the image has been post-

processed. In this paper, we present a DenseNet pipeline

to solve the problem of identifying the source camera-

model of an image. Our approach is to extract patches of

256×256 from a labeled image dataset and apply augmen-

tations, i.e., Empirical Mode Decomposition (EMD). We

use this extended dataset to train a Neural Network with the

DenseNet-201 architecture. We concatenate the output fea-

tures for 3 different sizes (64×64, 128×128, 256×256) and

pass them to a secondary network to make the final predic-

tion. This strategy proves to be very robust for identifying

the source camera model, even when the original image is

post-processed. Our model has been trained and tested on

the Forensic Camera-Model Identification Dataset provided

for the IEEE Signal Processing (SP) Cup 2018. During

testing we achieved an overall accuracy of 98.37%, which

is the current state-of-the-art on this dataset using a sin-

gle model. We used transfer learning and tested our model

on the Dresden Database for Camera Model Identification,

with an overall test accuracy of over 99% for 19 models. In

addition, we demonstrate that the proposed pipeline is suit-

able for other image-forensic classification tasks, such as,

detecting the type of post-processing applied to an image

with an accuracy of 96.66% – which indicates the general-

ity of our approach.

1. Introduction

In digital forensics, camera model identification is a dis-

tinguished field of research and has profound impact on cru-

cial real-life applications, such as criminal investigations,

authenticating evidence, detecting forgery, etc. Nowadays,

professional image editing tools are readily available, mak-

ing image-forgery quite commonplace. Thus, cyber-crimes

via digital images are ever increasing and; so as, the need

for a robust camera model identification scheme. But un-

fortunately, the task of identifying the camera-model is very

challenging, especially when the metadata of the digital im-

age is unavailable. As a result, a forensic analyst has to im-

plement unique techniques to determine the source camera-

model solely from an image.

In the literature, various methods have been proposed to

perform this task. [28], [16] and [23] have perfectly de-

scribed the present condition of camera model identification

in their review. The initial approach was an infeasible idea

of merging external features in an image for each and ev-

ery device; like watermarks, device-specific-code, etc. As a

result, focus has shifted towards detecting intrinsic camera

features, such as the Color Filter Array (CFA) pattern ([3]),

interpolation algorithms and Image Quality Metrics (IQM)

used in the camera ([15], [10]). Device-specific camera-

detection schemes have also been proposed, where noise-

patterns like the Photo Response Non-Uniformity (PRNU)

have been exploited to identify the device ([8], [18]), [9].

Although device specificity is an inherent feature of PRNU

noise, forensic researchers have developed methods to make

camera model identification device invariant ([30], [19]).

Most of these works try to estimate the model-specific ar-

tifacts that are introduced into an image during image-

capture, and then, correlate these features with a reference

for the corresponding camera-model ([5]). In this approach,

the second order statistics of the CFA pattern ([29]) and 3D

co-occurrence matrices ([7], [21]) have been used as feature

vectors to successfully detect camera-models with state-of-

the-art accuracy.

Most of the methods stated so far have used traditional

complex ensemble classifiers. Recently, researchers have

adopted a data-driven approach and made an effort to solve

this problem using Convolutional Neural Networks (CNN).

This suggestion seems quite promising because, in the past
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decade, Neural Networks have achieved phenomenal ac-

curacy on image-classification benchmarks ([26]). To this

end, [31] have trained a CNN on the Dresden database

to solve this classification problem. Their work also in-

cludes the use of preprocessing using a custom built 2D

high-pass filter. However, their overall accuracy is below

the state-of-the-art accuracy reported in ([7]). A concept

of Content Adaptive Fusion Network is introduced by [32],

which is basically a cluster of CNNs with different kernel

size, has been introduced to classify camera brand and de-

vice to achieve a moderate accuracy around 95%. In spite

of the breadth of work performed in this field, little at-

tention has been given to the detection of camera-model

specifically from post-processed images (such as different

JPEG Compression Rate, Resized, Gamma-Corrected im-

ages etc.) Though researchers have explored some of these

cases discretely, not many have tried to bring them into the

same framework. Image authentication from JPEG head-

ers ([14]), forgery detection from intrinsic statistical finger-

prints of images ([27]), detecting doubly compressed JPEG

images using Discrete Cosine Transform (DCT) ([17]), and

even the recent use of CNN to detect image manipulation

in ([1] and [2]) are some examples of work done in detect-

ing image manipulations and classifying them using this ap-

proach.

But still, the use of very deep networks is yet to be ex-

plored thoroughly for this task. In the absence of metadata

and the presence of extensive post-processing in images, we

believe that Deep Neural Networks (DNNs) have the poten-

tial to achieve a better classification-rate than existing meth-

ods. In the presence of these challenges, traditional feature-

vectors such as the DCT-Residue([25]) and co-occurrence

matrices(([7], [21])) are unarguably altered, often in ways

that cannot be predicted in the general case. Thus, design-

ing features that retain the camera-model information even

from post-processed images is quite cumbersome, if not, ex-

tremely difficult ([19]). This provides the motivation to use

Neural Networks to perform this task. Since, DNNs do not

require explicit feature engineering, and can automatically

learn the necessary features from the image, it makes the

task of classification more tractable.

As stated earlier, forensic researchers have used a num-

ber of custom neural network architectures ([32], [2], [4],

[33]). Besides, a number of deep architectures have been

also proposed to perform the task of classification, such as

the VGGNet, GoogLeNet, ResNet and most recently, the

DenseNet ([20]). A major challenge in using such deep net-

works is to address the issues of over-fitting and feature-

attenuation during training. The camera-model features ex-

isting within an image are extremely subtle, compared to

other dominating features of the image. As such, while

training a Deep Neural Network, these model-level features

may be sharply attenuated as the input image is propagated

through successive layers.

In this work, we choose to use the 201-layer DenseNet

[12] as the core architecture of our network. In the

DenseNet, the output of a certain layer is propagated to

all the layers in front of it. Any layer in the network

has direct access to the features generated by all the lay-

ers that came before it. As a result, if any of the image

features are lost during forward propagation, they are re-

generated at the input of latter layers through the dense con-

nections. That is why, this architecture is quite suitable for

detecting minute statistical features like those related to the

source camera-model of the image. Again, experiments on

image-classification benchmarks have shown that, using a

secondary network to re-calibrate the learned features im-

proves the representational power of a network. Motivated

by these results, we feed the output features of our main net-

work into a Squeeze-and-Excite block, introduced in ([11]).

This boosts the final test-accuracy of our networks on the

given benchmarks.

But, the problem of over-fitting still remains, as exist-

ing datasets are limited in their size. To overcome this set-

back and to ensure generalization of the features that are

learned, we use a number of data-augmentation schemes

such as, gamma correction, JPEG compression, re-scaling,

extracting patches for training, randomly cropping and flip-

ping the training image to extend the dataset. These prevent

the network from becoming dependent on the specific de-

vice from which the training images are taken and help the

network learn more robust features. Additionally, we have

also trained the network for image manipulation detection,

to see whether or not- it can be used as a general purpose

network for image forensics.

The following sections of this paper explain image acquisi-

tion model, the outline of our model, detailed architecture

of the network, training procedure, and the detailed com-

parative results.

2. Materials

2.1. Description of Datasets

In order to train our network, we have used the Camera-

Model Identification Dataset provided for the IEEE Signal

Processing (SP) Cup 2018. The initial dataset consisted of

images captured by 10 different camera models having 275

images for each, all of which were provided by the IEEE

Signal Processing Society. In addition to this, external data

for each camera-model is collected from Flickr during the

open competition phase of SP Cup 2018. This one con-

tained varying number of images for each camera model.

Dataset-I is formed by combining both of these sets of data.

A brief summary of the dataset-I is given in Table 1.

The test data for the SP Cup dataset is provided sepa-

rately on the Kaggle platform without any labels. It includes
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Camera Model

SP Cup Data

(No. of

Images)

Flickr Data

(No. of

Images)

HTC-1-M7

275

× 10

746

iPhone-4s 499

iPhone-6 548

LG-Nexus-5x 405

Motorola-Droid-Maxx 549

Motorola-Nexus-6 650

Motorola-X 344

Samsung-Galaxy-Note3 274

Samsung-Galaxy-S4 1137

Sony-NEX-7 557

Sub-Total 2750 5709

Grand-Total 8459
Table 1. SP Cup data & Flickr data (Dataset I)

2640 images of size 512× 512, among which 1320 are un-

altered and the rest are manipulated externally. The details

of the manipulation scheme used to generate these images

are discussed in subsequent sections.

In addition to Dataset-I, we have also performed experi-

ments on the Dresden Image Database. This dataset include

varying number of images for 27 different camera models.

We denote these images as Dataset-II.

2.2. Data Augmentation

Additional data has been generated by post-processing

the original images given in the dataset. It is a common

practice in deep learning to deliberately alter the input data

to help the network learn more robust features. A total of 8

types of post-processing have been performed on the images

of Dataset-I. These are JPEG-Compression with quality fac-

tor 90% and 70%; Resizing by a factor of 0.5, 0.8, 1.5 and

2.0; Gamma-Correction using γ as 0.8 and 1.2. Also, EMD

has been performed as an augmentation which is discussed

in section 2.2.2. Moreover, the input image is randomly

rotated by 0◦,±90◦, and 180◦ during training. Because of

this, the network can extract the camera model-features irre-

spective of whether the image was taken in landscape mode

or portrait mode.

3. Methods

3.1. Model Proposal

The complete structure of our model is shown in Fig. 1.

Different parts of our model are outlined as follows:

• First, we select patches of size 256 × 256– from the

generated images based on their quality.

• After extracting patches, we use them to train Dense

Convolutional Networks (DenseNets), specifically the

DenseNet-201 architecture, with patches of size 256×
256.

• Next, using the DenseNet-201 trained on 256 × 256
patches only, we extract features from second to the

last layer for the size 256×256 and all non-overlapping

patches of size 128×128 and 64×64 from each train-

ing image. Thus, at the end, we essentially have 3 fea-

ture vectors for 3 different patch size.
• Then, we concatenate the feature vectors produced by

this network and use them to train a secondary network

consisting of a Squeeze-and-Excitation (SE) block and

a classification block. The output of the SE block is

passed to the classification block.
• During testing, we similarly generate feature vectors

for each 256 × 256 patch using the DenseNet-201

trained on 256 × 256 patches only. These features are

concatenated and passed to the secondary network to

generate the final prediction for the entire image.

Figure 1. Overview of the network.

3.2. Training Data Generation

3.2.1 Selecting and Extracting Patches

The first step of the proposed pipeline is to generate patches

from the input images—both processed and unprocessed.

The idea of extracting patches is motivated by 3 reasons:

(i) it results in more data to train our neural network, thus

making the training process more generalized; (ii) it enables

us to generate multiple predictions for a given test image.

Averaging over all of those predictions will ensure a more
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accurate classification, and (iii) training our network with

patches of small size relative to the image prevents our net-

work from learning dominant spacial features of the image.

As a result, the network can better learn inherent statistical

features related to the source camera model. The patch sizes

that we opt to use is 256× 256.

But, it is apparent that, all the patches are not suitable

for training. In particular, saturated patches are not likely to

contain enough statistical information about the used cam-

era model. Therefore, before extracting patches, we deter-

mine their quality and only use patches of good quality to

train our network.

We compute the quality value of a patch as outlined in

[4]. For each patch P in an image, its quality Q(P) is com-

puted as:

Q(P) =
1

3

∑

c∈[R,G,B]

[

α · β · (µc − µ2
c) + (1− α) · (1− eγσc)

]

(1)

where α, β and γ are empirically set constants (set to 0.7,

4 and ln(0.01) in our experiments, respectively), whereas

µc and σc, c ∈ [R,G,B] are the mean and standard de-

viation of the red, green and blue components (normalized

by 255 to the range [0,1]) of patch P , respectively. This

quality measure tends to be lower for overly saturated or

flat patches, whereas it is higher for textured patches show-

ing some statistical variance. For each image, we select 20

patches of size 256× 256 with the highest Q values.

3.2.2 Empirical Mode Decomposition

The training data has been augmented further by perform-

ing EMD [13]. In EMD, an input signal is decomposed

into the so-called Intrinsic Mode Functions (IMFs) and a

Residue (see in Fig. 2). Mathematically, for 2D EMD the

deocomposition can be expressed as

I(m,n) =

L
∑

j=1

IMFj(m,n) + ResL(m,n) (2)

where I(m,n) is the 2D image, IMFj(m,n) is the j−th

Intrinsic Mode Function, and ResL(m,n) represents the

Residue corresponding to L intrinsic modes.

In our experiments, we have m = n = 256. The most

commonly used algorithm for 2D-EMD is implemented us-

ing FastRBF [6]. At first, a set of discrete nodes denoted by

X = {xi}
N

i=1 ∈ I(m,n) are selected, which are either local

minima or local maxima points for I(m,n). Here, xi can

be described as (xi, yi) points on a 2D plane. These coordi-

nates are used as centers for RBF or Radial Basis Functions.

An RBF or Radial Basis Function [22] is mathematically

expressed as

s(x) = pm(x) +

N
∑

i=1

λiφ(‖x− xi‖) (3)

where, s(x) is the Radial Basis Function or RBF, pm(x)
is a low-degree polynomial with degree m, λi are the RBF

coefficients, φ is a real valued function (the spline function

is used in our case) and x denotes variable point (x, y) on

2D space and xi are the RBF centers. Here, ‖·‖ denotes the

Euclidean norm.

The algorithm [24] uses FastRBF to interpolate upper

and lower envelopes of scattered local maxima and minima

from I(m,n). The mean of the envelopes is then subtracted

from the image to get the IMF.

+

1st

IMF

2nd

IMF

3rd

IMF
. . . . 9th

IMF

9th

Residue

1st IMF

+

1st Residue

Original

Image

Figure 2. EMD of an Image– showing the Intrinsic Mode Func-

tions (IMFs) and Residue.

In this work, we have used 2-dimensional EMD to re-

move the 1st IMF from each channel of the input im-

ages separately and retain the residue obtained after the

1st stage decomposition. This residue serves as addi-

tional data to train our networks. Applied in this manner,

EMD essentially works as a denoising scheme by removing

random high-frequency noise-components from the image

data. Thus, using EMD more than once may prove to be

detrimental, as the intrinsic camera-model features embed-

ded in the image may be removed upon successive decom-

positions.

We have used Python’s PyEMD library to apply the

decomposition to all of the 256 × 256 patches extracted

from the SP-Cup Data.

3.3. Architecture

3.3.1 Densenet

After extracting patches from the images, we train a deep

Convolutional Neural Network (CNN) to perform the task

of Source Camera-Model Identification. The CNN model

that we opt to use is the Dense Convolutional Network
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Figure 3. Illustration of Dense-Connections and Transition-Layers

implemented in DenseNet.

(DenseNet). The details of the DenseNet architecture that

we use for Camera-Model Identification is summarized in

Table 2.

Table 2. Architecture of DenseNet-201
Layers DenseNet-201

Convolution 7 × 7 conv, stride 2

Pooling 3 × 3 max pool, stride 2

Dense Block
[

1 × 1 conv
]

× 6
(1) 3 × 3 conv

Transition Layer 1 × 1 conv

(1) 3 × 3 max pool, stride 2

Dense Block
[

1 × 1 conv
]

× 12
(2) 3 × 3 conv

Transition Layer 1 × 1 conv

(2) 2 × 2 average pool, stride 2

Dense Block
[

1 × 1 conv
]

× 48
(3) 3 × 3 conv

Transition Layer 1 × 1 conv

(3) 2 × 2 average pool, stride 2

Dense Block
[

1 × 1 conv
]

× 32
(4) 3 × 3 conv

Layer Global Average Pooling

Classification Softmax

The model that we use is the 201-layer DenseNet intro-

duced in [12]. It consists of 4 dense blocks, each with a

growth-rate of 32. Transition layers have been used between

successive dense blocks. These consist of a convolution

layer and a max-pooling layer. No reduction and dropout

layers have been used in the network. The dimensionality

of the output feature vector is reduced by using Global Av-

erage Pooling, and the features are finally classified by us-

ing a Fully-Connected layer with Softmax as the activation

function. This layer outputs the probabilities of classifica-

tion for each class.

The intuition behind using this architecture is the na-

ture of the classification that we wish to accomplish. The

camera-model features inherent in an image are very subtle

and minute features of the image [28]. Detecting and clas-

sifying these features are difficult in itself. But, the task is

made even more challenging by the constraints posed for

the task. In addition to the model-level features, the im-

age also contains device-level features such as the Photo

Response Non Uniformity (PRNU) sensor noise [9] . To

detect the source camera-model effectively, we need to take

care that the network does not become dependent on this

type of sensor noise. In addition to this, post-processing has

also been introduced in the dataset which alters the spacial

structure of the model-features in an unpredictable manner.

Therefore, a network that can detect the model-features un-

der all of these constraints needs to be sufficiently deep and

have a large number of parameters. But, training such a

deep network to detect the subtle model-features proves to

be very difficult. The network invariably becomes depen-

dent on the image content or the device specific noise, as all

of the minute statistical information is lost when the image

is propagated through consecutive layers.

This problem is alleviated in the DenseNet through the

use of dense connections. To preserve image information

throughout the network, the output of each layer is propa-

gated to all of the layers in front of it. Even if some of the

minute features are lost due to some operation, it is regen-

erated from the output of the previous layers at the input of

the subsequent layers through these dense connections (see

Fig. 3). This prevents the gradient-flow from vanishing dur-

ing training in such a deep network and allows us to extract

features which are very difficult - if not impossible to detect

using conventional CNN architectures.

3.3.2 Squeeze and Excitation Block

The output after the 4 dense blocks is passed to another

module called a ”Squeeze-and-Excitation” (SE) block. This

module has been introduced by Hu, Shen and Sun [11]. The

aim of this module is to improve the representational power

of a network by explicitly modelling the interdependencies

between the channels of its output. To achieve this, the SE

block performs feature recalibration, through which it can

learn to use global information to selectively emphasize in-

formative features and suppress less useful ones, without

changing the dimensions of the feature vector.

The internal layers of the SE block and corresponding

shapes are given in Figure 4. We construct the SE block to

perform feature recalibration as follows. The input features

are first passed through a squeeze operation, which aggre-

gates the feature maps across spatial dimensions to produce

a channel descriptor. This descriptor embeds the global dis-

tribution of channel-wise feature responses, enabling infor-

mation from the global receptive field of the network to be
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Figure 4. Illustration of a Squeeze-and-Excitation Block.

leveraged by its lower layers. This is followed by an excita-

tion operation, in which sample-specific activations, learned

for each channel by a self-gating mechanism based on chan-

nel dependence, govern the excitation of each channel. The

feature maps are then reweighted to generate the output of

the SE block which can then be fed directly to the classifi-

cation layers.

3.3.3 Classification block

The modified features, of size (3 × 1920), produced at the

output of the SE block is then passed through a Dropout

layer with a dropout-rate of 30%. This is followed by a

Global Average Pooling operation to reduce the feature vec-

tor to a size of (1× 1920). Finally, we pass the pooled fea-

ture vector to a Dense Layer with Softmax as the activation

function to generate probabilities for the 10 classes which

represent the 10 camera models that we need to classify.

4. Experiments

In this section, we discuss the training procedure in de-

tail. Before training, the DenseNet-201 model was initial-

ized using weights pre-trained on the ImageNet database.

This ensured a better and faster convergence of the weights

during training.

4.1. Phase­I

In Phase-I, we train our model using Dataset-I. We take

20 patches of size 256 × 256 from each image to train

our network. During training, 85% of the total number of

patches are used for training and the rest are used for val-

idation. We have used Stochastic Gradient Descent as the

Optimizer in our network with a momentum of 0.9 and ini-

tial learning rate of 10−3. The learning rate is decreased by

a factor of 10−1 if the validation loss have not decreased in

2 successive epochs. In this way, when the learning rate is

reduced to 10−7, training is stopped.

After training the DenseNet, we extract features from

the second to last layer for input size of 256 × 256. The

output features are of size 1 × 1920. We also extract fea-

tures for all the non-overlapping patches of size 128 × 128
and 64 × 64 that the 256 × 256 patch contains as visual-

ized in Figure 1. We receive 4 × 1920 feature vector from

the 4 non-overlapping patches of 128× 128 and 16× 1920
feature vector from the 16 non-overlapping patches of size

64×64. We reduce both the feature vectors of size 4×1920
and 16 × 1920 to 1 × 1920 each by averaging. Lastly, we

concatenate the feature vectors for 3 different input sizes to

form a resultant feature vector of size 3×1920. It should be

noted that the same model is used for extracting features.

We then use the output feature vectors generated by the

DenseNet to train our secondary network. These features

are passed to the Squeeze-and-Excite and classification net-

work. The classification network outputs a final class vector

of size 1 × 10 which represent the 10 Camera Models that

we need to detect (see Figure 1).

Although our proposed architecture is a single model

trained on 256 × 256 patches only, for investigation

purposes, we have separately trained three separate

DenseNet-201 networks for three input sizes, the outcomes

of which shall be discussed in the next section.

4.2. Phase­II

For phase-II, we have used the images of Dataset-II

and extracted the best 20 non-overlapping patches of size

256×256 depending on the quality we outlined before. For

training, we have used transfer learning on our previously

trained model from Phase-I. We load the weights of the

network from Phase-I to initialize the DenseNet and train

the network for input size of 256 × 256. We do not imple-

ment our full proposed pipeline in this phase. The output

feature of the DenseNet of size 1 × 1920 for 256 × 256
input patches have been directly used in classification. The

classification block receives the 1 × 1920 feature vector

from DenseNet and is trained for the 27 classes. Both the

classification block and the DenseNet runs through the

same backpropagation. Hyper-parameters for training have

been kept the same as in Phase-I.

4.3. Phase­III

In Phase-III, We have used all images from Phase-I.

However, EMD-data has not been included in this case.

We sub-divided these data into 4 classes (Unaltered, Re-

sized, JPEG-Compressed and Gamma-Corrected) irrespec-

tive of their camera models. Similar to phase-II, DenseNet

has been initialized using the network from phase-I and

the classification block is trained to detect the presence of

manipulation in the data. It must be mentioned that, dur-
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Table 3. Detection Accuracy of Camera-Models for different Input

Sizes

Network
Accuracy

Unaltered

(70%)

Manipulated

(30%)

Total

(100%)

DenseNet-201

(64× 64)
67.16% 27.43% 94.59%

DenseNet-201

(128× 128)
68.33% 28.61% 96.94%

DenseNet-201

(256× 256)
68.75% 28.82% 97.57%

DenseNet-201

(Final Layer

Prediction Average)

69.12% 28.84% 97.96%

Full

Pipeline
69.33% 29.04% 98.37%

ing training, our dataset have been reduced to some extent

(150000×4 = 600000) to make the training data evenly dis-

tributed among 4 classes. Also, in this case, we have used

128 × 128 sized patches for training due to much higher

prediction accuracy compared to other sizes.

The accuracies obtained from all of these networks dur-

ing training and testing are included in the result section.

5. Results and Discussion

In this section, we shall discuss our experimental proce-

dure in details. The following subsections will present the

outcomes of our experiments.

5.1. Phase­I

This is the core result of our work. The test dataset of

Phase-I is completely from an unseen device and contains

2640 images of size 512 × 512 with equal numbers of un-

altered and manipulated images. We have tested the re-

sults generated by our networks in Kaggle. According to

the competition rules of IEEE Signal Processing Cup 2018,

Kaggle provides a score on the test-results based on the fol-

lowing formula:

Score = 0.7× (Accuracy of Unaltered Images)+

0.3× (Accuracy of Manipulated Images)

In this work, whenever we mention overall accuracy, we

refer to this score. We can calculate individual accuracies

from the above scoring equation by submitting predictions

for unaltered or manipulated images separately. The test-

accuracies of Phase-I are summarized in Table-3.

In Table 3, we can clearly see the impact of input image

size on the test-results. Despite being trained on the same

DenseNet-201 architecture, higher accuracy is produced for

larger input sizes. It may be the consequence of lower qual-

ity of the 64×64 patches. The residual camera-model infor-

mation left after cropping an image to this size are minimal.

This may have caused difficulties for the network to predict

accurately for inputs of this size.

Nonetheless, a better result may be obtained by averaging

the predictions of the 3 networks, with separate weights for

the classification layer. This illustrates that some of the

camera-model features may vary depending on the size of

the input. As a result, ensembles over multiple networks

trained on different input sizes are likely to have improved

performance. However, our aim in this work is to maximize

the detection-accuracy using a single network. So, we used

the weights for the 256× 256 input-size in all the networks

of our model. We have generated the output features for all

the input sizes using this single weight. And we have used

the SE network to automatically adjust the weights of these

features. This full pipeline achieved an overall accuracy of

98.37%.

Besides, the performance of our network on different

parts of the dataset are shown in Figure 5.

Figure 5. Difference in accuracy with the variation of Dataset.

Here we can clearly see the effects of adding EMD augmented

images in increasing the accuracy.

Table 4. Predictions of detected manipulations

Unaltered
JPEG-

Compr.

Gamma-

Corrected
Resized

Unaltered 90.07% 3.49% 6.06% 0.38%

JPEG-

Compr.
0.15% 99.85% 0% 0%

Gamma-

Corrected
3.18% 0% 96.75% 0.07%

Resized 0% 0% 0% 100%

Using patches of size 256× 256 only, extracted from the

SP Cup Data and their manipulated versions, we achieved

a modest accuracy of 93.1%. However, since these images

are collected from only one device for each camera-model,

the low result is expected. The network inevitably learns
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device-level features, which degrades its performance. Af-

ter adding EMD versions of these images, the accuracy sig-

nificantly improves to 94.6%. Since, the 1st IMF of the

input image was removed in our EMD versions, this IMF is

likely to have some correlations to the device-level features.

Using the entire Dataset-I during training, which included

the data from Flickr, the accuracy is further improved to

96.1%. This can be mainly attributed to the presence of

images captured by different devices in the Flickr Data for

each camera-model. Because of the presence of these vari-

ations in device-level features, the network could learn the

model-specific features more accurately– thus causing the

increase in accuracy. Adding EMD versions of all these im-

ages boosted the accuracy to 97.7%. This strengthens our

previous assumption of EMD being an effective augmen-

tation technique in this task. To recall, all of these results

are achieved by using patches of only one size– 256× 256.

Using all of the patches and our full pipeline, we have

achieved a final accuracy of 98.37%. This is our final re-

sult on Dataset-I, which is the current state-of-the-art on this

dataset using a single network.

5.2. Phase­II

For Phase-II, we have tested our network on the im-

ages from 27 different camera models of the Dresden

Database. Although we have not used our full pipeline

for this dataset, an overall accuracy of over 99% is

achieved for 19 camera models by the 1st network of

Phase-I. The camera-models for which accuracy dropped

are CANON IXUS-55, CANON A640, NIKON D200,

NIKON D70, NIKON D70S, SONY H50, SONY T77,

SONY W170. However, the false detection of images is

confined within the models of the manufacturing company.

It means, this network is able to detect the manufacturing

company of the source camera-model with an accuracy of

100%. Also, we have another very important thing to no-

tice in this case. Though the training dataset is very small

(16961×20 = 339220) compared to the dataset of Phase-I,

but still, DenseNet-201 is able to detect the camera models

very accurately because of the learnt features from Phase-I.

This indicates that our network can be fine-tuned to detect

further camera models. In case of wrongly detected cam-

era models, such as Nikon D200 or Sony W170, there is a

high chance that these models does have almost similar in-

terpolation method or CFA pattern corresponding to other

camera models from the same manufacturer. That is why

the test-results show some mismatch for these models. Our

findings are in commensurate with the work of Kirchner et

al. [16] where Nikon D70 and Nikon D70s, have been found

out to be the same.

5.3. Phase­III

In this phase of experiments, we have tried to identify

the 4 types of image-manipulations used on the images of

Dataset-I: Unaltered, JPEG Compressed, Gamma Corrected

and Resized. In testing, we have used the unaltered images

from the test data of size 512×512 provided by Kaggle and

generated a total of 1320×9 = 11880 test images, which in-

clude 1320 unaltered, 2640 JPEG compressed, 2640 gamma

corrected and 5280 resized images. Details of the result are

given in Table 4. We have achieved an overall accuracy of

96.66% in this task. It is instructive to mention that, these

results have been obtained by using only the DenseNet-201

architecture and 128× 128 patch size.

The results show that, the features learned by our pro-

posed model, have some sort of orthogonality among them,

depending on the type of manipulation present in the im-

age. As a result, these features may be used in other image-

forensic tasks outside the premise of our current work.

6. Conclusion

In this paper, we have proposed a DenseNet-oriented

pipeline for identifying the source camera-model of an im-

age. We have used DenseNet-201 as well as a Squeeze

and Excitation (SE) network for our model architecture and

trained our model on the IEEE Forensic Camera-Model

Identification Dataset. This pipeline shows an overall ac-

curacy of 98.37% on the test data provided for the IEEE

Signal Processing Cup 2018 Camera Model Identification

Challenge. A number of Data-Augmentation techniques

have been used in our work to extend the dataset, among

which EMD is a novel addition to the repertoire of tech-

niques used in Camera-Model Identification. Besides, we

have also used transfer learning and evaluated our model

on the Dresden Image Database, which showed an accuracy

of over 99% for 19 camera models, where we have been

able to detect the manufacturing company of the camera-

model with an accuracy of 100%. However, there is an

issue that needs to be addressed regarding the experiment

on Dresden image Database. The test images used in this

experiment are not from a separate device than the devices

used to capture the training images because of the unavail-

ability of multiple devices for all 27 camera models. This

may have resulted in higher accuracy than the experiment

on SP Cup database. Moreover, the features learned by the

DenseNet have also been used to classify the manipulations

that have been applied to an image, with an accuracy of

96.66%. This demonstrates the generalization of our train-

ing procedure, for detecting camera-model features across

varying datasets and the suitability of using these features

in multiple image-forensic tasks.

26



References

[1] Belhassen Bayar and Matthew C Stamm. A deep learning

approach to universal image manipulation detection using

a new convolutional layer. In Proceedings of the 4th ACM

Workshop on Information Hiding and Multimedia Security,

pages 5–10. ACM, 2016. 2

[2] Belhassen Bayar and Matthew C Stamm. Design principles

of convolutional neural networks for multimedia forensics.

Electronic Imaging, 2017(7):77–86, 2017. 2

[3] Sevinc Bayram, Husrev Sencar, Nasir Memon, and Ismail

Avcibas. Source camera identification based on cfa interpo-

lation. In Image Processing, 2005. ICIP 2005. IEEE Interna-

tional Conference on, volume 3, pages III–69. IEEE, 2005.

1

[4] Luca Bondi, Luca Baroffio, David Güera, Paolo Bestagini,
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